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Abstract

The recovery of liver mass is mainly mediated by proliferation of hepatocytes after 2/3 partial hepatectomy (PH) in rats.
Studying the gene expression profiles of hepatocytes after 2/3 PH will be helpful to investigate the molecular mechanisms
of liver regeneration (LR). We report here the first application of weighted gene co-expression network analysis (WGCNA) to
analyze the biological implications of gene expression changes associated with LR. WGCNA identifies 12 specific gene
modules and some hub genes from hepatocytes genome-scale microarray data in rat LR. The results suggest that
upregulated MCM5 may promote hepatocytes proliferation during LR; BCL3 may play an important role by activating or
inhibiting NF-kB pathway; MAPK9 may play a permissible role in DNA replication by p38 MAPK inactivation in hepatocytes
proliferation stage. Thus, WGCNA can provide novel insight into understanding the molecular mechanisms of LR.
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Introduction

The mammal liver has an impressive regenerative capability.

Classical experiments in rats following partial hepatectomy (PH)

have demonstrated that the liver can restore to its original size

within 7–10 days. This regeneration capability can be utilized in

clinical scenarios in which PH is used to resect liver tumors and in

which living donor transplantation of liver is necessary in both the

donor and recipient operations. Therefore, understanding the

molecular mechanisms of LR is directly relevant to clinical

problems. Prodigious ability to regenerate after PH has attracted

the attentions of researchers for decades. However, at present, the

molecular mechanisms of LR is still poorly understood [1].

Rat 2/3 PH is an established model for investigating the

potential molecular mechanisms of LR. Many efforts have been

made to study the molecular mechanisms of LR systemically and

comprehensively with modern high-throughput biology techniques

such as microarray, gene subtractive hybridization, series analysis

of gene expression, and yeast two-hybrid system [2]. For example,

Dransfeld et al. analyzed expression changes of the transport

system-related genes in rat LR with oligonucleotide microarray

containing 400 transcripts and identified 183 genes associated with

LR following 2/3 PH [3]. Xu et al. examined the expression

profiles of genes involved in physiological responses, cell metab-

olism, protein, enzymes, and biological active ingredients in LR

utilizing cDNA microarray containing 551 transcripts, and found

133 known genes and 177 unknown genes related to LR following

2/3 PH [4,5]. Yasuyuki et al. investigated gene expressions using

cDNA microarray composed of 4,608 transcripts at 6, 12, 18, 24,

48, 72, and 168 h after 2/3 PH, and found 382 LR-associated

genes, and also found that the gene expression profiles in 12 and

18 h, 48 and 72 h after PH were very similar [6]. However, the

results of these studies mentioned above were mainly based on

differential expression analysis. As a result, they usually generated

a list of genes changed during LR but lacking biological functional

connections among these genes [7–9].

It is well-known that LR induced by 2/3 PH is mainly mediated

by hepatocytes proliferation. Hepatocyte replication underlies the

restoration of liver mass in patients or liver donors following PH.

Therefore, this study aims to analyze the intrinsic connections

among the genes in hepatocytes during LR. LR is a complicated

but well-orchestrated process with the synergistic work of a large

number of genes [10]. Networks provide a straightforward

representation of interactions among these genes. Intuitive

network concepts (e.g. connectivity and module) have been found

useful for analyzing complex interactions. Network analysis

methods allow a more accurate reflection of underlying systems

biology to be realized than traditional unidimensional molecular

biology approaches [11]. Network-based systematic biology

approaches [12] typically involve in the identification of groups

of genes or network modules by microarray data analysis, whose

expression levels are highly correlated across samples [13–15]. For

example, He et al. identified novel dysfunctional modules and

disease genes in congenital heart disease using a network-based
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approach [16]. Such holistic approaches have fully advantages

over standard methods such as differential expression analysis.

Gene co-expression network-based approaches have become

popular in analyzing microarray data, particularly for detecting

functional gene modules [17,18]. Dewey et al. identified ZIC2 as a

novel transcription factor associated with co-expression modules

common to developing and failing myocardium [15]. Zhang et al.

predicted novel biomarkers for chronic lymphocytic leukemia

using gene co-expression network analysis [19]. Puniya et al.

integrated gene co-expression network analysis in the growth

phase of mycobacterium tuberculosis and revealed new potential

drug targets [20]. Childs et al. used gene co-expression network

analysis as a source of functional annotation for rice genes [21].

In the study, we hypothesize that rat hepatocytes gene

expression profiles in LR contain highly connected modifier genes

and coordinate gene modules that will help to understand

molecular mechanisms of LR and identify novel key genes related

to LR. To test this hypothesis, the general framework for weighted

gene co-expression analysis (WGCNA) is used to define the gene

expression network topology of the LR hepatocytes. As co-

expression modules may correspond to biological pathways [9],

focusing on the analysis of modules will allow us to find novel

molecular mechanisms. Using hierarchical average linkage clus-

tering [22] based on topological overlap (TO), we identify 12 gene

co-expression modules in the regenerating hepatocytes whose

module preservation are significantly changed. Actually, quanti-

tative assessment of module preservation in different phenotypes

using both gene expression and network connectivity as summa-

tion [15,23] provides a new avenue for understanding of molecular

differences that distinguish functional processes in LR progression.

Among these modules, one module involved in cell cycle

regulation is found in PH hepatocytes, as a specific gene module,

which is not found in normal hepatocytes. In addition, we also

focus on highly connected intramodular hub genes which may be

more biologically significant than that of the global network as well

as several novel genes which may play important roles in LR.

Although we do not find evidence for a global coordinated

program of hepatocytes gene expression, our analysis reveals

specific gene expression modules activated during LR and

candidate hub genes for future experiment.

Materials and Methods

Materials
Healthy 12-week-old Sprague-Dawley (SD) rats, 230620g, were

obtained from the Experimental Animal Center of Henan Normal

University. All the animal handling procedures were carried out in

accordance with the current Animal Protection Law of China.

The animal experiments were conducted in strict compliance with

animal welfare regulations approved by Institutional Animal Care

and Use Committee of Henan Normal University in China

(Permit Number: SYXK2008-0105). All surgery was performed

under amobarbital anesthesia, and all efforts were made to

minimize suffering. In the experiment, a total of 114 rats were

randomly divided into 19 groups, and 6 rats in each. Among these

rats, 9 groups, total 54 rats for sham operation (SO), another 9

groups, total 54 rats for PH, and the rest 1 group, total 6 rats for

the control. PH was performed on the rats according to the

procedure originally described by Higgins et al. For SO, surgical

operation of rats was done as did for the PH, but without liver

lobes dissection. After that, the rats were bred and their

regenerating livers were taken for isolating hepatocytes at 0, 2,

6, 12, 24, 30, 36, 72 and 168 h after PH. 0 h meant that the liver

lobes were removed and the remaining liver was immediately used

for hepatocytes isolation. The details of hepatocytes isolation,

RNA extraction, microarray hybridization and RT-PCR valida-

tion were described in our earlier published paper [24].

Real microarray dataset
In this study, we measured gene expression profiles of isolated

hepatocytes from 2 h to 168 h after PH and SO with Rat Genome

230 2.0 array. Each sample corresponding to one time point was

hybridized onto one array. The experiment was repeated 3 times

for each time point. In total, 10 time points were measured and

0 h was used control group. After careful quality control analyses

of each chip, the data were analyzed with Affymetrix GCOS 2.0

software using Affymetrix default analysis settings and global

scaling as normalization method. The trimmed mean target

intensity of each array was arbitrarily set to 500. When multiple

probe sets were mapped to the same gene UniGene ID, the

average expression vector was computed and used. As a result,

13925 known genes and 10693 unknown genes were mapped into

31099 probe sets of each microarray. For each gene, the ratio

values of individual microarray signal vaules relative to the signal

vaules of control group at each time point were used in this study.

The raw and processed microarray data are available in the NCBI

GEO database (accession number:GSE55434). From 13925

known genes, we selected 6995 most expression varied genes (t-

test p-value,0.05) between PH group and SO group for further

network analysis.

Hepatocytes weighted gene co-expression network
construction

The general framework for weighted gene co-expression

analysis (WGCNA) is a systems biology method for describing

the correlation patterns among genes and finding modules of

highly correlated genes across microarray samples. This study uses

WGCNA to construct rat hepatocytes gene co-expression network

from microarray gene expression data. Firstly, we begin by

calculating the Pearson correlations for all pairs of genes in the

network. Because microarray data can be noisy and the number of

samples is often small, the Pearson’s correlation matrix for each

co-expression network is transformed into a matrix of connection

strengths using a power function(s~jcor(xi,xj)jb), here we choose

b~9 in accordance with the Scale-free Topology Criterion [14].

This step effectively serves to emphasize strong correlations and

punish weak correlations on an exponential scale. These weighted

correlations, in turn, represent the connection strengths between

genes in the network. Then, these connection strengths are used to

calculate the topological overlap (TO) as follows [25].

tij~

lijzaij

minfki,kjgz1{aij

if i= j

1 if i~j

8<
: ð1Þ

Where aij denotes the pairwise adjacency (connection strengh).

lij~
X

u=i,j
aiuauj , ki~

X
u=i

aiu. This step considers not only

the correlation of the two genes, but also the degree of their shared

neighbors across the whole network. R scripts for generating the

WGCNA results in this study is available on line as Supporting

Information files.

Hepatocyte gene co-expression modules detection
Because gene modules may correspond to biological pathways,

focusing on the analysis of modules amounts to a biologically

Rat Hepatocytes WGCNA
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meaningful data reduction scheme. In this study, hierarchical

average linkage clustering based on TO is performed to identify

gene co-expression modules, that is, groups of genes with similar

patterns of expression across experimental samples. Since the

module identification is computationally expensive, only 3600

most connected genes are considered for module detection.

Because module genes tend to have high connectivity, this step

does not lead to a big loss in information. We conduct the network

module identification procedure [26] in a blockwise manner with

the same parameter setting for both networks. To summarize the

scaled gene expression profiles for the identified modules, we use

the first singular vector (module eigengene, ME), which is

equivalent to the first principle component and explains the

largest proportion of variance of the module genes. We then use

the MEs in a procedure to reassign genes to the modules that

maximizes the module memberships [27]. To avoid capturing

weak associations, genes with kME,0.3 for all of the MEs are

assigned to none of them.

Module preservation statistics
Module preservation statistics measures how well the modules of

the reference network are preserved in the test network. Module

preservation statistics during LR progression can be biologically

meaningful (e.g., reflecting specific LR modules). Because preser-

vation statistics measures different aspects of module preservation,

the results may not always agree with each other. These measures

can be classified into two categories: density based preservation

statistics summarized by Zdensity and connectivity based preserva-

tion statistics summarized by Zconnectivity [28]. Density based

preservation statistics can be used to determine whether module

nodes remain highly connected in the test network. Connectivity

based preservation statistics can be used to determine whether the

connectivity pattern between nodes in the reference network is

similar to that in the test network. We find that it is useful to

aggregate different module preservation statistics into composite

preservation statistics. Composite preservation statistics also

facilitate a fast evaluation of many modules in multiple networks.

Summarized composite statistics, Zsummary, is defined as follows.

Figure 1. Identification of gene co-expression modules in SONet and PHNet. Hierarchical average linkage clustering was applied to gene-
gene adjacencies, which were defined on the basis of TO. Dynamic tree cut algorithm was applied to the dendrogram for module identification, and
genes in the same branch could be assigned to different modules. The analysis identified 29 modules (A) and 23 modules (B) represented by different
colors on the horizontal bar.
doi:10.1371/journal.pone.0094868.g001
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Zsummary~
ZdensityzZconnectivity

2
ð2Þ

Many simulations [16,28] have suggested the following thresh-

olds for Zsummary: if Zsummaryw10, there is a strong evidence that

the module is preserved; if 2vZsummaryv10, there is a weak

evidence that module is preservation; if Zsummaryv2, there is no

evidence that the module is preserved.

Gene significance (GS) and module member (MM)
definition

For each of the 162 samples (81 in PH, 81 in SO), relative

mRNA transcript level is available. To measure gene significance

(GS) for each gene, we define GS of a gene as mediated t-test of

differential expression between PH group and SO group. This

provides a measure of how strongly each gene in the module is

associated with LR. Abstractly speaking, GS is any quantitative

measure that specifies how biologically significant a gene is.

The module eigengene (ME) corresponds to the first principal

component of a given module. It can be considered as the most

representative gene expression in a module. The module

membership (MM) measure is determined by correlating the

expression profile of a gene i with the ME of its resident module:

MM(i)~jcor(x(i),ME)j [14]. A MM correlation close to 1 means

the gene is a member of the module since we define modules as

sets of positively correlated genes. A correlation value close to 0

means that the gene is a member of none of modules.

Hub genes detection
Highly connected intramodular hub genes may be more

biologically significant than hub genes in global network. Thus,

one of the goals of network analysis is to relate the measure of gene

significance to module eigengene connectivity. We relate gene

connectivity to gene significance. Gene connectivity is a measure

of a gene’s connection strength to other genes in the whole

network. In general, connectivity is a more reliable measure than

the t-test for differential expression. In practice, a combination of

connectivity and differential expression should be used to select

interesting genes. The MM measure is highly correlated with

intramodular connectivity [14]. The intramodular connectivity

may be interpreted as a measure of module membership. To

identify hub genes for the network, we consider MM primarily and

gene significance secondarily.

Results

Co-expression modules identified from PH and SO
networks

Genes with expression levels that are highly correlated are

biologically interesting, since they imply common regulatory

Figure 2. Composite preservation statistics of PHNet modules in SONet. The summary statistic Zsummary (y-axis) as a function of the module
size, Each point represents a module, labeled by color. The blue and green horizontal lines show the thresholds of Zsummary~2 and Zsummary~10,
respectively. Zsummaryw10 shows a strong evidence of preservation and Zsummaryv2 shows no evidence of preservations. 2vZsummaryv10 shows a
weak evidence of preservation.

Rat Hepatocytes WGCNA
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mechanisms or participate in similar biological processes. We

set out to investigate the hepatocytes transcriptome during rat

LR and construct gene co-expression networks by applying

WGCNA. This study was based on our real experiment data,

which contains gene expression from 81 samples at 9 time

points in SO group and PH group, respectively. For this study,

we restricted the analysis to the 6995 known genes with high

variation between PH group and SO group (t-test p-value,

0.05). Firstly, the absolute value of the Pearson correlation

between expression profiles of all pairs of genes was calculated.

Then the Pearson correlation measure was transformed into a

connection strength measure by using a power function (b~9).

The connectivity measure for each gene was the sum of the

connection strengths between that gene and all the other genes

in the network. Gene expression networks, like virtually all

types of biological networks, exhibited an approximate scale

free topology. Two co-expression networks, SONet for SO

group and PHNet for PH group, were constructed by TO for

3600 most connected genes (Figure 1).

To group genes with coherent expression profiles into modules,

we used hierarchical average linkage clustering (see Materials and

methods for details). Dynamic tree cut algorithm [26] was used to

detect the modules (deep split = 2, cut height = 0.995, other

parameters were default values). As a result, we identified 29

modules in SONet and 23 modules in PHNet respectively (see

table S1).

Specific modules related to LR
To identify LR-related gene modules, we assessed preservation

of modules between two gene co-expression networks, SONet and

PHNet. We adopted a previous measure of intramodular

connectivity preservation [28]. We found that for PHNet,

Figure 3. Correlation of Connectivity on the x-axis with gene significance on the y-axis and identification of hub genes based on
high MM. The color represents the module and the dot represents the gene in the module. Red square represents hub gene in each module with
highest connectivity. Hub gene symbol is underlined.
doi:10.1371/journal.pone.0094868.g003
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turquoise, blue, yellow, brown, purple, green, tan midnightblue,

grey60 and black 10 modules were well preserved

(Zsummaryw10) in SONet, it showed that these modules were

housekeeping modules for keeping hepatocytes living. Neverthe-

less, Royalblue, lightgreen, magenta, greenyellow, cyan, lightcyan,

red, pink, darkred, lightyellow and darkgreen module in PHNet

were weak preserved in SONet (2vZsummaryv10), meaning

that these modules had a significant change in intramodular

connectivity in rat LR. Specially, salmon module (Zsummaryv2)

in PHNet was not found in SONet, suggesting that this module

was a specific module in rat LR (Figure 2).

Gene significance and hub genes
One of the goals in our network analysis is to relate the measure

of differential expression to module connectivity. MM reflects the

node importance in the network and GS reflects differential degree

of expression of a single gene under different conditions. We

related MM to GS for the genes in each module. Figure 3 showed

MM vs GS for each differential module in PHNet. In general, a

positive correlation could be expected between MM and GS. But,

in this study, we did not observe a positive correlation between

MM and GS. There are two possible causes. One is that only high

connected genes are assigned to corresponding modules and genes

with kME,0.3 for all of the MEs are assigned to none of them.

The other is that high differential expressed genes do not

necessarily have high intramodular connectivity during LR. We

selected genes with maximum connectivity in each module as

candidate LR-related genes, since they would be centrally located

in the networks.

Identification of hub genes in PHNet modules involved relating MM

on the x-axis to GS the y-axis (Figure 3). Because correlation between

MM and GS was not strong, we selected novel hub genes based on

Table 1. Top-ranked functional annotations enriched in LR-related modules.

Module Category GOID Term P-Value

salmon biological process GO:0007049 cell cycle 2.24E-02

biological process GO:0022403 cell cycle phase 2.53E-02

biological process GO:0006259 DNA metabolic process 2.64E-02

royalblue biological process GO:0010033 response to organic substance 5.50E-04

biological process GO:0043434 response to peptide hormone stimulus 6.90E-04

biological process GO:0009719 response to endogenous stimulus 2.12E-03

biological process GO:0045768 positive regulation of anti-apoptosis 3.63E-03

lightgreen biological process GO:0045859 regulation of protein kinase activity .30E-02

biological process GO:0043549 regulation of kinase activity 4.87E-02

magenta biological process GO:0030199 collagen fibril organization 3.87E-07

biological process GO:0001501 skeletal system development 1.71E-05

biological process GO:0030198 extracellular matrix organization 3.69E-05

greenyellow biological process GO:0016054 organic acid catabolic process 4.86E-07

biological process GO:0046395 carboxylic acid catabolic process 4.86E-07

biological process GO:0016054 organic acid catabolic process 4.86E-07

cyan biological process GO:0044271 nitrogen compound biosynthetic process 1.11E-04

biological process GO:0006575 cellular amino acid derivative metabolic process 4.14E-04

biological process GO:0008610 lipid biosynthetic process 5.64E-03

lightcyan biological process GO:0000375 RNA splicing, via transesterification reactions 3.65E-04

biological process GO:0000377 RNA splicing, via transesterification reactions with bulged
adenosine as nucleophile

3.65E-04

biological process GO:0000398 nuclear mRNA splicing, via spliceosome 3.65E-04

red biological process GO:0042254 ribosome biogenesis 3.84E-07

biological process GO:0022613 ribonucleoprotein complex biogenesis 7.03E-06

pink biological process GO:0051297 centrosome organization 9.52E-03

biological process GO:0031023 microtubule organizing center organization 1.21E-02

biological process GO:0051603 proteolysis involved in cellular protein catabolic process 1.48E-02

darkred biological process GO:0006508 proteolysis 3.37E-03

biological process GO:0030163 protein catabolic process 4.58E-03

lightyellow biological process GO:0006605 protein targeting 1.01E-03

biological process GO:0006886 intracellular protein transport 1.48E-03

biological process GO:0034613 cellular protein localization 2.38E-03

darkgreen biological process GO:0012502 induction of programmed cell death 8.64E-02

biological process GO:0006917 induction of apoptosis 8.64E-02

All P-values from the Fishers Exact Test were Bonferroni-corrected.
doi:10.1371/journal.pone.0094868.t001
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high MM. MCM5 (MM.salmon = 0.96, p-value = 4.50E-11), BCL3

(MM.royalblue = 0.97, p-value = 0.029532), SLC17A2 (MM.light-

green = 0.95, p-value = 4.19E-09), CCDC80 (MM.magenta = 0.96,

p-value = 0.004953), DCXR (MM.greenyellow = 0.97, p-value =

9.83E-07), BHMT2 (MM.cyan = 0.94, p-value = 5.82E-12), ROSE4

(MM.lightcyan = -0.96, p-value = 8.09E-17), ZFP446 (MM.red =

0.96, p-value = 0.0334), ADK (MM.pink = -0.94, p-value = 1.72E-

12), CACYBP (MM.darked = 0.95, p-value = 1.06E-06), MAPK9

(MM.lightyellow = 0.94, p-value = 0.001059) and RGD1312038

(MM.darkgreen = 0.97, p-value = 0.046652) were identified as highly

connected hub genes in respective module.

Gene functional annotations
To examine the relevance of distribution of the module genes

with their biological roles in LR, functional annotations of the

gene sets and modules were performed on the basis of their gene

composition using DAVID software (http://david.abcc.ncifcrf.

gov/). We further classified each module genes according to the

gene classification based on functional categories. Top-ranked

functional annotations enriched in LR-related modules were

shown in Table 1. Gene functional analysis showed that salmon

module was involved in similar biological activities, such as cell

cycle, DNA metabolic process, mRNA transport, response to

DNA damage stimulus, M phase of meiotic cell cycle et al. These

biological activities were closely associated with cell cycle

regulation of LR. So we called salmon module as cell cycle

regulation module. Royalblue module was involved in positive

regulation of anti-apoptosis and response to organic substance,

peptide hormone stimulus, and endogenous stimulus. A detailed

functional enrichment of GO annotations in these modules was

provided in the table S2, and all GO terms mentioned in this

section were highlighted in yellow background to facilitate search.

Pathway enrichment analysis
Pathway Studio is a pathway analysis tool supplied with

RESNET mammal database. Pathway Studio harvests latest

information from deposited literature in PubMed and other public

sources. The software also uses a number of public and

commercial databases such as KEGG (http://www.genome.jp/

kegg/). We selected Ariadne Cell Process Pathways, Cell Signaling

Pathways, Metabolic Pathways and Receptor Signaling Pathways

for each module pathway enrichment analysis. It was found that

cell cycle regulation (p-value = 1.23E-06) was top enriched in

salmon module, IL6R-.STAT signaling (p-value = 3.60E-04) was

top enriched in royalbule module. TRRAP/Tip60 chromating

remodeling (p-value = 8.18E-04) was top enriched in lightgreen

module, ROS metabolism (p-value = 7.22E-04) was top enriched

in magenta module, omega-3-fatty acid metabolism (p-va-

lue = 9.95E-06) was top enriched in greenyellow module, adipo-

cytokine signaling (p-value = 9.12E-05) was top enriched in cyan

module, tryptophan metabolism (p-value = 1.20E-02) was top

enriched in lightcyan module, angiotensinR-.STAT signaling

(p-value = 7.51E-04) was top enriched in red module, notch-.

LEF1 signaling (p-value = 9.94E-04) was top enriched in pink

module, FGFR1-.STAT signaling (p-value = 1.05E-02) was top

enriched in darkred module, frizzledR-.JUN/PAX2 signaling (p-

value = 2.30E-02) was top enriched in lightyellow module,

irinotecan metabolism (p-value = 2.08E-05) was top enriched in

darkgreen module. Top-ranked pathways enriched in LR-related

modules were shown in Table 2. A detailed pathway enrichment

Table 2. Top enriched pathways in LR-related modules.

Module Pathway name Total entities Overlap P-value Data source

salmon cell cycle regulation 135 25 1.23E-06 Ariadne cell signaling pathways

histone acethylation 33 10 2.29E-04 Ariadne cell process pathways

royalbule IL6R-.STAT signaling 8 2 3.60E-04 Ariadne receptor signaling
pathways

lightgreen TRRAP/Tip60 chromating remodeling 35 4 8.18E-04 Ariadne cell process pathways

INO80 chromating remodeling 25 4 1.15E-03 Ariadne cell process pathways

magenta ROS metabolism 43 3 7.22E-04 Ariadne metabolic pathways

DDR1-.NF-kB signaling 14 2 1.00E-02 Ariadne receptor signaling
pathways

greenyellow omega-3-fatty acid metabolism 107 12 9.95E-06 Ariadne metabolic Pathways

adipocytokine signaling 52 17 8.47E-05 Ariadne cell signaling pathways

cyan adipocytokine signaling 52 13 9.12E-05 Ariadne cell signaling pathways

lightcyan tryptophan metabolism 112 5 1.20E-02 Ariadne metabolic pathways

notch pathway 40 11 4.57E-02 Ariadne cell signaling pathways

red angiotensinR-.STAT signaling 7 2 7.51E-04 Ariadne receptor signaling
pathways

pink Notch-.LEF1 signaling 7 2 9.94E-04 Ariadne receptor signaling
pathways

darkred FGFR1-.STAT signaling 13 1 1.05E-02 Ariadne receptor signaling
pathways

lightyellow frizzledR-.JUN/PAX2 signaling 15 2 2.30E-02 Ariadne receptor signaling
pathways

darkgreen irinotecan metabolism 11 4 2.08E-05 Ariadne metabolic pathways

Total Entities represents the number of genes in the pathway. Overlap represents the number of overlapping genes between the pathway and the module.
doi:10.1371/journal.pone.0094868.t002
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of these modules was provided in table S3, and all pathways

mentioned in this section were highlighted in yellow background

to facilitate search.

Discussion

In order to analyze which gene modules and underlying

molecular mechanisms might play a key role during LR, this study

was designed to construct rat hepatocytes gene co-expression

network and identify gene co-expression modules by transcriptome

data of hepatocytes following PH in rats. Although many efforts

have been made to study LR transcriptome using various methods

such as differential expression analysis whose result is usually a list

of genes, each of which is deemed significant in isolation.

However, the functional abnormity of a single gene rarely leads

to complete regulation of LR. A drawback of the standard

differential expression analysis is that it ignores the strong

correlation patterns between the genes. As a result, it focuses on

the details and ignores the bigger picture.

In this study, WGCNA was used to construct rat hepatocytes

gene co-expression network topology, which considers not only the

correlation between two genes, but also the degree of their shared

neighbors across the whole network. Hierarchical average linkage

clustering based on TO was used to group genes with highly

similar co-expression patterns into modules. This method identi-

fied 23 high correlated modules in PH group. Among these

modules, 11 modules have no significant change in LR process,

called housekeeping modules. Another 12 modules have significant

change within module connectivity, called specific LR-related

modules.

The most interested module is the salmon module, which is found

only in rat LR but not in normal hepatocytes. Salmon module is

mainly enriched in cell cycle progression such as cell cycle

(GO:0007049), cell cycle phase (GO:0022403), DNA metabolic

process (GO:0006259), cell cycle process (GO:0022402), mRNA

transport (GO:0051028), response to DNA damage stimulus

(GO:0006974), M phase of meiotic cell cycle (GO:0051327) etc

which are deemed to be driven by growth factors and cytokines,

such EGF, HGF etc [1]. It suggests that salmon module plays an

important role in hepatocytes proliferation during LR. Although

this is not an unexpected finding, as a set of the highly correlated

genes, pathways enriched in the module should be more accurate

than those of enriched in overall differentially expressed genes. Here

we reported a novel hub gene, MCM5 (p-value = 4.50E-11) was up-

regulated (fold change.3) in hepatocytes after PH in rats. As a

member of minichromosome maintenance (MCM) family, MCM5

is evolutionarily conserved from yeast to human. This protein is

essential for DNA replication [29]. The signal transducer and

activator of transcription proteins are critical for the signal

transduction of a multitude of cytokines and growth factors leading

to the regulation of gene expression. Zeng et al. have also found that

activating MCM5 expression during transcription elongation

promoted regenerative proliferation of adult stem cells [30]. Xu et

al. have reported that MCM5 was up-regulated in hepatic oval cells

after PH in rats [31]. Thus, MCM5 may be a novel key gene

regulating cell cycle. This can be a promising protein for future

experimental research. Another interesting module is royalblue with

strong preservation in proliferation stage. This module is mainly

enriched in response to organic substance (GO:0010033), peptide

hormone stimulus (GO:0043434), endogenous stimulus (0009719)

and positive regulation of anti-apoptosis (GO:0045768). Its hub

gene BCL3 (B cell leukemia-3), a nuclear member of the IkappaB

(inhibitor of NF-kB) family, that regulates a wide range of biological

processes, including cell survival, proliferation, differentiation, stress

response, and death, as well as immunity and inflammation.

Aberrant NF-kB pathway activity is known to be associated with LR

[32]. So BCL3 may be a novel key gene related to LR by NF-kB

pathway. Lightyellow module is also the one interesting module,

which are mainly enriched in protein gargeting (GO:0006605),

intracellular protein transport (GO:0006886) and cellular protein

localization (GO:0034613). Its hub gene MAPK9, as a member of

mitogen-activated protein kinases (MAPK) family, plays a permis-

sible role in DNA replication by p38 MAPK inactivation during LR

and is consistent with a role for p38 MAPK in the maintenance of

hepatocyte cell cycle arrest in adult liver [33].

In addition, we have also found some other novel hub genes in

the remaining 9 modules, such as SLC17A2, CCDC80, DCXR,

BHMT2, R0SE4, ZFP446, ADK, CACYBP, and RGD1312038.

The roles of these hub genes in LR have not been reported in the

literature.

Various pathways are observed in the network. Cell cycle

regulation, histone acethylation and pyrimidine metabolism are

top enriched in salmon module. IL6R-.STAT signaling is top

enriched in royalbule module. IL-6 is crucial to liver regenerative

responses and cannot be substituted by other endogenously

produced cytokines. With no hepatectomy, IL-6 does not provide

a sufficient stimulus to promote hepatocyte proliferation [34].

Liver is a highly metabolic organ with a great potential of

regeneration, LR is also triggered through metabolites of

intracellular reactive oxygen species (ROS) and anti-apoptotic

mechanisms [35]. Omega-3 polyunsaturated fatty acids enriched

in greenyellow module may prevent acute liver failure and

promote liver regeneration after 90% hepatectomy in rats [36].

Adipocytokine signaling enriched in cyan module is also interest-

ing. Adiponectin, an important adipocytokine produced by fat

cells, plays important roles in energy homeostasis. It binds to at

least two receptors, known as AdipoR1 and AdipoR2, both of

which are expressed in the liver. Shu and colleagues studied LR in

a PH model in an adiponectin-knockout background. They found

that LR was impaired in adiponectin-knockout mice, as illustrated

by smaller regenerated livers that also exhibited decreased

hepatocytes proliferation [37]. Notch pathway enriched in pink

module is important for cellular differentiation and proliferation

Table 3. Module preservation statistics (Zsummary) in distinct
stages of LR after 2/3 PH.

Stage priming (2-6h) proliferation (6-72h) termination (72-
168h)

salmon -0.65 19 8.6

royalbule 9 12 7.3

lightgreen 7.2 8.9 7.8

magenta -0.88 25 18

greenyellow 11 12 17

cyan 21 13 12

lightcyan 12 15 9

red 23 22 8.8

pink -0.09 21 17

darkred 11 20 11

lightyellow 8.7 13 7.9

darkgreen 9.5 15 11

Zsummaryw10 represents that the module is strongly preserved in corresponding

stage.
doi:10.1371/journal.pone.0094868.t003
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[38], but their roles in LR after PH are unclear. FGFR1 is a

critical protein of FGFR1 pathway enriched in darkred module.

Huang et al. confirmed that livers of transgenic FGFR1 mice

exhibited accelerated regeneration after PH, meanwhile the

persistent activity of ectopic FGFR1 in hepatocytes was a strong

promoter of hepatocellular carcinoma by driving cell proliferation

at early stages and promoting neo-angiogenesis at late stages of

progression [39]. How to regulate LR by FGFR1-.STAT

signaling is unclear. In addition, the roles of frizzledR -.JUN/

PAX2 signaling enriched in lightyellow and irinotecan metabolism

enriched in darkgreen module in rat LR still need to be confirmed.

The LR after 2/3 PH is a characteristics model with distinct

stages. It has been well documented that DNA replication of

hepatocytes begins at post-PH 12h in rats, and the first wave of

DNA synthesis occurs at 24 h, with a smaller peak at 36-66 h. The

process of LR is generally completed within 7 days after PH.

Therefore, the process of LR can be divided into 3 stages: priming

stage (2-6 h): hepatocytes are activated and G0/G1 transition

occurs; proliferative stage (6-72 h): cell proliferation take places;

termination stage: (72-168 h): liver regeneration terminates. In

order to determine stages during which these pathways and hub

genes play a key role, we reconstructed 3 gene co-expression

networks across corresponding samples using similar method.

Then we calculated preservation statistics of these modules in

respective network, see Table 3. As it can be seen that salmon

module is formed in proliferation stage and its preservation

become weak in termination stage. Approximate 20% genes of cell

cycle regulation and 30% genes of histone acethylation are

enriched in salmon module. It suggests that salmon module play

an important role in regulating hepatocyte proliferation. Another

interesting module we observed is royalblue module, which is also

strongly preserved in proliferation stage only. IL6R-.STAT

signaling enriched in the module has been demonstrated its role in

rat LR [34]. Approximate 10% genes of omega-3-fatty metabolism

and 33% genes of adipocytokine signaling enriched in greenyellow

module suggest that this module play an important role during

overall LR, because this module is preserved strongly during all

three stages of LR. Surprisingly, 25% genes of adipocytokine

signaling are also significantly enriched in cyan module which is

also preserved strongly in three stages. It suggests that expression

patterns of the two modules are different and there may be some

regulation relationships between the two modules. In addition,

lightcyan and darkgreen module are also interesting. 27.5% genes

of notch pathway are enriched in lightcyan module and 36% genes

of irinotecan metabolism are enriched in darkgreen module.

Figure 4. Predicated gene interactions by coexpression pattern in salmon module. For clarity, Only the edges corresponding to
connection strenth . 0.3 were shown. The network was visualized using Cytoscape 3.0 software. Upregulated genes, downregulated genes, up/
down-regulated genes and other genes were colored red, green, olive and yellow respectively. The node size is proportional to the node
connectivity. The edge width is proportional to the connection strength between the two nodes. The Excel file of the map can be found in Table S4.
doi:10.1371/journal.pone.0094868.g004
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Lightcyan module appears in priming and proliferation stages, but

darkgreen module appears in proliferation and termination stages.

We also investigated the co-expression network of salmon

module (Figure 4, the Excel file of the map was provided in table

S4), representing the subset of genes consistently co-expressed in

hepatocytes proliferation stage. We found several strong interac-

tions, such as MCM5 interacting with ANLN, CENPI and IPO9

etc. We infer that it is this subset of genes that lead to hepatocytes

proliferation and regulate cell cycle.

Although we have identified some specific modules in rat LR

through WGCNA and confirmed the possible roles of these

modules in LR through gene set enrichment analysis, whether

some other pathways are also involved in LR cannot be excluded.

This is the first time that WGCNA is used to analyze the

transcriptome information of rat hepatocytes in LR. Our results

show that WGCNA provides considerable clues for further

experiment by identifying critical gene modules and hub genes

in LR. This study highlights the unique capability of WGCNA in

prediction of novel undiscovered genes.
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