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Abstract

Non-small cell lung cancer (NSCLC) has two major subtypes: adenocarcinoma (AC) and squamous cell carcinoma (SCC). The
diagnosis and treatment of NSCLC are hindered by the limited knowledge about the pathogenesis mechanisms of subtypes
of NSCLC. It is necessary to research the molecular mechanisms related with AC and SCC. In this work, we improved the
logic analysis algorithm to mine the sufficient and necessary conditions for the presence states (presence or absence) of
phenotypes. We applied our method to AC and SCC specimens, and identified 217 lower and 162 higher logic relationships
between genes and two subtypes of NSCLC. The discovered relationships were independent of specimens selected, and
their significance was validated by statistic test. Compared with the two earlier methods (the non-negative matrix
factorization method and the relevance analysis method), the current method outperformed these methods in the recall
rate and classification accuracy on NSCLC and normal specimens. We obtained 19 biomarkers. Among 19 biomarkers, 13
genes have been used to distinguish AC from SCC in practice, and other six genes were newly discovered biomarkers for
distinguishing subtypes. Furthermore, NKX2-1 has been considered as a molecular target for the targeted therapy of AC, and
18 other genes may be novel molecular targets. By gene ontology analysis, we found that two biological processes
(‘epidermis development’ and ‘cell adhesion’) were closely related with the tumorigenesis of subtypes of NSCLC. More
generally, the current method could be extended to other complex diseases for distinguishing subtypes and detecting the
molecular targets for targeted therapy.
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Introduction

Lung cancer is the leading cause of cancer-related deaths in the

world [1]. It has been divided into two classes by the World Health

Organization (WHO): non-small cell lung cancer (NSCLC) and

small cell lung cancer (SCLC) [2]. NSCLC, which has two major

subtypes: adenocarcinoma (AC) and squamous cell carcinoma

(SCC), accounts for more than a half of all lung cancer cases [2].

However, less than 15% of NSCLC patients survive beyond five

years [3]. The limited effectiveness of the diagnosis and treatment

of NSCLC is mainly caused by the difficulty to distinguish the

subtypes and the limited knowledge about the pathogenesis

mechanisms of subtypes of NSCLC.

NSCLC is a system disease, and the difference of AC and SCC

may be reflected on the cellular and molecular level. Traditional

methods rely on visual cell morphology (e.g. size of tumor and

histological features) to distinguish subtypes, which are based on

cellular level [4–6]. It has been proposed that traditional methods

could effectively distinguish SCLC from NSCLC because of the

clear distinction between the morphology of SCLC cells and that

of NSCLC cells [7]. However, the morphological difference

among the subtypes of NSCLC remains unclear [8]. Multiple

molecular level data (mRNA, microRNA and methylation data)

between NSCLC and normal have been used for analyzing

dysfunctions of NSCLC [9]. It was suggested that the discrimi-

nating ability of genes obtained by mRNA data was significant

greater than those by microRNA and methylation data. There-

fore, it is reasonable to retrieve valuable genes and biological

processes that have great discriminating ability between AC and

SCC on the mRNA level.

A targeted therapeutic agent is designed to interfere with a

specific molecular target which plays a crucial role for tumor

growth and progression [10]. For example, bevacizumab, which is

a targeted therapeutic agent for the targeted therapy of NSCLC, is

a monoclonal antibody for VEGF. The gene VEGF is crucial

because it is higher expressed in lung cancer than in normal lung

[11]. Hence, the molecules which play distinct roles between

cancer and normal may be important for selecting therapeutic

agents. Although targeted therapy shows clinical benefits, targeted

agents have not enabled targeted therapies to change clinical

outcome dramatically. Moreover, existing targeted therapeutic

schedules may be suitable for the prognostic of a special subtype of

NSCLC. For example, only patients with non-SCC are better to

use bevacizumab [12]. Therefore, it is necessary to research the

molecular mechanisms that are related with the subtypes of

NSCLC, to develop effective methods to distinguish AC from

SCC and novel therapeutic agents special for the subtypes of

NSCLC.

The expression patterns of several genes are found to be special

for the subtypes of diseases. For example, the NKX2-1 gene is
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expressed in lung AC [13]. The knockdown of NKX2-1 results

growth inhibition in lung AC cell. Therefore, the presence of lung

AC depends on the expression of NKX2-1 [14]. Another example

is involved in the research of esophageal cancer, the combination

of the genes GATA6 and SPRR3 may discriminate among normal

epithelium, Barrett’s dysplasia and Barrett’s esophagus associated

AC [15]. Some special relationships exist between the gene pair

(GATA6 and SPRR3) and the phenotypes of esophageal cancer.

Such examples suggest the existence of relationships between

genes and the subtypes of diseases.

The methods that indirectly identify gene-phenotype relation-

ships can be roughly divided into three common steps: construct a

gene-gene (or protein-protein) network and a phenotype-pheno-

type network by pooling interaction data from several databases;

connect the gene-gene (or protein-protein) network with the

phenotype-phenotype network; use an algorithm (e.g., random

walk with restart on heterogeneous network algorithm) to infer

pairwise gene-phenotype relationships [16,17]. However, the noise

from the integration of data limits the effectiveness of the detection

of gene-phenotype relationships.

Many methods have been developed to directly associate single

molecules to phenotypes. The nonnegative matrix factorization

(NMF) method is a dimensionality-reducing algorithm to obtain a

set of metagenes and associated coefficients [18]. Each phenotype

corresponds to a metagene. The coefficient of a gene in a

metagene represents the closeness of the relationship between the

gene and the phenotype corresponding to the metagene. This

method requires to filter several data to ensure the nonnegative

condition, which may loss some useful information. Linear

correlation coefficients were used to measure genotype-phenotype

associations between single proteins in a microbe and the

microbe’s phenotypes [19]. Slonim et al. used the relevance

analysis method (RA) to infer gene-phenotype relationships by

estimating mutual information [20]. However, phenotype traits

are often influenced not by a single gene, but by combinations of

genes. Association rule mining (ARM) is a data mining technique

to extract if-then rules with the general form items?class [21].

Bowers et al. designed the logic analysis method to obtain if-then

rules from an item or a combination of items to another one.

Previous studies have been done to infer logic relationships among

genes or proteins using pairwise and triplet logic analysis on

expression data or phylogenetic profiles [22]. However, if-then

rules may not have many biological cases unless the converse

relation holds as well [23].

In this paper, we improve the logic analysis method to mine the

necessary and sufficient conditions for the presence states (presence

or absence) of phenotypes [22]. The current method takes into

consideration both a single gene and a gene pair which may

influence phenotypes. We apply the method to infer gene-subtype

relationships based on AC and SCC specimens. It is suggested that

the expression patterns (expression or no-expression) of identified

genes are necessary and sufficient conditions for the presence states

of AC or SCC. The effectiveness of the current method is

demonstrated on NSCLC and normal specimens. Our results

show that the current method outperforms the two existing

methods (the NMF method and the RA method) in recall rate and

classification accuracy. This work could help to find the

biomarkers to distinguish the subtypes of diseases and to design

novel targeted therapeutic agents for diseases, as well as reveal the

biological processes which are closely related with diseases.

Results

We applied our method to identify relationships between genes

and two major subtypes of NSCLC (AC and SCC). Further, the

performance comparison of our method with those of the two

earlier methods (the NMF method and the RA method) was made

by comparing two measures (the recall rate and classification

accuracy) on the data of GSE18842 which contains similar

numbers of NSCLC and normal specimens. The biomarkers as

well as biological processes which were closely related with the

subtypes of NSCLC could be obtained from several interesting

relationships between genes and subtypes of NSCLC.

Identification of gene-subtype lower and higher logic
relationships

Given that the number of AC specimens (210) was much larger

than that of SCC specimens (144) (Table 1), we randomly selected

the fixed number (i.e.144) of AC specimens to ensure the similar

number of specimens for different phenotypes. We exacted the

columns of binary probe data as well as those of phenotype profile

data, which correspond to the selected AC specimens and all of the

SCC specimens. The new binary probe data and phenotype

profile data were formed by the exacted columns of binary probe

data and phenotype profile data, maintaining the relative positions

of columns. The new binary probe data had size 40233|288,

where the first 144 columns corresponded to AC specimens, and

the last 144 columns refered to SCC specimens. The new

phenotype profile data had size 2|288, where the first row

represented AC and the second one represented SCC. For

convenience, we defined the first and second row of the new

phenotype profile data as AC profile data and SCC profile data,

respectively. The subtypes of NSCLC data comprised the new

binary probe data and the new phenotype profile data. We applied

our method to the subtypes of NSCLC data to mine gene-subtype

logic relationships.

Identification of probe-subtype lower and higher logic

relationships. Based on the subtypes of NSCLC data, we

calculated the uncertainty coefficient for a subtype of NSCLC

predicted by a probe (or a probe pair), as well as the uncertainty

coefficient for a probe (or a probe pair) predicted by the subtype in

the reverse direction. The same procedure was applied to random

binary probe data and phenotype profile data. The maximum

random uncertainty coefficients for logic pairwise and triplet

combinations were used as the thresholds for lower and higher

logic relationships, respectively. That is, the association of a probe

or a probe pair with a subtype was considered significant if and

only if its uncertainty coefficients in both directions were found to

be greater than the maximal value obtained from the random

data. Let 0:18 and 0:30 be the thresholds of lower and higher logic

relationships, respectively. We obtained 362 logic pairwise

Table 1. Data source.

Subtype No.(n)

AC GSE10245(40) GSE37745(106) GSE18842(14) GSE28571 (50)

SCC GSE10245(18) GSE37745(66) GSE18842(32) GSE28571 (28)

Normal — — GSE18842(45) —

‘No.’ is the accession number from the Gene Expression Omnibus (GEO)
database in NCBI; ‘n’ is the number of specimens; ‘—’ means there are no
specimens from the corresponding data set.
doi:10.1371/journal.pone.0094644.t001
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combinations and 230 logic triplet combinations with uncertainty

coefficients higher than 0:18 and 0:30, respectively.

Because the significance of the discovered logic pairwise and

triplet combinations cannot be exactly verified by the limited

knowledge of gene-subtype interactions, a statistical analysis is

deserved to be estimated [24]. Suppose the significance level was

1|10{3. The p-values were all zeros for the discovered logic

pairwise and triplet combinations, which were smaller than the

significance level. The results of the statistical analysis showed that

the discovered logic pairwise and triplet combinations did not

interact randomly.

Next, we evaluated the false discovery rate (FDR) to control the

global significance of the discovered logic pairwise and triplet

combinations. Both FDR values for discovered pairwise and triplet

combinations were zero, therefore all of the discovered logic

pairwise and triplet combinations were not generated by chance

and all of them might represent real associations.

In addition, we calculated the recurrence rate of discovered

logic pairwise and triplet combinations among all random trials.

The logic relationships with the recurrence rate larger than 0:9
were considered as the relationships which were independent of

the specimens selected. Finally, we derived 274 probe-AC lower

logic relationships and 170 probe-AC higher logic relationships

(Table A and B in Table S1).

Note that the AC profile data and SCC profile data were binary

complementary vectors. If a probe (or a probe pair) is related with

AC by the ith type of lower (higher) logic relationships, then the

probe (the probe pair) is related with SCC by the jth type of lower

(higher) logic relationships, where the uncertainty coefficient of the

probe-SCC lower (higher) logic relationship is equal to that of the

probe-AC lower (higher) logic relationship, but i=j. Therefore,

the probe which has a close relationship with AC is also closely

related with SCC. Finally, we obtained 274 probe-AC/SCC lower

logic relationships and 170 probe-AC/SCC higher logic relation-

ships.

Identification of gene-subtype lower and higher logic

relationships. Each probe, which was focused on in this paper,

is mapped to a single gene. Conversely, a gene may be detected by

more than one probe. For example, the CLCA2 gene was detected

by four different probes: 206164_at, 206165_s_at, 206166_s_at

and 217528_at. All of the above four probes were related with AC

by the second type of lower logic relationships. Moreover, 0:58,

0:38, 0:68 and 0:60 were the mean uncertainty coefficients for

each of the four probes related with AC in both directions,

respectively. A probe-AC logic relationship set comprised several

probe-AC logic relationships, where probes were associated to the

same gene. In a probe-AC logic relationship set, the probe-AC/

SCC logic relationship with the largest mean uncertainty

coefficients in both directions was used to generate a gene-AC/

SCC logic relationship as described in Section Materials and

Methods. Thus, CLCA2 was related with AC by the second type of

lower logic relationships and the coefficient of the CLCA2-AC/

SCC relationship was 0:68.

According to the above method, 44 gene-AC/SCC lower logic

relationships were generated from 101 probe-AC/SCC lower logic

relationships (Table A in Table S2). Each of the rest 173 probe-

AC/SCC lower logic relationships generated a gene-AC/SCC

lower logic relationship. Finally, we obtained 217 gene-AC/SCC

lower logic relationships (Table A in Table S3).

We found that if a gene was detected by more than one probe,

and the probes were related with subtypes by lower logic

relationships, then the types of the probe-AC/SCC lower logic

relationships were the same. It is suggested that the probes which

are associated to the same gene may be related with subtypes by

the same way.

We obtained six gene-AC/SCC higher logic relationships from

14 probe-AC/SCC higher logic relationships (Table B in Table

S2). Each of the rest 156 probe-AC/SCC higher logic relation-

ships generated a gene-AC/SCC higher logic relationship. Finally,

we obtained 162 gene-AC/SCC higher logic relationships (Table

B in Table S3).

In what follows, we discussed examples of logic relationships

which may be inferred from phenomenons previously described in

the literature.

Examples of gene-subtype lower logic relationships. If

each of the genes DSG3, CLCA2, DSC3 and PKP1 was expressed,

then SCC was present, while AC was absent. In addition, if each

of above genes was not expressed, then SCC was absent and AC

was present. That is, the expression of each of above genes was a

sufficient and necessary condition of the presence of SCC as well

as the absence of AC. Our results suggested that genes (DSG3,

CLCA2, DSC3 and PKP1) may distinguish subtype AC from SCC.

Given that intracellular bridges are one of the most characteristic

of SCC but not of AC, proteins involved in these bridges may be

up-regulated in SCC only, such as desmosome proteins and

intercellular junctional proteins [25]. Desmoglein 3 is the protein

encoded by DSG3. This protein is a calcium-binding transmem-

brane glycoprotein component of desmosome in vertebrate

epithelial cells. The protein encoded by DSC3 is a calcium-

dependent glycoprotein (Desmocollin 3) that is required for cell

adhesion and desmosome formation. The protein encoded by

PKP1 may be involved in molecular recruitment and stabilization

during desmosome formation. The protein encoded by CLCA2

belongs to the calcium sensitive chloride conductance protein

family. It may serve as adhesion molecule for lung metastatic

cancer cells. The above four genes (DSC3, DSG3, PKP1 and

CLCA2) which are associated to desmosomes were found to be up-

regulated in SCC compared to the AC subtype [26]. Concretely,

DSG3 showed high expression in SCC, while low expression in AC

[26]. DSC3 was also upregulated in SCC exclusively [27,28]. In

primary lung tumors, DSC3 was a potential diagnostic marker for

lung squamous cell carcinoma [29]. PKP1 showed a 20 times

greater level of expression in SCCs than in ACs and normal lung

and thus may be useful in histopathological diagnosis [28]. CLCA2

has been inferred to be specifically overexpressed in SCC [30].

We found that subtype AC (SCC) was present (absent) if and

only if NKX2-1 was expressed. It is inferred that the expression of

NKX2-1 in the specimen of AC is much higher than that of SCC.

NKX2-1 which is known as thyroid transcription factor 1 (TITF-1)

is a homeodomain-containing transactivating factor, and it

expressed in the terminal lung bronchioles and lung periphery

predominantly [31]. The presence of NKX2-1 protein was

prevalent in AC, while in SCC NKX2-1 was absent [13]. It is in

accordance with our results.

Examples of gene-subtype higher logic

relationships. The higher logic relationships between gene

pairs and SCC were selected for further analysis. Gene pairs

(GPX2, ITGB8) and (GPX2, SLC2A12) were related with SCC, via

an ‘AND’ logical relationship (higher logic relationship type

c~a ^ b). It indicates that GPX2, ITGB8 and SLC2A12 were all

expressed if the specimen was SCC. Moreover, all of the genes

GPX2, ITGB8 and SLC2A12 were not expressed if the specimen

was AC. GPX2 was detected to have higher expression in SCC

compared with AC and normal [32,33]. We were unaware of

evidence in the literature of the relationships between ITGB8,

SLC2A12 and the subtypes of NSCLC. Our analysis generated

several novel relationships.

Gene-Subtype Logic Relationships of NSCLC
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There are not enough evidences for higher logic relationships to

distinguish the subtypes of NSCLC. Hence, most of the

relationships between gene pairs and the subtypes of NSCLC

have not been confirmed. As the lack of knowledge about the

regulation relationships between genes and subtypes, the exact

relationships between the common gene pairs and subtypes are

deserved to be checked.

Performance comparison
We exacted the columns of binary probe data as well as those of

phenotype profile data, which correspond to the 46 NSCLC

specimens and 45 normal specimens of GSE18842. The new

binary probe data and phenotype profile data were formed by the

exacted columns of binary probe data and phenotype profile data,

maintaining the relative positions of columns. The NSCLC and

normal data comprised the new binary probe data and phenotype

profile data.

Application of the three methods. We firstly applied the

current method to the NSCLC and normal data. We set the

threshold1~0:30, and obtained 1,062 probe-phenotype lower

logic relationships. The significance and global significance of the

discovered relationships were verified by statistic test.

Next, we applied the NMF method to the NSCLC and normal

data. Rows with 100% ‘0s’ were filtered from the binary probe

data to ensure the feasibility of the NMF method. The rest binary

probe data contained 34,057 rows and 91 columns. Because two

clusters of specimens (AC and SCC) were included in the binary

probe data, we chose 2 as the dimensionality reduction parameter

k for the NMF method. Among the obtained two metagenes, the

second metagene had higher expression level in almost all (i.e.

93:33%) of the NSCLC specimens, while lower expression level in

almost all (i.e. 94:1%) of the normal specimens. The probes within

the second metagene were sorted according to their activation

levels (Table S4). The first probe represented the most closely

related probe to the NSCLC phenotype, while the last probe

represented the least closely related probe.

Finally, we applied the RA method to the NSCLC and normal

data. We sorted the probes by the mutual information between the

probe profiles and NSCLC profiles.

Note that the correlations between gene pairs and phenotypes

could be measured by the current method, but they could not be

measured by the NMF and RA methods. Hence, from this point of

view, the current method is superior to the two earlier methods.

All of the three methods could find single genes closely related with

phenotypes. Hence, we just identified the gene-phenotype lower

logic relationships by the current method and compared the results

with those obtained by the two earlier methods.

Performance comparison for the three methods. We

selected two datasets involved the genes which are related with

NSCLC. One dataset contains 1,062 high frequency genes on the

mRNA level detected by Huang et al. (Table S5) [9]. It was

showed that these genes belonged to the top 300 dysfunctional

gene sets with good discriminating ability. We chose the dataset

because it was collected from GEO with the accession number

GSE18842, which was also the source of the NSCLC and normal

data in this work. The other dataset contains 1,001 up-/down-

regulated genes found by Urgard et al., where 599 genes are

down-regulated and 402 genes are up-regulated in NSCLC

compared to the normal tissue (Table S5) [34]. A total of 87 genes

were shared by the above two datasets. Because it is hard to

validate the genes included in each dataset, it is reasonable to

consider these 87 genes as the truth data to estimate the

performance of different methods in this work.

In order to estimate the performance of the current method and

compare its performance with the two earlier methods (the NMF

method and the RA method), we calculated a measure: the recall

rate which was the ratio of the number of detected genes in the

truth data to the total number of genes in the truth data. Note that

the recall rate may be biased by the incomplete nature of the truth

data. Further, we evaluated the classification accuracy which

evaluated the discriminating ability of resulted probes.

Among all of the genes detected by 1,096 probes obtained by

the current method, 40 genes were in the truth data. Hence, the

recall rate of the current method was 45:98%. To compare the

recall rate of the current method with those of the two earlier

methods, we selected the top 1,096 probes obtained by the NMF

method and the RA method, respectively. We found 17 and zero

of the genes in the truth data have been detected by the NMF

method and the RA method, respectively. Hence, the recall rate of

NMF and RA were 19:54% and 0, respectively. The current

method had higher recall rate than NMF and RA.

By Fig. 1, we found that the current method achieved higher

classification accuracy than the NMF method and the RA method.

Additionally, the average classification accuracy of our method

approached to 1 (i.e. 0:99), which means that the probes obtained

by our method has a great classification ability. In the figure, each

curve was steady with little fluctuation. It indicates that the

classification accuracy was little sensitive to the number of probes.

Biomarkers and key gene pairs
Biomarkers inferred by gene-subtype lower logic

relationships. In previous research, a total number of 13 genes

have been reported to be used to differentiate between AC and

SCC, and these genes are DSG3 [26], CLCA2 [30], DSC3 [27],

PKP1 [28], NKX2-1 [35], GJB5 [26], KRT6B [36], SERPINB13

[36], TP63 [37], TRIM29 [38], KRT5 [28], NTRK2 [28] and DST

[39]. We sorted the genes which were involved in the gene-AC/

SCC lower logic relationships in descending order by their

coefficients. Interestingly, all of above 13 genes were included in

the top 25 genes. It is suggested that a gene which has high

uncertainty coefficient may clearly distinguish AC from SCC.

To obtain a set of biomarkers, we firstly selected the top 25
ranked genes (Fig. 2). Because the molecular targets for targeted

therapeutic agents play crucial roles for tumor, the biomarkers for

targeted therapy should have the distinct biological functions

between NSCLC and normal. Next, an intersection set was

generated between top 25 genes and the genes involved in gene-

NSCLC lower logic relationships (the genes have been obtained in

subsection ‘Performance comparison’). Finally, 19 intersect genes

were regarded as the biomarkers for distinguishing AC from SCC,

as well as novel molecular targets for targeted therapeutic agents.

That is, the set of biomarkers comprised DST, CLCA2, KRT5,

DSG3, GJB5, SERPINB13, BNC1, TRIM29, LOC642587, PKP1,

KRT6B, FAT2, GOLT1A, DSC3, NKX2-1, TP63, LASS3, PVRL1

and NTRK2.

Key gene pairs inferred by gene-subtype higher logic

relationships. We grouped together the gene-subtype higher

logic relationships with the same logic function. Because the two

logic functions AND (Type 1) and XOR (Type 8) have more

intuitive biological interpretations than other logic functions, we

restricted our analysis to these two logic functions. The key gene

pairs were defined as the gene pairs involved in the gene-subtype

higher logic relationships with logic function AND or XOR. We

obtained 22 key gene pairs in total, where 21 and 1 gene pairs

were related with AC/SCC through the logic functions AND and

XOR, respectively (Table S6). This result may be explained by the

strict parameters we chose.

Gene-Subtype Logic Relationships of NSCLC
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Gene Ontology analysis
The Gene Ontology (GO) is a structured and controlled

vocabularies and classifications about the annotations of genes,

gene products and sequences [40]. GO includes three categories of

terms: biological processes, molecular functions and cell compo-

nents. We were focused on the biological processes enriching the

genes involved in lower logic relationships. So, in what follows,

when we say GO terms, it means the GO terms in the ‘biological

process’ category.

According to 40,233 probe-AC/SCC pairwise associations and

their uncertainty coefficients, we obtained a gene set containing

19,803 genes without overlap and each gene attached a coefficient.

A total of 19,803 genes were ranked in descending order by

coefficients and given as input to the Gorilla. The Gorilla gave 22
significant GO terms like ‘tissue development’ (GO: 0009888),

‘epidermis development’ (GO: 0008544) , and ‘epithelial cell

differentiation’ (GO: 0030855) (Part A in Appendix S1). Given

that the significant GO terms were retrieved based on the subtypes

of NSCLC data, it has to be checked whether the significant GO

terms are also significant on NSCLC and normal specimens. The

same procedure was applied to the ranked genes based on the

NSCLC and normal data. The test revealed 81 significant GO

terms with significant value p valuev10{5 (Part B in Appendix

S1). In total, seven out of 22 GO terms on the subtypes of NSCLC

data were also significant on the NSCLC and normal specimens

(Table 2). It indicates that the following seven biological processes

are important for tumorigenesis of NSCLC: tissue development,

epidermis development, epithelial cell differentiation, anatomical

structure development, developmental process, cell adhesion and

biological adhesion.

Further, we grouped the genes closely related with the subtypes

of NSCLC into two groups by the types of gene-SCC lower logic

relationships. We mapped the 145 genes which were related with

SCC (AC) by Type 1 (2) lower logic relationships to GO terms.

Gene ontology analysis revealed 41 GO terms with the p-value

scores smaller than 5|10{3 and the enrichment scores larger

than 1. Among 41 significant GO terms, epithelial cell differen-

tiation (GO: 0030855) and cell adhesion (GO: 0007155) were also

involved in the seven significant GO terms which may be

important for tumorigenesis of NSCLC. It indicates that

dysfunction of epithelial cell differentiation and cell adhesion is

important for both of the tumorigenesis of AC and SCC.

In addition, we mapped the 19 identified biomarkers to GO

terms. The resulted significant GO terms were cell adhesion (GO:

0007155) and epidermis development (GO: 0008544) with the p-

value scores smaller than 5|10{3 and the enrichment scores

larger than 1. It indicates that genes annotated to epidermis

development and cell adhesion may be differently regulated

between AC and SCC.

By mapping the 170 higher logic relationships to GO terms, we

obtained 60,378 pairs of GO terms, with 347 different GO terms.

Among all pairs of GO terms, 27 pairs of GO terms involving 25
GO terms were significant with the p-value scores smaller than

0:01, enrichment score larger than one and the number of gene

pairs larger than two. These combination of biological processes

may be pivotal for differentiating AC and SCC, including a

combination of ‘transport’ (GO: 0006979) and ‘regulation of

Figure 1. The recall rate of genes obtained by three methods. According to each method, we rank the genes in descending order by the
coefficients of genes related with phenotypes. We selecte the top n genes, where n~10,20,30,40,50,60,80,100,150,200,300,400,500,600,700,800,
900,1000. The classification accuracy is calculated based on the top n genes. ‘RA’, ‘NMF’ and ‘U’ represent the relevance analysis method, the non-
negative matrix factorization method and the current method, respectively.
doi:10.1371/journal.pone.0094644.g001
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transcription, DNA-dependent’ (GO: 0006355), a combination of

‘oxidation-reduction process’ (GO: 0055114) and ‘nervous system

development’ (GO: 0007399), and a combination of ‘negative

regulation of cell proliferation’ (GO: 0008285) and ‘muscle

contraction’ (GO: 0006936).

Discussion

In this paper, we improved the logic analysis method to infer

sufficient and necessary conditions for the presence states (presence

or absence) of a phenotype. The current method omits the

integration of networks, and identifies not only gene-phenotype

pairwise combinations (i.e. lower logic relationships), but also

triplets combinations (i.e. higher logic relationships). On one hand,

it avoids the incompleteness of data sources and the noise from the

integration of data; on the other hand, the triplets combinations

reflect the combination effect of gene pairs on phenotypes, other

than an individual effect. Some examples of lower and higher logic

relationships demonstrated the biological relevance of our results.

However, the accuracy of all discovered logic relationships cannot

be verified because of the current limited knowledge of the

relationships between genes and phenotypes. The statistics analysis

strengthened the reliability of discovered logic relationships. In

addition, the current method was compared with the two earlier

Figure 2. 25 genes are related with the subtypes of NSCLC. There are 217 genes related with subtypes of NSCLC by lower logic relationships,
and each gene attaches a coefficient. The genes are ranked according to coefficients in descending order. The top 25 genes are selected to identify
biomarkers. The blue nodes represent 19 biomarkers identified in this work. The yellow nodes represent six genes which are not related with NSCLC
on the NSCLC and normal specimens. The red nodes represent subtypes, i.e. AC and SCC.
doi:10.1371/journal.pone.0094644.g002

Table 2. Significant GO terms.

GO terms Description P-value1 P-value2 E1 E2

GO:0009888 tissue development 6:42|10{14 5:86|10{11 7:20 1:91

GO:0008544 epidermis development 3:58|10{12 2:28|10{6 27:84 2:84

GO:0030855 epithelial cell differentiation 7:23|10{12 1:97|10{11 5:02 2:67

GO:0048856 anatomical structure
development

5:01|10{8 1:81|10{11 1:68 1:48

GO:0032502 developmental process 1:58|10{6 8:81|10{11 2:23 1:44

GO:0007155 cell adhesion 1:97|10{6 6:63|10{11 4:45 1:51

GO:0022610 biological adhesion 2:05|10{6 7:97|10{11 4:44 1:51

‘P-value1’ and ‘P-value2’ denote the p-value scores of GO terms based on the subtypes of NSCLC data and NSCLC and normal data, respectively. ‘E1’ and ‘E2’ are the
enrichment values of GO terms based on the subtypes of NSCLC data and NSCLC and normal data, respectively.
doi:10.1371/journal.pone.0094644.t002
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methods (the NMF method and the RA method). The current

method was superior to the two earlier methods because of its

ability of mining gene pairs which are closely related with

phenotypes. Moreover, the current method gained the higher

recall rate and classification accuracy than the two earlier

methods. Our results display the advantage of the current method

in mining genes closely related with phenotypes.

The discovered gene-subtypes logic relationships in this paper

are equivalent relationships between the expression patterns

(expression or no-expression) of genes and the presence states

(presence or absence) of phenotypes. That is, both a expression

pattern of a gene and a presence state of a phenotype must be

either simultaneously true or simultaneously false. For example,

DSC3 is expressed if and only if the specimen is SCC, as DSC3 is

related with SCC by the first type of lower logic relationship. If a

gene is related with a phenotype by a logic relationship, then either

the expression pattern of a gene or the presence state of a

phenotype may be determined by the underlying logic relation-

ship. Concretely, given a phenotype, the expression pattern of

genes in a phenotype could be determined by the logic

relationship. For example, the expression pattern of DSC3 in

SCC depends on the type of DSC3-SCC lower logic relationship.

Conversely, given a expression pattern of a gene, the presence

state of a phenotype could also be determined by the underlying

logic relationships.

The type of a discovered gene-AC lower logic relationship was

totally different from that of the gene-SCC lower logic relation-

ship, where the genes involved in two relationships are the same. It

indicates that the totally different types of lower logic relationships

between genes and phenotypes may be the intrinsic reason for the

different expression patterns of genes in distinct phenotypes.

A total of 19 genes identified in our work were regarded as the

biomarkers for distinguishing AC from SCC, as well as novel

molecular targets for targeted therapeutic agents. Besides the 13
genes identified in the literature (DST, CLCA2, KRT5, DSG3,

GJB5, SERPINB13, TRIM29, PKP1, KRT6B, DSC3, NKX2-1,

TP63, and NTRK2), most of the rest genes (BNC1, FAT2, LASS3

and PVRL1) are likely to be the novel biomarkers to distinguish AC

from SCC. The BNC1 gene is thought to play a regulatory role in

‘keratinocyte proliferation’, and the LASS3 gene is participated in

‘keratinocyte differentiation’. Both of the biological process

‘keratinocyte proliferation’ and ‘keratinocyte differentiation’ are

children of ‘keratinization process’. Because the genes involved in

‘keratinization process’ are higher expressed in SCC as compared

with AC [26], BNC1 and PVRL1 which are either a upstream

regulatory factor or a member of these high expressed genes may

be able to differentiate AC and SCC. FAT2 functions as a cell

adhesion molecular, and it controls cell proliferation. As ‘cell

adhesion’ is one of the significantly important biological processes

for tumorigenesis of NSCLC, the cell adhesion molecular (FAT2) is

deserved to be a biomarker to distinguish AC from SCC. Until

recently, the function of LOC642587 and GOLT1A has been

unknown. Further experimental validation is needed to confirm

the differentiating ability of these two genes. In addition, the

NKX2-1 gene has been considered as a novel oncogene [35], and it

opens new windows for novel targeted therapies [41]. Although

there has limited evidence to confirm the rest 18 genes to be

molecular targets for targeted therapy, these 18 genes provide

useful clues for targeted therapy.

By gene ontology analysis, the biomarkers inferred in gene-

subtype lower logic relationships were significantly enriched in

biological processes of ‘cell adhesion’ (GO: 0007155) and

‘epidermis development’ (GO: 0008544). The identified biological

processes had nonrandom probability values and enrichment

scores, and they were also significant biological processes which

were important for tumorigenesis of NSCLC. The discovered

biomarkers in the biological processes ‘cell adhesion’ and

‘epidermis development’ (i.e. DST, CLCA2, DSG3, PKP1, FAT2,

DSC3, PVRL1, KRT5, GJB5, BNC1) account for more than a half

of all discovered biomarkers. The expression of these genes were

all sufficient and necessary conditions of the presence of SCC as

well as the absence of AC. It indicates that genes annotated to

epidermis development and cell adhesion may be differently

regulated between AC and SCC. In previous research, several

genes involved in ‘cell adhesion’ as well as ‘epidermis develop-

ment’ were significantly up-regulated in SCC compared to normal

and AC [26], which is in accordance with our results. The

majority of cell adhesion genes (predominantly desmosomal genes)

and epidermis development genes have been found to be

significantly up-regulated in SCC compared to normal tissue

and the AC subtype. For example, desmosomal genes (DSC3 and

DSG3) and epidermis development genes (KRT5) were increased

in SCC compared to the AC subtype. Our results strengthen the

importance of ‘cell adhesion’ and ‘epidermis development’ in

distinguishing AC from SCC. It indicates that cell adhesion genes

and epidermis development genes play central roles in the drug

delivery and are promising targets for novel therapies.

In conclusion, biomarkers identified in this paper could be used

to classify patients for the treatment of NSCLC. A classification

based on the discovered biomarkers could help to supply potential

information in clinical decision making. The identified gene-

subtype logic relationships and GO terms may extend perception

to disease mechanisms for NSCLC. In addition, the targeted

therapy agents may also be designed to interfere with the

discovered biomarkers. However, several biomarkers and GO

terms have been less well understood yet, which needs further

experimental research.

Materials and Methods

Data source and data processing
We use the specimens of GSE10245 (a Gene Expression

Omnibus accession number for microarray data), GSE37745,

GSE18842 and GSE28571 to form a microarray expression data,

which are available from National Center for Biotechnology

Information (NCBI, http://www.ncbi.nlm.nih.gov/). Each speci-

men is annotated with a phenotype property (AC, SCC and

Normal) (Table 1). The microarray expression data (see Appendix

S2) contains the expression data of 54,675 probes in 399
specimens.

The microarray expression data is converted into a binary

probe data using the Microarray Suite 5 (Mas5) algorithm [42].

The Mas5 algorithm generates a p-value which assesses the

reliability of the expression level for each probe and a detection

call which is a three-valued discrete data of a p-value. Specifically,

if a p-value is less than 0:05, then the detection call is ‘Present’; if a

p-value is greater than 0:05 and less than 0:065, then the detection

call is ‘Marginal’; if a p-value is greater than 0:065, then the

detection call is ‘Absent’. Probes are flagged ‘Marginal’ or ‘Absent’

when the detection of probes is not considered to be significantly

reliable. Hence, it is reasonable to consider that the probes with

flag ‘Marginal’ or ‘Absent’ are not significantly detected. In this

work, we turn ‘Marginal’ and ‘Absent’ flags to ‘0’s, and turn

‘Present’ flags to ‘1’s. A ‘0’ in the r1th row and r2th column of the

binary probe data mean the r1th probe is not detected in the r2th

specimen, while a ‘1’ indicates the probe is detected.

Once converted, the binary probe data is supplemented with an

additional phenotype profile data. The phenotype profile data has
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three rows and 399 columns. The 1st, 2nd and 3rd rows

correspond to AC, SCC and Normal specimens, respectively

(Appendix S2). The phenotype profile data represents the

properties of phenotypes, where a ‘1’ in the s1th row and s2th

column of the phenotype profile data means the s2th specimen

belongs to the s1th phenotype, while a ‘0’ means not.

The 54,675 probes are associated to genes according to the

information of GPL570 (a microarray chip)(see Table S7).

According to the number of genes that a probe detects, probes

can be classified into three categories: probes detecting a single

gene, probes detecting more than one gene, and probes detecting

no genes. In Table S7, there are 40,233 probes associated to a

single gene, 1,410 probes associated to more than one gene and

13,032 probes associated to no genes. We are focused on the

40,233 probes associated to a single gene. The binary probe data

contains 40,233 rows, describing the detection patterns of probes.

Current relationship-inference method
Calculating uncertainty coefficient. The vector A de-

scribes the vector B via either Type 1 or Type 2 lower logic

function (see Table 3), i.e. A and B constitute a logic pair. A logic

combination of the vectors A and B describes the vector C via one

of the eight higher logic functions (see Table 4), i.e. A, B and C

compose a logic triplet. Uncertainty coefficient for a vector pair or

a vector triplet is a measure to describe to what extent a vector or a

combination of two vectors predicts another vector [22].

The value of U(BDf l
i (A)) represents how well for the vector B is

described by the vector A under a lower logic function f l
i , where

i[f1,2g, and l is the symbol for lower logic functions. The value of

U(BDf l
i (A)) is calculated as follows (Matlab codes available in

Appendix S3):

U(BDf l
i (A))~

H(B)zH(f l
i (A)){H(B,f l

i (A)))

H(B)
, ð1Þ

where H(B) is the entropy of B, and H(B)~
{
P

t[f0,1g pt log2 (pt), where pt is the probability of occurrence

of t, and t is either 0 or 1. H(f l
i (A)) is the entropy of the vector

f l
i (A). H(B,f l

i (A)) is the joint entropy of B and f l
i (A), and

H(B,f l
i (A))~{

P
tt[f00,01,10,11g ptt ln(ptt), where ptt is the prob-

ability of occurrence of tt.

The uncertainty coefficient for B given A, which is denoted by

U(BDA), is the maximum of U(BDf l
1 (A)) and U(BDf l

2 (A)).

Referring from H(f l
1 (A))~H(f l

2 (A)) and H(B,f l
1 (A))~

H(B,f l
2 (A)), we got U(BDA)~U(BDf l

1 (A))~U(BDf l
2 (A)). The

value of U(BDA) ranges from 0 to 1, where 0 means that B is

independent of A, and 1 means that B is completely determined by

A.

We calculate the degree to which the logic combination of the

vectors A and B (e.g. f h
j (A,B)) describes a third vector C as follows

(Matlab codes available in Appendix S3):

U(CDf h
j (A,B))~

H(C)zH(f h
j (A,B)){H(C,f h

j (A,B)))

H(C)
, ð2Þ

where j[f1,2,3,4,5 1,5 2,6 1,6 2,7,8g; H(C) and H(f h
j (A,B)) are

the entropy of C and f h
j (A,B), respectively; h is the symbol for

higher logic functions; H(C,f h
j (A,B)) is the joint entropy of C and

f h
j (A,B).

As similar with U(BDf l
1 (A))~U(BDf l

2 (A)), we have

N U(CDf h
1 (A,B))~U(CDf h

2 (A,B)),

N U(CDf h
3 (A,B))~U(CDf h

4 (A,B)),

N U(CDf h
5 1(A,B))~U(CDf h

6 2(A,B)),

N U(CDf h
5 2(A,B))~U(CDf h

6 1(A,B)),

N U(CDf h
7 (A,B))~U(CDf h

8 (A,B)).

The uncertainty coefficient for C predicted by a logic

combination of A and B is denoted by U(CDA,B). U(CDA,B) is

equal to the maximum of the following five values: U(CDf h
1 (A,B),

U(CDf h
3 (A,B), U(CDf h

5 1(A,B), U(CDf h
5 2(A,B), U(CDf h

7 (A,B)).

The value of U(CDA,B) ranges from 0 to 1.

A well known measure, the confidence, is used to select the

greatest possible rules by which probes related with phenotypes

from the set of all possible rules [43]. Here, the set of all possible

rules are lower/higher logic functions corresponding to the

maximum lower/higher uncertainty coefficients. Suppose the

vectors A and B follow the lower logic function B~f l
i (A), where

i[f1,2g. The confidence of B~f l
i (A) is calculated as:

Conf (f l
i (A)~B)~p11=(p10zp11), where p11 and p10 refer to the

joint probability of occurrence of (1,1) and (1,0) for the vectors

f l
i (A) and B, respectively. Suppose vectors A, B and C follow the

rule C~f h
j (A,B), where j[f1,2,3,4,5 1,5 2,6 1,6 2,7,8g, then the

confidence of the rule (Conf (f h
j (A,B)~C)) is also the ratio of p11

to p10zp11, and p11 and p10 refer to the joint probability of

occurrence of (1,1) and (1,0) for the vector f h
j (A,B) and vector C.

We calculate the confidence for two lower (or higher) logic

functions with the same value of U(BDA) (or U(CDA,B)). The

higher the confidence of a logic function, the higher the

probability that vectors follow the logic type corresponding to

the logic function.

The value of U(BDA) measures how well A approximates a

sufficient condition for B, and the value of U(CDA,B) measures

how well the combination of A and B approximates a sufficient

condition for C. We improve the logic analysis by taking the

reverse uncertainty coefficients into consideration. That is, given

the f l
i’ and f h

j’ to be the final lower and higher logic functions,

respectively, we calculate the value of U(ADB) and U(A,BDC) as

follows (Matlab codes available in Appendix S3):

U(ADB)~U(f l
i’ (A))~

H(f l
i’ (A))zH(B){H(f l

i’ (A),B)

H(f l
i’ (A))

, ð3Þ

where i’ is either 1 or 2, and H(f l
i’ (A)), H(B) and H(f l

i’ (A),B) are

the same as those in e.q (1).

Table 3. Lower logic function of vector A.

Type Symbol
Lower logic
function Logic statement

1 f l
1 (A) B~A The value of B is 1

iff the value of A is
1

2 f l
2 (A) B~:A The value of B is 1

iff the value of A is
0

‘f l
tt ’ denotes the function symbol of type tt of lower logic relationships, where

tt[f1,2g and l represents the sign for the lower logic relationships.
doi:10.1371/journal.pone.0094644.t003
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U(A,BjC)~U(f h
j0 (A,B)jC)~

H(C)zH(f h
j0 (A,B)){H(C,f h

j0 (A,B)))

H(f h
j0 (A,B))

,
ð4Þ

where j’[f1,3,5 1,5 2,7g; H(C) and H(f h
j’ (A,B)) are the entropy

of vector C and f h
j’ (A,B), respectively; H(C,f h

j’ (A,B)) is the joint

entropy of vector C and f h
j’ (A,B).

Calculating random uncertainty coefficient. Let VX be

the histogram of the vector X . Suppose e(X ) is the set of distinct

elements of X . For each xi[e(X ), VX (xi) is the number of times xi

appears in X , where i[f1,2 � � � ,mg, and m is the number of

elements in e(X ) [44].

Given the vectors A and B, the random uncertainty coefficient

U ’(B’DA’) and U ’(A’DB’) is calculated using the following steps:

1. Generate random vectors A’ and B’. A’ and B’ maintain the

same distribution of the vectors A and B (i.e., VA’~VA,

VB’~VB).

2. Compute U ’(B’DA’), where U ’(B’DA’) is the uncertainty

coefficient for B’ given A’ in a trial.

3. Compute U ’(A’DB’), where U ’(A’DB’) is the uncertainty

coefficient for A’ given B’ in a trial.

The calculation of U ’(CDA’,B’) and U ’(A’,B’DC) involves the

following three steps:

1. Generate random vectors A’ and B’, maintaining the individual

distribution and pairwise distribution. The vector C retains the

position of its elements unchangeably. Note that VXY could

determine VX and VY . We generate A’ and B’ maintaining

VA’C~VAC and VB’C~VBC .

2. Compute U ’(CDA’,B’), where U ’(CDA’,B’) is the uncertainty

coefficient for C given the combination of A’ and B’ in a trial.

3. Compute U ’(A’,B’DC), where U ’(A’,B’DC) is the uncertainty

coefficient for the combination of A’ and B’ given C in a trial.

Identification of probe-phenotype lower and higher logic

relationships. Thresholds are defined here to separate lower or

higher logic relationships from logic pairwise or triplet combina-

tions. Let Threshold1 and Threshold2 be the thresholds of lower

and higher logic relationships, respectively. We calculate the

random uncertainty coefficients of all probe-phenotype pairwise

(i.e. a probe and a phenotype) and triplet combinations (i.e. a

probe pair and a phenotype). Threshold1 is the maximum

uncertainty coefficient of all probe-phenotype pairwise combina-

tions, and Threshold2 is the maximum uncertainty coefficient of

all probe-phenotype triplet combinations.

If the values of both U(BDA) and U(ADB) are higher than

Threshold1, then A approximates a necessary and sufficient

condition for B. There exists a lower logic relationship between A

and B. If the values of both U(CDA,B) and U(A,BDC) are higher

than Threshold2, and there are no lower logic relationships

between either A or B and C, then the logic combination of vector

A and B approximates a necessary and sufficient condition for C.

There is a higher logic relationship between the combination of A

and B and C.

Statistical analysis. A p-value is defined as a measure to

reflect how well vectors related in the form of discovered logic

pairwise or triplet combinations compared to chance relations.

Here, an actual uncertainty coefficient is compared to the random

one in a random trial. The p-value of a discovered logic pairwise

or triplet combination is equal to the number of random trials, in

which either one of the two random uncertainty coefficients of

pairwise or triplet combination of random vectors in both

directions is higher than the actual one, divided by the total

number of random trails.

Table 4. Higher logic function of vectors A and B.

Type Symbol Higher logic function Logic statement

1 f h
1 (A,B) C~A ^ B The value of C is 1 iff the values of both A

and B are 1

2 f h
2 (A,B) C~:(A ^ B) The value of C is 1 iff the value of A is 1

or that of B is 1

3 f h
3 (A,B) C~A _ B The value of C is 1 iff the value of A or

that of B is 1

4 f h
4 (A,B) C~:(A _ B) The value of C is 1 iff the values of both A

and B are 0

5 1 f h
5 1(A,B) C~A ^ (:B) The value of C is 1 iff the value of A is 1

and that of B is 0

5 2 f h
5 2(A,B) C~(:A) ^ B The value of C is 1 iff the value of A is 0

and that of B is 1

6 1 f h
6 1(A,B) C~A _ (:B) The value of C is 1 iff the value of A is 1

or that of B is 0

6 2 f h
6 2(A,B) C~(:A) _ B The value of C is 1 iff the value of A is 0

or that of B is 1

7 f h
7 (A,B) C~:(A<B) The value of C is 1 iff either the value of A

or that of B is 1

8 f h
8 (A,B) C~A<B The value of C is 1 iff the values of both A

and B are 1 or 0

‘f 2
pp ’ denotes function symbol of type pp of higher logic relationships, where pp[f1,2,3,4,5 1,5 2,6 1,6 2,7,8g and h represents the sign for the higher logic relationships.

doi:10.1371/journal.pone.0094644.t004
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Specifically, we compare U(BDA) and U(ADB) to the distribu-

tion of U ’(B’DA’) and U ’(A’DB’), where A’ and B’ are the random

vectors of A and B. For each pair of U(BDA) and U(ADB), we

calculate the random uncertainty coefficients U(B’DA’) and

U(A’DB’) in 1000 random trails. We have the p-value of the

discovered logic pairwise combination: p(A,B)~#(U(B’DA’)
§U(BDA)_ (A’DB’)wU(ADB))=1000, where #(U(B’DA’)
§U(BDA)_ (A’DB’)§U(ADB)) means the number of random

trials in which either one of the following two items

U(B’DA’)§U(BDA) and U(A’DB’)§U(ADB) is tenable.

Similarly, the p-value of the discovered logic triplet com-

bination is p(A,B,C)~#(U(CDA’,B’)wU(CDA,B)_ (A’,B’DC)
wU(A,BDC))=1000, where #(U(CDA’,B’)wU(CDA,B)_
(A’,B’DC)wU(A,BDC)) means the number of random trials in

which either U(CDA’,B’)§U(CDA,B) or U(A’,B’DC)§U(A,BDC)
is tenable.

False discovery rate. In order to evaluate a global signifi-

cance value of the actual discovered logic pairwise or triplet

combinations, we measure a false discovery rate (FDR) [45].

Given the threshold of lower logic relationships, we estimate the

number of discovered random logic pairwise combinations with

the mean uncertainty coefficients larger than the threshold by

chance. We generate 100 random independent data and extract

discovered random logic pairwise combinations from each random

data. The estimated number of false discovered logic pairwise

combinations (denoted as Nr) is calculated as the mean number of

discovered random logic pairwise combinations obtained from

these 100 random independent data. If No is the number of actual

discovered logic pairwise combinations, then Nr=No is a simple

estimated positive FDR for the given threshold. We can scan all

probe-phenotype pairwise combinations, but it take too much time

to scan all triplet combinations. Therefore, we randomly select a

fixed number of triplet combinations (e.g. 0:5% of all possible

triplet combinations) and extract higher logic relationships with

respect to actual and random (denoted as NNo and NNr),

respectively. This process is repeated for 100 times, and the FDR is

the mean value of NNr=NNo. The Matlab codes are available in

Appendix S3.

Cross validation. In a random trial, a fixed number of

columns corresponding to each phenotype are selected from the

original probe binary data and phenotype data to form the

random probe binary data and random phenotype data. We check

whether a logic relationship could be obtained in the random trial.

The above processes are repeated for Nall times, where Nall

represents the number of all random trials.

The recurrence rate Q is used to evaluate the reliability of logic

relationships as follows:

Q~
Nre

Nall

, ð5Þ

where Nre represents the number of recurrance times of a logic

relationship in all random trials, and Nall is the number of all

random trials.

Mapping probe-phenotype relationships to gene-
phenotype relationships

On the basis of lower and higher probe-phenotype logic

relationships, lower and higher gene-phenotype logic relationships

are generated as follows.

Suppose all the probes detecting genes g1, g2 and g3 form a set

fpr1,1, � � � ,pr1,m1
g, fpr2,1, � � � ,pr2,m2

g and fpr3,1, � � � ,pr3,m3
g,

where m1, m2 and m3 are the size of the set and m1§1, m2§1
and m3§1, respectively.

1. If pr1,i (i[f1, � � � ,m1g) is the unique probe of g1 that is related

with a phenotype ph1, then the gene g1 relates with ph1 in the

same way as pr1,i. Moreover, the coefficient of the g1-ph1 lower

logic relationship is equal to the mean uncertainty coefficient of

the pr1,i-ph1 lower logic relationship in both directions.

If (pr2,j ,pr3,k) (j[f1, � � � ,m2g and k[f1, � � � ,m3g) is the unique

probe pair related with a phenotype ph2, then the gene pair (g2,g3)
is related with ph2 in the same way as the probe pair (pr2,j ,pr3,k).

Moreover, the coefficient of the (g2,g3)-ph2 higher logic relation-

ship is the mean uncertainty coefficient of the (pr2,j ,pr3,k)-ph2

higher logic relationship in both directions.

2. Suppose fpr1,ii D1ƒiiƒm’1g is a probe set of gene g
1
, where

m’1 is the size of the set and 1vm’1 ƒm1. Every probe in the

above set is related with a phenotype ph1 by a lower logic

relationship. We define mean(X ,Y ) as the mean of X and Y ,

where X and Y are real numbers. If mean(U(ph1Dpr1,i1 ),
U(pr1,i1 Dph1)) is the largest element in fmean(U(ph1Dpr1,ii),
U(pr1,ii Dph1))Dii=i1,ii~1, � � � ,m’1g , then g1 is related with the

phenotype ph1 in the same way as the probe pr1,i1 , and its

coefficient is equal to mean(U(ph1Dpr1,i1 ),U(pr1,i1 Dph1)).

Similarly, suppose f(pr2,tt,pr3,tt)Dtt~1, � � � ,m’2 ,2ƒm’2 ƒm2

|m3g is the probe pair set of gene pairwise (g2,g3), where m’2
is the size of the set. Every probe pair in the above probe pair set is

related with a phenotype ph2 by a higher logic relationship. If

mean(U(ph2Dpr2,t,pr3,t),U(pr2,t,pr3,tDph2)) is the maximum

mean uncertainty coefficient in fmean(U(ph2Dpr2,tt,pr3,tt),
U(pr2,tt,pr3,tt)Dph2)Dtt~1, � � � ,m’2g , then the gene pair (g2,g3) is

related with the phenotype ph2 in the same way as the probe pair

(pr2,tt,pr3,tt), and the coefficient of (g2,g3)-ph2 higher logic

relationship is equal to mean(U(ph2Dpr2,t,pr3,t),U(pr2,t,pr3,tDph2)).

Earlier relationship-inference methods
We adapt the two earlier methods suitable for mining gene-

phenotype relationships. These methods are described as follows:

1. The non-negative matrix factorization (NMF) method is a

model selection method. Given a positive matrix V of size

N|M, the NMF algorithm iteratively computes an approx-

imation V*WH, where W and H are nonnegative matrics

with size N|k and k|M, respectively [18]. Each column of

W represents a metagene, and the number of columns (k) is

typically equal to the number of phenotypes. Entry hij denotes

the expression level of metagene i in cluster j. Entry wij

represents the coefficient of gene i in metagene j. Genes which

are more active in the genome have higher coefficient values.

When the coefficient values are sorted in descending order, the

first one represents the most active gene, while the last one

represents the least active. That is, the larger coefficient of a

gene in a metagene, the closer relationship between the gene

and a phenotype. In this work, we chose the alternate least

squares as the algorithm to factorize V into N|M because of

the algorithm’s speed and robustness. The NMF method is

implemented in Matlab using the NMF:DTU toolbox (http://

cogsys.imm.dtu.dk/toolbox/nmf/index.html).

2. The relevance analysis (RA) method identifies a potential

biological association between a gene and a phenotype by a

mutual information value [20]. The mutual information for

two discrete random variables X and Y is calculated as:

I(X ,Y )~
X

i,j

p(xi,yj)|log
p(xi,yj)

p(xi)|p(yj)
, ð6Þ

where p(xi) is the probability that X~xi, p(xi,yj) is the joint
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probability that X~xi and Y~yj , X represents a probe

profile, and Y denotes a phenotype profile.

The classification ability of probes
We evaluate the discriminating ability of probes by

constructing a classification model. Given that the competitive

neural network (CNN) has produced promising classification

accuracy, we apply CNN to build the classification model in

this work. Next, we calculate the classification accuracy,

which is used as the measure of the probes’ classification

ability.

The competitive neural network consists of three layers,

which are the input layer, the competitive layer and output

layer, respectively. An input vector consists of the binary probe

data of the evaluated probes in a specimen. During the

learning process, for each input vector, the neurons in the

competitive layer compete with each other, and the one with

the weight vector closest to the input vector is chosen as the

winner. The wining neuron is picked up by the output layer,

and the output layer classifies the input vector to that class.

The classification accuracy is the ratio of the number of

specimens which are correctly classified to the total number of

specimens.

Gene ontology analysis
To check how significant the GO term (a pair of GO terms)

related with phenotypes, the p-value score and enrichment value

are used for gene ontology analysis.

The Gorilla is a web tool to calculate both the p-value score and

the enrichment value of a GO term at the top of a ranked list of all

genes [46]. We use the Gorilla to compute an exact p-value score

and enrichment value for a GO term’s significance as follows.

Firstly, we rank all the genes by the coefficients of gene-phenotype

pairwise combinations. Then, all the gene are uploaded into the

Gorilla. Finally, the Gorilla exports the exact p-value score and

enrichment value for a GO term’s significance.

In addition, we pay attention to the GO terms which are

associated with the genes or gene pairs selected. We map the

genes (gene pairs) into GO terms and obtain the GO terms (a

pair of GO terms) which are related with phenotypes. The p-value

score is defined as the probability of obtaining no less number of

the same number of gene (genes pairs) by chance by the

hypergeometric distribution. It is calculated as follows:

p value(x§bDN,B,n)~
Xmin(n,B)

i~b

Ci
n|CB{i

N{n

CB
N

, ð7Þ

where N represents the total number of gene (gene pairs), n is the

number of gene (gene pairs) involved in lower (higher) logic

relationships, B represents the total number of gene (gene pairs)

associated with pairs of GO terms, and b represents the number of

the discovered gene (gene pairs) which are associated with the

given GO term (a pair of GO terms).

The enrichment value of a GO term (a pair of GO terms) is

calculated as follows:

E~

b

n
B

N

, ð8Þ

where b, n, B and N are the same with those in the e.q (7). In the

analysis, the significance of a GO term (a pair of GO terms) mainly

depends on the p-value scores, as it describes well from a biological

point of view.
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21. Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets

of items in large databases. In: ACM SIGMOD Record. ACM, volume 22, pp.

207–216.
22. Bowers PM, Cokus SJ, Eisenberg D, Yeates TO (2004) Use of logic relationships

to decipher protein network organization. Science 306: 2246–2249.
23. Tamura M, Dhaeseleer P (2008) Microbial genotype-phenotype mapping by

class association rule mining. Bioinformatics 24.

24. Ruan X, Wang J, Li H, Perozzi RE, Perozzi EF (2008) The use of logic
relationships to model colon cancer gene expression networks with mrna

microarray data. Journal of biomedical informatics 41: 530–543.
25. Young GD, Winokur TS, Cerfolio RJ, Van Tine BA, Chow LT, et al. (2002)

Differential expression and biodistribution of cytokeratin 18 and desmoplakins in

non-small cell lung carcinoma subtypes. Lung cancer 36: 133–141.

26. Kuner R, Muley T, Meister M, Ruschhaupt M, Buness A, et al. (2009) Global

gene expression analysis reveals specific patterns of cell junctions in non-small

cell lung cancer subtypes. Lung cancer 63: 32–38.

27. Boelens MC, van den Berg A, Vogelzang I, Wesseling J, Postma DS, et al. (2007)

Differential expression and distribution of epithelial adhesion molecules in non-

small cell lung cancer and normal bronchus. Journal of clinical pathology 60:

608–614.

28. Angulo B, Suarez-Gauthier A, Lopez-Rios F, Medina P, Conde E, et al. (2008)

Expression signatures in lung cancer reveal a profile for egfr-mutant tumours

and identify selective pik3ca overexpression by gene amplification. The journal

of pathology 214: 347–356.
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