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Abstract

Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational
biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV)
infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease
association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three
networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various
diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network,
and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various
diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in
human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets
for more effective anti-hepatitis-C therapeutic involvement.
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Introduction

Hepatitis-C virus (HCV) causes the infectious disease Hepatitis-

C which primarily affects the liver. It is important to identify the

potential target human proteins that lead to different diseases

caused by hepatitis-C virus infection. Analyzing the regulation

between viral and host proteins in different organisms helps to

uncover the underlying mechanism of various viral diseases.

Protein-protein interaction (PPI) information provides a local as

well as a global view of the interaction modules of proteins

participating in similar biological activities. Such interaction

information can be obtained via biological experiments or can

be predicted using computational approaches [1]. Among the

experimental methods, yeast two-hybrid (Y2H) screens have been

widely used by the biologists. The Y2H system can detect both

transient and stable interactions. The works in [2] and [3] deal

with the identification of PPIs in Saccharomyces cerevisiae using yeast

two-hybrid screens. The Y2H approach has also been utilized in

the analysis of human PPIs in some earlier studies [4,5]. Another

popularly used experimental method in the context of PPI is mass

spectrometry which is used to identify the components of protein

complexes. Use of mass spectrometry method for detecting PPIs

can be found in [6,7].

One of the main goals in research of PPI is to predict possible

viral-host interactions. This interaction information can be utilized

to identify and prioritize the important viral-host interactions. This

is specifically aimed at assisting drug developers targeting protein

interactions for the development of specially designed small

molecules to inhibit potential HCV-Human PPIs. Targeting

protein-protein interactions has relatively recently been established

to be a promising alternative to the conventional approach to drug

design [8,9].

Although there have been many studies on determining and

analyzing PPIs in a single organism, not much work can be found

on computational analysis of viral-host interactions. In very recent

times, some computational analysis of viral-host interactions,

specially in HIV-1-human PPIs [10–15] have been done. Some

recent studies have analyzed the viral-host interactions for some

individual HCV proteins. For example, in [16], a study on NS2

protein of HCV is conducted and its role in HCV life cycle is

discussed. In [17], the interactions of HCV proteins CORE and

NS4B with human proteins have been analyzed for understanding

the biological context in HCV pathogenesis. In [18], the authors

have revealed that the HCV protein NS2 interacts with different

structural and non-structural proteins for virus assembly. In

another work [19], an integrative network analysis is performed to

identify key genes and pathways in the progression of hepatitis C

virus induced hepatocellular carcinoma. However, no global

system-wide study based on the HCV-human interaction network

is available in literature. Motivated by this, in the present work, the

PPI records between HCV proteins and human (Homo sapiens)

proteins reported in a recently published dataset [20] are collected.

This interaction information, all together, can be visualized as a

bipartite graph, where two sets of nodes denote HCV proteins and

human proteins, respectively, and the edges denote the interac-

tions. In this work, the bipartite network is mined to identify the

strong interacting modules, which are effectively quasi-bicliques.

We further extend the study by clustering the human protein-

protein interaction network to identify the possible quasi-cliques

that overlap with the quasi-bicliques identified in the previous step.
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The human proteins participating in these quasi-cliques are

considered as gateways of infection and are further investigated for

their functional characteristics. Subsequently, the bipartite net-

work representing the association of human proteins with various

disease types is mined to find possible quasi-bicliques that overlap

with the gateway proteins discovered in the previous stage. Thus

we explore three networks, namely, HCV-human interaction

network, human protein interaction network, and human proteins-

disease association network globally to discover the potential

pathways of infection by the HCV viruses that lead to various

diseases including cancers. The analyses done in this study may

provide possible targets for more effective anti-hepatitis-C

therapeutic involvement.

Materials and Methods

In the present study, three different networks are mined. First

one is the HCV-human protein interaction network. This network

is modeled as a bipartite graph with two sets of nodes, one set

corresponding to the HCV proteins and the other set correspond-

ing to the human proteins. The edges represent presence of

interactions between the corresponding HCV and human

proteins. The second network is human protein interaction

network, which is modeled as a graph. Nodes represent the

human proteins and the edges represent interactions among them.

The third network represents the associations between human

proteins and disease. Hence this disease association network is also

modeled as a bipartite graph with two sets of nodes representing

human proteins and diseases, respectively. The edges of this graph

represent the association of the human proteins with diseases.

Before describing the proposed methods, here we first define a

few terms to help subsequent discussions [21,22].

Definition 1 (Graph). The term graph is used throughout to

denote an unweighted and undirected simple graph (without self-

loops or parallel edges) G~(V ,E), where V and E are the vertex

and edge sets, respectively. Here E is represented as a set of vertex-

pairs, i.e., E~f(u,v)Du,v [ Vg.
Definition 2 (Degree of a Vertex). The degree of a vertex vi,

denoted as d(vi) in a graph, is said to be the number of edges

incident to it. Hence vi~Df(vi,vj) [ E,vj=vigD.
A graph G~(V ,E) may contain subgraphs. A clique is a

complete subgraph of a graph.

Definition 3 (Clique). A subgraph G~(V ,E) is said to be a

clique if for each vertex pair u,v [ V , there is an edge (u,v).

As can be seen, the edge set E of a clique can readily be

obtained from the vertex set V, and therefore a clique may be

simply denoted as G = V.

Definition 4 (c-quasi-clique). In a graph G~(V ,E), a

subgraph G~(V ’,E’), V ’(V , E’(E, is said to be a c-quasi-

clique (0ƒcƒ1) if the subgraph induced by this set of vertices

contains at least qc:DV ’DC2r edges.

We denote the cardinality of a vertex set V as |V|. A graph is

bipartite if its vertex set can be distinguished into a pair of

partitions. It is formally defined as follows.

Definition 5 (Bipartite graph). A graph G~(V ,E) is said to be

bipartite if its vertex set V can be partitioned into two nonempty

and disjoint sets V1 and V2 such that E~f(u,v)Du [ V1,v [ V2g.
Therefore, a bipartite graph G~(V ,E) can also be represented

as G~(V1,V2,E). As the graphs may have subgraphs, bipartite

graphs may also contain subgraphs. A biclique is a complete

bipartite subgraph.

Definition 6 (Biclique). A bipartite subgraph G~(V1,V2,E) is

said to be a biclique if for each vertex pair u[V1 and v[V2, there is

an edge (u,v).

As can be seen, the edge set E of a biclique can be readily

obtained from the two vertex sets V1,V2, and therefore a biclique

may be simply denoted as G~(V1,V2).

Definition 7 (c-quasi-biclique). In a bipartite graph

G~(V1,V2,E), a bipartite subgraph G~(V1’,V2’,E’), V1’(V1,

V2’(V2, E’(E, is said to be a c-quasi-biclique (0ƒcƒ1) if the

subgraph induced by these two sets of vertices contains at least

qc:DV1’D:DV2’Dr edges.

The proposed study consists of three stages. First we mine strong

c-quasi-bicliques from the first bipartite graph that represents the

interactions between viral and human proteins. The obtained

quasi-bicliques are strong interaction modules consisting of the

HCV and human proteins. Thereafter, in the second stage we

cluster the human protein-protein interaction network to identify

the possible strong c-quasi-cliques that overlap with the quasi-

bicliques identified in the previous step. The human proteins

participating in these quasi-cliques are considered as gateways of

infection and are further investigated for their functional

characteristics. Subsequently, the bipartite network representing

the association of human proteins with various disease types is

mined to find possible strong c-quasi-bicliques that overlap with

the gateway proteins discovered in the previous stage. Hence we

explore three networks, namely, HCV-human interaction net-

work, human protein interaction network, and human proteins-

disease association network globally to discover the potential

pathways of infection by the HCV viruses that lead to various

diseases including cancers. Fig. 1 diagrammatically demonstrates

the study conducted in this article.

In this article we have proposed an algorithm based on

hierarchical clustering that can mine both c-quasi-cliques and c-

quasi-bicliques from graphs and bipartite graphs, respectively. The

algorithm is basically a quasi-clique mining algorithm, however,

with a little modification, this can also be used to mine quasi-

bicliques as well. First we describe the algorithm for mining quasi-

cliques from a graph. Thereafter, how this algorithm is modified to

mine quasi-bicliques is described below.

Mining c-Quasi-Cliques
The proposed algorithm for mining c-quasi-cliques is based on

hierarchical average linkage clustering method [23,24]. Given an

input graph G~(V ,E), first the shortest path distances (number of

edges) between all pairs of vertices are computed. Thereafter the

dendrogram is built using agglomerative average linkage method.

In this method, first a cluster is formed corresponding to each

vertex of the graph. Thereafter two nearest vertices as per shortest

path distance are combined to form a new cluster. This continues

until there remains only one cluster containing all the vertices. The

distance between any two cluster is computed as the average

distance between all the vertices in the two clusters. The tree

representing the hierarchical relationships among the clusters

formed in this way is called the dendrogram.

After building the dendrogram, we start scanning from the top

of the dendrogram to the bottom, one step at a time. Every time a

cluster is divided into two, we examine the two clusters whether

they are c-quasi-cliques given a c value. If any cluster satisfies this

criterion, we do not further divide that cluster, i.e., the subtree

rooted by this cluster is no more explored and this cluster is

returned as one c-quasi-clique. The clusters that are not c-quasi-

cliques are recursively divided as per the dendrogram until they

provide some c-quasi-clique, or reaches the threshold of quasi-

clique size (minimum number of vertices to be present in the quasi-

clique). Hence, the algorithm returns a set of maximal c-quasi-

cliques, i.e., the c-quasi-cliques which are not completely included

in another c-quasi-clique.

Network-Based Study of HCV Disease Pathways
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Mining c-Quasi-Bicliques
The algorithm for mining c-quasi-bicliques, which are equiv-

alent to biclusters [25], is exactly same as mining c-quasi-cliques,

the only modification is done in the distance matrix. In this case

also, we compute the shortest path between the nodes in the input

bipartite graph G~(V1,V2,E). Note that here the distance

between two vertices u [ V1 and v [ V2 can be any odd value $

1, since u and v may not be directly connected, but there may be a

path between this two that contains a number of vertices from V1

and V2 in alternative positions. Any two vertices u1,u2 [ V1 are

never connected directly in a bipartite graph, however they may

be connected through a set of vertices from V2 and V1 in an

alternative fashion, and thus the distance between any two vertices

in V1 is always an even value $2. Similar is the case for any two

vertices in set V2.

In our study, The number of HCV proteins (set V1) is far more

less than the number of human proteins (set V2). Therefore to

increase the participation of HCV proteins in the c-quasi-

bicliques, we have modified the distance function between two

viral proteins. In the modified version, the distance between any

two viral proteins that are connected by a series of alternative

human and viral proteins, i.e., which belong to the same

connected component in the bipartite graph, is made 1. Thus

the viral proteins that belong to the same connected component

come closer to each other virtually and the number of viral

proteins in the c-quasi-cliques increases. The similar approach is

adopted while finding the quasi-bicliques between the human

proteins and diseases to increase the participation of the human

proteins.

Databases and Preprocessing
As stated before, we deal with three networks, namely, HCV-

human PPI network, human PPI network and human protein-

disease association network. In this section, the collection and

preprocessing of the datasets have been described below.

HCV-Human Protein Interaction Database
The protein interaction information between the HCV proteins

and human proteins have been collected from a recently

developed HCV-human protein interaction database called

HCVpro [20] publicly available at http://cbrc.kaust.edu.sa/

hcvpro/. This viral-host PPI database has been manually curated

and it stores only those HCV-human PPIs that pass through a very

strict filtering process [20]. Hence this repository maintains a very

high-quality PPI information. It can be noted that there is another

well-known and widely used database of hepatitis C-human

protein interactions which is available at [26]. However, we found

that the HCVpro database covers ,94% of the interactions

present in that database. Therefore we decided to use the newer

database HCVpro. The HCVpro database contains the interac-

tions among 11 HCV proteins (CORE, E1, E2, F, NS2, NS3,

NS4A, NS4B, NS5A, NS5B, p7) and 455 human proteins. The

total number of interactions is 549. The interactions are given in

File S1. Fig. 2 shows the distribution of the interactions with

respect to each of the HCV proteins. It is evident from the figure

that the HCV protein NS3 interacts with maximum number of

human proteins (218), whereas NS2 is found to interact with

minimum number of human proteins (8). Among the other HCV

proteins, NS5A and CORE have reasonable number of interac-

tions with the human proteins (115 and 94, respectively). After

removing the redundant interactions, the number of unique

interactions reduces to 524. These 524 interactions among 11

HCV proteins and 455 human proteins are used for preparing the

bipartite network between viral and host proteins and the maximal

c-quasi-bicliques are mined from this bipartite network as

described in the previous section.

Figure 1. The diagrammatic representation of the proposed study. The orange circles represent the HCV proteins. The blue circles represent
the human proteins. The pink circles represent the diseases. The green edges represent the interaction between HCV proteins and human proteins.
The black edges represent the interactions among human proteins. The violet edges represent the associations between human proteins and
diseases. The quasi-bicliques and bicliques are shown also. The quasi-biclique in the HCV-human bipartite network overlaps with the quasi-clique in
the human protein interaction network. The quasi-clique in the human protein interaction network overlaps with the quasi-biclique in the human
protein-disease association network.
doi:10.1371/journal.pone.0094029.g001
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Human Protein Interaction Database
The primary objective of mining human protein interaction

database is to find c-quasi-cliques that overlap with the c-quasi-

bicliques identified in the previous stage of the study. Hence to

avoid huge computational complexity in mining quasi-cliques

from the complete human protein interaction database, we

concentrate only on the part of the human PPI that contains the

human proteins present in the identified c-quasi-bicliques in the

previous stage. For this, the function protein association network

STRING (http://string-db.org/) has been utilized. For each

quasi-biclique identified in the previous stage, the participating

human proteins are given as input to STRING and STRING

generates an interactome containing these human proteins and

other additional human proteins. We consider the predictions

based on co-expression, experiments and databases only. We

consider only the interactions with confidence of at least 0.8 (in a

confidence scale between 0 and 1). This ensures that we consider

only those PPIs that have reasonable number of evidences in

literature. Maximum number of interactions per protein is set to

100. From the resultant PPI, the c-quasi-clique mining algorithm

described in previous section is applied to obtain any quasi-clique

that overlaps the previously mined quasi-biclique on which the

present human PPI has been built.

Human Protein-Disease Association Database
The Genetic Disease Association Database [27] (http://

geneticassociationdb.nih.gov/) archives the human genetic associ-

ation studies on various types of complex diseases and disorders.

The database contains summary data extracted from published

articles in peer reviewed journals on candidate gene and GWAS

studies. The database contains both positive (if the gene/protein is

known to have association with the phenotype) and negative (if a

gene/protein is known to have lack of association with the

phenotype) associations, and also unknown (no specific informa-

tion) associations. The network has been given in File S3. All the

gene-disease association information have been downloaded from

the database and the associations other than positive ones are

filtered out. We found approximately 4200 unique diseases which

are associated with approximately 3600 human genes/proteins,

resulting approximately a total of 12400 unique gene-disease

associations. In Fig. 3, we have demonstrated the distributions of

associations with respect to both diseases and genes. In both cases,

it can be noticed that only few diseases have association with many

human proteins, but most of the diseases are associated with only a

few human proteins. The density of this bipartite network in

,0.0007 only, which indicates the sparseness of the network. The

human proteins belonging to the quasi-cliques identified in the

previous stage are considered and the bipartite network with these

human proteins and diseases connected to them is formed.

Thereafter, the c-quasi-biclique mining algorithm is applied to this

bipartite network to obtain the strong maximal quasi-bicliques

from this network.

Results and Discussion

In this section, we discuss the results of the proposed study.

Mining Quasi-Bicliques in HCV-Human Protein Interaction
Network

First we apply the proposed c-quasi-biclique mining algorithm

on the HCV-human protein interaction network collected from

HCVpro. The value of c has been set to 0.5. This is done as

follows. We varied c value from 0.1 to 0.9 with step size 0.1 and

varied the minimum number of HCV proteins present in a quasi-

biclique n from 2 to 5 with step size 1. For each combination of c
and n the algorithm is executed. In each case, the statistical

significance of the set of resultant quasi-bicliques (if found) is

investigated. To test the statistical significance of a quasi-biclique

of size x6y, the bipartite graph is perturbed randomly 10,000 times

(without changing the degrees of HCV proteins) and a quasi-

biclique of size x6y is picked up randomly from the perturbed

graph. Then we conduct the Wilcoxon ranksum test to find

whether the density of the actual quasi-biclique is significantly

better than the mean density of the random quasi-bicliques of

Figure 2. Distribution of interactions in the Hepatitis-C-Human bipartite interaction network with respect to the 11 HCV proteins.
The HCV protein NS3 interacts with maximum number of human proteins (218), whereas NS2 is found to interact with minimum number of human
proteins (8). Among the other HCV proteins, NS5A and CORE have reasonable number of interactions with the human proteins (115 and 94,
respectively).
doi:10.1371/journal.pone.0094029.g002
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same size. This returns a p-value and lower the p-value more

significant is the quasi-biclique under consideration. For a

combination of c and n value, the average p-value over all the

quasi-bicliques obtained is computed and we found that for c = 0.5

and n = 3 the average p-value is minimum. Hence we set the c
value to 0.5 and quasi-bicliques having at least three HCV

proteins (n = 3) are considered only. This results in two quasi-

bicliques QB1 and QB2, respectively. Different statistics about the

two quasi-bicliques found are reported in Table 1. The densities

(i.e., ratio of the maximum number of interactions present in the

quasi-biclique to the maximum possible number of interactions) of

the two quasi-bicliques obtained are 0.6786 and 0.5400, respec-

tively. The first quasi-biclique consists of the HCV proteins

CORE, NS3 and NS5A and 28 human proteins. Note that these

three HCV proteins are the top three highest degree HCV

proteins in the network. The other quasi-biclique consists of five

HCV proteins E1, E2, NS2, NS4A and NS5B and 10 human

proteins.

Mining Quasi-Cliques in Human Protein Interaction
Network

In the next stage, as discussed before, the human proteins

participating in the quasi-bicliques are given as the input to the

STRING database. The human proteins involved in the first

quasi-biclique QB1 (Table 1) are first given to the STRING

database with the parameter setting described in Section. This

induces a human interactome consisting of 120 human proteins

(Fig. 4 shows the interactome). Although this network is very

sparse (density ,0.07), a few denser regions are clearly visible from

the figure. After applying the quasi-clique mining algorithm

described before. The c value is fixed to 0.6 and the minimum

number of nodes allowed is set to 4. We obtained 9 dense quasi-

cliques from the interactome. Out of these 9 quasi-cliques, 5 have

overlaps with the first quasi-biclique discovered in the previous

stage. Different statistics of these 5 quasi-cliques are shown in

Table 2.

After application of the quasi-clique finding algorithm on the

interactome induced by the second quasi-biclique QB2 of Table 1,

it provides 4 quasi-cliques that overlap this quasi-biclique. The

interactome induced by the second quasi-biclique consists of 79

human proteins (This interactome has been shown in Fig. 5). This

network has density of ,0.22. However, here also, a few denser

regions can be noticed from the figure. The 4 quasi-cliques as

found by the algorithm have been reported in Table 3. It is evident

from the table that these quasi-cliques overlap with the second

quasi-biclique on only one human protein each. Both the human

interactomes induced by quasi-bicliques QB1 and QB2 are

reported in File S2. All the quasi-bicliques and quasi-cliques are

reported in File S4.

GO and Pathway Analyses of Quasi-Cliques
Subsequently we further analyze the quasi-cliques found

(Tables 2 and 3) using Gene Ontology (GO) and pathway based

studies. Let us denote the 9 quasi-cliques of Table 2 and 3 by

fQC1,QC2, . . . ,QC9g respectively. For the GO and pathway

analyses, the web-based tool DAVID (http://david.abcc.ncifcrf.

gov/) has been used. Table 4 shows the top few significant GO

and KEGG pathway terms for the 9 quasi-cliques along with the

significance p-values. It is evident from the table that for all the

quasi-cliques have significant GO and KEGG pathways associated

with them, with one exception for QC7 for which no significant

KEGG pathway has been found. QC1 mainly consists of the

proteins that function in negative regulation of ubiquitin and

participate in proteasome complex whose main function is to

degrade unneeded or damaged proteins by proteolysis, a chemical

reaction that breaks peptide bonds. The relationship between

ubiquitin, proteasome and hepatitis-c have already been reported

in literature [28,29] which involves HCV protein CORE. It may

be noticed that the HCV CORE protein belongs to the first quasi-

biclique (QB1 in Table 1, that has overlaps with the quasi-clique

QC1. The overlap between QB1 and QC1 consists of two human

proteins PSMB9 and PSME3 and thus they may be considered as

possible infection gateway by the HCV proteins CORE (interacts

with PSME3), NS3 (interacts with PSMB9) and NS5A (interacts

with PSMB9) which belong to quasi-biclique QB1, for attacking

the proteasome complex.

The quasi-clique QC2 contains 14 human proteins mostly

involved in apoptosis and programmed cell death. Also it is

interesting that a significant GO-CC term for these proteins is

death-inducing signaling complex. Further, these proteins also

participate in the KEGG pathway apoptosis as well as pathways in

cancer. These evidences suggest strongly that the human proteins

involved in this quasi-clique have direct or indirect relationship to

cancer diseases. The quasi-biclique QB1 (involving the viral

Figure 3. Distribution of associations in the human gene-disease association network. The left hand side figure shows the distribution of
associations with respect to all the disease. The right hand side figure shows the distribution of associations with respect to all the genes.
doi:10.1371/journal.pone.0094029.g003
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proteins CORE, NS5A and NS3) overlaps with QC2 on three

human proteins TRADD (interacts with CORE and NS5A),

TRAF2 (interacts with CORE and NS5A) and VIM (interacts

with CORE and NS3). This suggests that attack by HCV proteins

CORE, NS5A and NS3 may lead to cancer through apoptosis and

the main gateway host proteins responsible for that are TRADD,

TRAF2 and VIM.

The 23 host proteins in quasi-clique QC3 are mainly

transcription factors (Table 4). Although the quasi-biclique QB1
only overlaps with QC3 on two host proteins HNRNPK and TBP,

it suggests that the viral proteins in QB1 may indirectly interact

with many transcription factor proteins and thus may cause their

malfunctioning. This may lead to breakdown of the overall setup

of normal regulatory roles of these transcription factors causing

serious infectious behavior.

Most of the host proteins in the quasi-clique QC4 negatively

regulate transcription and participate in enzyme binding. It can be

noticed that many of these proteins are part of PML bodies, which

is a class of nuclear body and they react against SP100 auto-

antibodies (PML, promyelocytic leukemia). This is in fact also

Table 1. Quasi-bicliques found from HCV-human protein interaction database.

Quasi-biclique HCV proteins Human proteins Density

QB1 Count: 3 Count: 28

CORE, NS3, NS5A EFEMP1, EIF2AK2, FBLN2,
FBLN5, FTH1, HIVEP2, HNRNPK, JAK1,
KPNA1, LTBP4, MAGED1, NAP1L1, NAP1L2,
PSMB9, PSME3, RNF31, SMAD3,
STAT1, STAT3, TBP, TLR2, TP53, TP53BP2,
TRADD, TRAF2, TXNDC11, VIM, VWF

0.6786

QB2 Count: 5 Count: 10

E1, E2, NS2, NS4A, NS5B CALR, CANX, CD209, CLEC4M,
HOXD8, HSPA5, LTF, NR4A1, SETD2, UBQLN1

0.5400

The HCV proteins and human proteins involved in the quasi-bicliques are reported along with the densities of the quasi-bicliques.
doi:10.1371/journal.pone.0094029.t001
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Figure 4. Human protein interactome induced by first quasi-biclique QB1. The interactome consists of 120 human proteins and 509
interactions among them. The density of the interactome is nearly 0.07.
doi:10.1371/journal.pone.0094029.g004
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Table 2. Quasi-cliques found from human protein interactome that overlap with the human proteins involved in the first quasi-
biclique of Table 1.

Quasi-clique Human proteins Density
Overlapping proteins with first
quasi-clique

QC1 Count: 8

POMP, PSMA2, PSMB10, PSMB7, PSMB8, PSMB9, PSME3, RFWD2 0.6786 PSMB9, PSME3

QC2 Count: 14

BIRC2, BIRC3, CASP8, FADD, GATA5, MAP3K5,
RIPK1, TNFRSF1A, TNFRSF1B, TRADD,
TRAF1, TRAF2, UBC, VIM

0.6484 TRADD, TRAF2, VIM

QC3 Count: 23

CIP, EDF1, GTF2A1, GTF2A2, GTF2B, GTF2E1,
GTF2F1, HNRNPK, MYST1, SETD7, SF3A2,
TAF1, TAF10, TAF11, TAF12, TAF13, TAF2, TAF2E,
TAF3, TAF4, TAF5, TAF7, TBP

0.6324 HNRNPK, TBP

QC4 Count: 8

HDAC1, HIPK2, MDM2, MDM4, SUMO1, TP53, UBE2I, USp7 0.6429 TP53

QC5 Count: 8

EGFR, IL6ST, JAK1, PIAS3, SRC, STAT1, STAT2, STAT3 0.7143 JAK1, STAT1, STAT3

The human proteins involved in the quasi-cliques are reported along with the densities of the quasi-cliques and the overlapping human proteins with the first quasi-
biclique.
doi:10.1371/journal.pone.0094029.t002
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Figure 5. Human protein interactome induced by second quasi-biclique QB2. The interactome consists of 79 human proteins and 693
interactions among them. The density of the interactome is nearly 0.22.
doi:10.1371/journal.pone.0094029.g005
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evident from the pathway analysis which finds two significant

KEGG pathways, namely p53 signaling pathway and chronic

myeloid leukemia. For the quasi-biclique QB1 the viral gateway to

these host proteins is TP53, a membrane protein that is common

for QB1 and QC4. Noticeably, all the viral proteins of QB1, i.e.,

CORE, NS5A and NS3 interact with TP53 to get entrance. This

infection may ultimately lead to chronic myeloid leukemia [30].

The quasi-clique QC5 contains host proteins with mainly kinase

activities. Two significant KEGG pathways namely JAK-STAT

signaling pathway and pancreatic cancer, have been identified in

this quasi-clique. This suggests that the HCV proteins in QB1
interact with the host proteins in QC5 through the common host

proteins JAK1, STAT1 and STAT3 leading to pancreatic cancer.

Moreover, JAK-STAT system transmits information from chem-

ical signals outside the cell, through the cell membrane. Therefore

the proteins involved in QC5 are possibly involved in transferring

and propagating the infection to the other cells. A study in [31] has

already established the involvement of HCV in JAK-STAT

signaling pathway.

The quasi-cliques QC6 through QC9 (Table 3) overlap with the

quasi-biclique QB2, which consists of 5 viral proteins E1, E2, NS2,

NS4A, and NS5B and 10 host proteins. QB2 overlaps with QC6
with the host protein SETD2. The most significant GO terms

associated with the human proteins in QC6 in BP, MF and CC

categories are oxidation reduction, procollagen-lysine 5-dioxygen-

ase activity and endoplasmic reticulum, respectively. The most

significant KEGG pathway associated with these proteins is Lysine

degradation, where all the 4 proteins in QC6 are involved. The

association of HCV NS2 protein and lysine degradation is also

reported in [32].

QC7 overlaps QB2 with the host protein UBQLN1. QC7 also

has proteasomal acitivities QC1, and as discussed before the host

proteins in this functional module are involved in hepatitis C

infection. However, we could not find any significant pathway for

QC7.

QC8 is the largest quasi-clique that we have found in the

present study. This functional module consists of 45 host proteins

which are mostly transcription factors. The infection gateway to

this module is NR4A1, which is the only common host protein for

QB2 and QC8. Interestingly, all the five viral proteins in QB2
interact with NR4A1, and the CORE protein, which is a part of

QB1 also interacts with NR4A1. This observation suggests that

NR4A1 serves as a very important gateway to this transcription

factor complex. Any disturbance to this module for viral infection

may lead to malfunctioning of normal gene regulatory network,

and this in turn can result in various types of cancer (as the

pathway study reveals). Our pathway study also reveals another

significant pathway, namely PRAR signaling pathway, which is

also shown to be associated with HCV infection in recent studies

[33].

The quasi-clique QC9 that consists of 5 host proteins which

have been found to be associated with protein maturation and

humoral immune response mediated by circulating immunoglob-

ulin. Thus these proteins are highly responsible for maintaining

the immunity system inside human body. QB2 and QC9 has one

common host protein CALR, and hence this protein serves as a

gateway of attack to the immunity system by HCV. The viral

proteins E1 and E2 (envelop proteins), which are major players in

all events required for virus entry into target cells interact with

CALR and start attacking the immunity system. This may

ultimately lead to many prion diseases (as revealed through

pathway analysis).

The GO and pathway analyses of the identified quasi-cliques in

human protein interaction network reveals that the host proteins

involved in these functional modules have high degree of

functional similarities. Moreover, as discussed, HCV attacks that

go through these quasi-cliques may lead malfunctioning of

regulatory and immunity system in targeted cells and may lead

to different types of disease including various types of cancers.

Mining Quasi-Bicliques in Human Protein-Disease
Association Network

To study the disease association with the host proteins in the

identified quasi-cliques for finding possible pathway of pathogen-

esis leading to various diseases, we apply our quasi-biclique finding

algorithm on the human gene-disease association network. Note

Table 3. Quasi-cliques found from human protein interactome that overlap with the human proteins involved in the second
quasi-biclique of Table 1.

Quasi-clique Human proteins Density
Overlapping proteins with second
quasi-biclique

QC6 Count: 4

PLOD1, PLOD2, PLOD3, SETD2 0.8333 SETD2

QC7 Count: 5

NBL1, PSMD4, UBA52, UBC, UBQLN1 0.7000 UBQLN1

QC8 Count: 45

BCL2, CD3D, CREBBP, EP300, ESR1, ESR2,
ESRRA, ESRRB, ESRRG, FOSB, GNG2, HNF4A,
HNF4G, MAPK7, MEF2D, NFATC2, NR0B2,
NR1D1, NR1D2, NR1H2, NR2C1, NR2C2,
NR2C2AP, NR2E1, NR2F1, NR2F6, NR4A1,
NR4A2, NR5A1, NRBP1, POMC, PPARA, PPARD,
PPARG, RARA, RARB, RARG, RORA, RORB,
RORC, RXRA, RXRG, THRA, THRB, VDR

0.6364 NR4A1

QC9 Count: 5

APOB, C1QA, C1QB, C1QC, CALR 0.7000 CALR

The human proteins involved in the quasi-cliques are reported along with the densities of the quasi-cliques and the overlapping human proteins with the second quasi-
biclique.
doi:10.1371/journal.pone.0094029.t003
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that while finding the quasi-bicliques, we executed the quasi-

biclique finding method on 9 different bipartite graphs, corre-

sponding to the 9 quasi-cliques. Each of these graphs contain the

human proteins from the corresponding quasi-clique, and all the

diseases. The c value is set to 0.7, so that each identified quasi-

biclique has density of at least 0.7. Out of the nine quasi-cliques,

we found four quasi-cliques QC1, QC2, QC4 and QC8 which

have overlap with the obtained quasi-bicliques on protein-disease

association networks. These quasi-bicliques, termed as QBD1,

QBD2, QBD3, QBD4 are reported in Table 5. In each quasi-

Table 4. The significant important GO terms and KEGG pathways found in the quasi-cliques.

Quasi-clique Significant GO terms KEGG Pathway

Biological Process Molecular Function Cellular Component

QC1 negative regulation of ubiquitin-protein
ligase activity during mitotic cell cycle

threonine-type endopeptidase
activity

proteasome complex Proteasome

(p-value: 4.6e-11, 75%) (p-value: 6.1e-11, 62.5%) (p-value: 6.4e-14, 87.5%) (p-value: 3.1e-12, 87.5%)

QC2 apoptosis death domain binding membrane raft Apoptosis

(p-value: 8.9e-14, 85.7%) (p-value: 5.0e-3, 14.3%) (p-value: 3.9e-8, 42.9%) (p-value: 1.1e-10, 57.1%)

programmed cell death death-inducing signaling
complex

pathways in cancer

(p-value: 1.1e-13, 85.7%) (p-value: 5.5e-6, 21.4%) (p-value: 3.6e-4, 42.9%)

QC3 transcription initiation from RNA
polymerase II promoter

general RNA polymerase II
transcription factor activity

DNA-directed RNA
polymerase II, holoenzyme

Basal transcription factors

(p-value: 6.0e-29, 71.4%) (p-value: 4.9e-20, 52.4%) (p-value: 4.1e-30, 76.2%) (p-value: 1.8e-29, 71.4%)

QC4 negative regulation of transcription enzyme binding PML body p53 signaling pathway

(p-value: 1.0e-8, 87.5%) (p-value: 1.2e-3, 50.0%, ) (p-value: 1.6e-7, 50.0%) (p-value: 1.0e-3, 37.5%)

Chronic myeloid leukemia

(p-value: 1.3e-3, 37.5%)

QC5 protein kinase cascade protein tyrosine kinase activity dendrite Jak-STAT signaling pathway

(p-value: 2.8e-9, 87.5%) (p-value: 3.3e-3, 37.5%) (p-value: 7.4e-2, 25.0%) (p-value: 4.9e-7, 75.0%)

Pancreatic cancer

(p-value: 9.1e-5, 50.0%)

QC6 oxidation reduction procollagen-lysine 5-dioxygenase
activity

endoplasmic reticulum Lysine degradation

(p-value: 1.0e-4, 100.0%) (p-value: 1.1e-7, 75.0%) (p-value: 5.6e-3, 75.0%) (p-value: 6.0e-7, 100.0%)

QC7 anaphase-promoting complex-dependent
proteasomal ubiquitin-dependent protein
catabolic process

structural constituent of
ribosome

cytosolic small ribosomal
subunit

(p-value: 2.3e-5, 60.0%) (p-value: 2.6e-2, 40.0%) (p-value: 1.2e-2, 40.0%) –

proteasome complex

(p-value: 1.9e-2, 40.0%)

QC8 regulation of transcription,
DNA-dependent

steroid hormone receptor activity nuclear lumen Pathways in cancer

(p-value: 4.3e-27, 84.4%) (p-value: 6.1e-75, 73.3%) (p-value: 1.4e-3, 20.0%) (p-value: 1.7e-5, 20.0%)

transcription factor activity transcription factor complex PPAR signaling pathway

(p-value: 7.7e-37, 84.4%) (p-value: 4.7e-3, 8.9%) (p-value: 1.3e-4, 11.1%)

QC9 protein maturation carbohydrate binding extracellular space Prion diseases

(p-value: 2.8e-6, 80.0%) (p-value: 5.4e-2, 40.0%) (p-value: 5.9e-4, 80.0%) (p-value: 1.4e-4, 60.0%)

humoral immune response mediated by
circulating immunoglobulin

Complement and coagulation
cascades

(p-value: 3.0e-5, 60.0%) (p-value: 5.4e-4, 60.0%)

Quasi-clique Significant GO terms KEGG Pathway

Biological Process Molecular Function Cellular Component

QC1 negative regulation of ubiquitin-protein
ligase activity during mitotic cell cycle

threonine-type endopeptidase
activity

proteasome complex Proteasome

(p-value: 4.6e-11, 75%) (p-value: 6.1e-11, 62.5%) (p-value: 6.4e-14, 87.5%) (p-value: 3.1e-12, 87.5%)

QC2 apoptosis death domain binding membrane raft Apoptosis

The significant terms are mentioned along with their significance p-values and percentage of proteins associated with each term. DAVID online tool has been used to
perform the significance tests.
doi:10.1371/journal.pone.0094029.t004
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biclique in human protein-disease association network, two human

proteins have been found to overlap with the corresponding quasi-

cliques. These proteins, thus can be considered as gateways to the

diseases. QBD1 has overlap with QC1 with two proteins PSMB8

and PSMB9 which are associated with five different diseases.

QBD2 overlaps with QC2 with two host proteins TNFRSF1A and

TNFRSF1B and these proteins are highly associated with 12

diseases. The quasi-clique QC4 and the quasi-biclique QBD3 has

two common proteins TP53 and MDM2 which are connected

two 9 diseases including various types of cancer. Two proteins

TGFR and MDM2 are common to QBD4 and QC8 and these

proteins have association with 5 diseases which are mainly

different cancer types. Interestingly MDM2 belongs to both

QBD3 and QBD4.

As is evident from Table 5, several diseases are associated to the

four quasi-bicliques in human protein-disease association network.

Among these, many of the diseases are already established to be

related to HCV infection. Graves’ disease is an autoimmune

disease where the thyroid is overactive. It has been found recently

that chronic HCV infection may lead to destructive thyroiditis

followed by Graves’ disease [34]. Diabetes (Type I and II) is a well-

known disease to be associated with HCV attack [35,36].

Interferons are proteins that are released during the presence of

viral particles in cells. It has been established recently that HCV

infection suppresses the interferon response in the liver [37]. The

relationship of Psoriasis, another autoimmune disease affecting

skin, is also well-known [38]. We have also found malaria as one of

the diseases in the quasi-bicliques. A recent study has revealed that

HCV infection may lead to slower emergence of malaria parasite

Plasmodium falciparum in blood [39]. Chron’s disease is the condition

of continuous inflammation of digestive track. Inflammatory bowel

diseases (IBD) such as Chron’s disease or colitis are established to

be linked with viral hepatitis [40,41]. Also systemic lupus

erythematosus has been found to be more prevalent in HCV

infected patients [42]. Rheumatoid Arthritis, a common disease

inducing inflammation in joints is also well-linked with HCV

infection and people with HCV often show raised levels of

rheumatoid factor in their blood [43]. Table 5 also reports some

types of cancer to be associated with the proteins in the quasi-

bicliques. Recent research has focused on development of cancer

in HCV infected patients and different studies have established the

links between hepatitis c and various types of cancers such as liver

cancer [44], breast cancer [45], leukemia [46], colorectal cancer

[47,48], endometrial cancer[47,48], and lung cancer [49]. Two

bone related terms, bone mass and bone density are also reported

in Table 5. Some studies have already shown that chronic HCV

infection significantly reduces bone mineral density [50]. More-

over, it has been found that HCV infection is a risk factor for bone

fractures [51]. As depicted in the table, HCV infection has also

been found to be associated with a higher risk of coronary diseases

[52]. The above discussion indicates that many of the diseases

reported in our study already have evidence in literature for their

association with hepatitis C viral infection. Hence the quasi-cliques

and quasi-bicliques obtained in our study may put light on the

possible pathways of HCV pathogenesis leading to these diseases.

Analyses of Gateway Proteins
Previous results and discussions have pointed out two types of

gateway proteins, one set acts as the gateway to the host cellular

mechanism for the viral proteins, and the second set consists of the

host proteins that have high degree of association to different kinds

of diseases. The first set VH (Viral-Host) contains 15 host proteins:

PSME3, TP53, TBP, TRADD, STAT3, HNRNPK, NR4A1,

SETD2, PSMB9, TRAF2, STAT1, CALR, JAK1, VIM and

UBQLN1 (Tables 2 and 3). The second set HD (Human-Disease)

contains 7 host proteins PSMB8, PSMB9, TNFRSF1A,

TNFRSF1B, TP53, MDM2 and EGFR. The results reveal that

HCV infection pathogenesis should propagate through the

proteins in VH and HD sets, and thus these proteins play

extremely important role during viral infection. Specially, the

Table 5. Quasi-bicliques found for human protein-disease association network corresponding to four quasi-cliques.

Quasi-biclique Corresponding QC Human proteins Diseases Density

PSMB8, PSMB9 Graves disease, diabetes (type 1), interferon
response, psoriasis, malaria;
hypoglycemia; hyperparasitemia

0.7000

TNFRSF1A, TNFRSF1B Crohn’s disease, ulcerative colitis, cystic
fibrosis, Lupus, Rheumatoid Arthritis, diabetes
(type 2), amyloidosis, breast cancer, Tumor
necrosis factor receptor-associated
periodic syndrome, bone density, bone mass,
obesity

0.7083

TP53, MDM2 DNA Damage | Lung Neoplasms, B-Cell
Chronic Lymphocytic Leukemia, bladder
cancer, breast cancer, colorectal cancer,
endometrial cancer, liver cancer, lung
cancer, stomach cancer

1.000

EGFR, MDM2 colorectal cancer, lung cancer, Acute
Coronary Syndrome, Breast Neoplasms
Carcinoma | Non-Small-Cell Lung | Exanthema |
Lung Neoplasms

0.7000

The human proteins and diseases associated with each quasi-biclique are reported along with the densities of the quasi-bicliques.
doi:10.1371/journal.pone.0094029.t005
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proteins in the set VH are responsible for the initiation of the

infection process. First we compare the average degrees of gateway

and non-gateway proteins and found that average degree of

gateway proteins is 21.6364, whereas the average degree of non-

gateway proteins is 4.2295. The difference is statistically significant

as per Wilcoxon’s rank sum test (p-value: 1.3006e-09). This

suggests that the viral proteins tend to attack high-degree host

proteins for initiating infection. Moreover, to test whether these

proteins have some unique features, we investigate for their GO

(BP) and pathway enrichment (Table 6). It is evident from the table

that the significant GO-BP terms mostly involved in apoptosis and

programmed cell death which indicates that the targeted host

proteins are highly associated with the process of cell death.

Moreover significant pathways suggest that HCV infection

ultimately lead to various cancer types including pancreatic cancer

which is already established in a recent study [53].

Conclusions

In this article a system-wide study has been made for identifying

possible infection pathway of hepatitic C virus. For this purpose,

quasi-bicliques in HCV-human protein interaction network are

mapped onto quasi-cliques in human protein interaction network.

Subsequently, the quasi-cliques are mapped onto human protein-

disease association networks. Hierarchical clustering based quasi-

clique and quasi-biclique mining algorithms have been proposed

in this context. The quasi-cliques that overlap with the quasi-

bicliques in HCV-human protein interaction network have been

found to contain host proteins highly associated in various disease

pathways including different cancer types. Many of the diseases

have evidence in literature for their connection with HCV

infection. Further, the gateway proteins, i.e., the proteins which

are mainly targeted by HCV proteins to disturb the host cellular

mechanisms, are identified. These gateway proteins have been

found to have high degrees in human interactome compared to

the other virus-targeted proteins. Moreover, the gateway proteins

are tested for GO-BP enrichment and pathway enrichment, and

these analyses reveal that these proteins are highly involved in

apoptosis and programmed cell death leading to various cancer

types.
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