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Abstract

We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex
correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is
constructed, based on a set of border delineated magnetic resonance imaging (MRI) data of the whole cardiac cycle. The
key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial–temporal) model of
the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is
used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A
method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh
deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which
manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal
sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D
heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented
contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream
computational simulation activities.
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Introduction

Cardiovascular diseases are becoming more commonplace in

modern societies. Computed Tomography (CT) and Magnetic

Resonance Imaging (MRI) are both non-invasive techniques that

are often used by physicians to view the internal cross-sectional

images of a patient’s heart with cardiovascular disease. Using

computational methods in cardiac analysis can allow us to further

understand and visualize what we are unable to obtain from static

2D images, such as blood flow behavior (hemodynamics) in the

chambers. To achieve this, the reconstruction of the 4D (spatial

temporal) model of the heart is an important and critical

requirement. Many MRI-based 4D heart reconstruction studies

have focused primarily on only the left ventricle (LV), in part due

to the relatively intricate configuration of the pulmonary veins and

right atrium. In this paper, we propose a framework to directly

reconstruct a 4D left heart model (i.e., from the pulmonary veins

to the LV apex) from segmented contours drawn on MRI images.

Our proposed framework has the following advantages:

N The algorithm does not require any form of landmark

placement.

N The 4D model has 1-to-1 vertex correspondence across all the

frames of the cardiac cycle.

N 2D contour topological changes are handled automatically in

both the spatial and temporal dimensions.

Four-dimensional reconstruction of the heart would be useful

for the visualization of complex geometries of the heart chambers,

especially prior to surgical intervention. For instance, in patients

with left ventricular aneurysms, the ability to visualize the

aneurysm and its relation to the left ventricular myocardium

would be helpful for surgical planning before aneurysmectomy.

Full 4D modelling of the left heart in cases of valvular heart disease

may allow physicians to understand more about the cardiac

remodelling process and evaluate the effects of therapeutic

intervention on the disease process. Other disease conditions in

which 4D modelling may potentially be useful for clinical decision

making include congenital heart diseases, cardiac/paracardiac

tumours and right heart pathologies affecting the left heart.

Related work
Cardiac reconstruction, either static (3D) or dynamic (4D), has

traditionally focused on the ventricular regions due to their simpler
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morphology and the relative ease of border delineation on CT and

MRI scans, as compared to the atrial regions. This differentiation

is further compounded for MRI-based methods due to its

relatively large spatial intervals between slices. A comprehensive

review of the different modeling techniques from cardiac images

prior to 2001 was presented by Frangi et al. [1].

One of the first studies to directly construct a 3D model of the

heart is by McQueen and Peskin [2], which employed idealized

cones and ellipsoids for modeling the left and right ventricles for

simulating cardiac hemodynamics [3]. Using 3D echocardiogra-

phy, Corsi et al. [4] employed the level set method and marching

cubes algorithm to reconstruct a 3D model of the LV. Zhukov et al.

[5] proposed to deform a sphere model using dynamic remeshing

and curvature estimation methods to produce high quality meshes

of the heart. Montagnat and Delingette [6] extended the

deformable surface framework by introducing time-dependent

constraints such as temporal smoothing and trajectory constraints.

Sermesant et al. [7] fitted images from various modalities together

using a non-rigid registration approach to create a mesh model of

both the LV and RV (right ventricle) using the GHS3D

commercial software. Using segmented 3D MR images, Škrinjar

and Bistoquet [8] mapped a premeshed sphere to the surface of

the segmented volume to generate the surface meshes of the

epicardium and endocardium of the four cardiac chambers. What

makes the construction of a MR-based patient-specific cardiac

model that connects the atria and the connecting arteries to the

ventricles particularly challenging is the strongly anisotropic voxels

in the long-axis direction. A noteworthy attempt to reconstruct a

hugely detailed static animal heart model is presented by Plank et

al. [9], which uses a 9.4T MR system that is able to generate MR

datasets with isotropic resolution of up to 20 mm.

Tagged MRI is a popular imaging modality for 4D cardiac

reconstruction due to its capability in capturing myocardium

motion, especially for the ventricles. Lou and Heng [10] modeled

the LV as a generalized prolate spheriod, and using B-splines to

model the LV motion in terms of translation, polar radial

compression, twisting and bending from tagged MR images. Wang

et al. [11] employed a generic finite element model adapted from

Lötjönen et al. [12] and deformed it using image forces computed

from the tagged MRI to model the motion of the LV. Using the

same FE model, Zhang et al. [13] applied laplacian surface

deformation to construct the surface of the LV by deforming from

a generic model, and subsequently used a meshless deformable

approach [14] to avoid the constant need for remeshing irregular

regions. In the work by Park et al. [15], myocardium motion

extracted from tagged MR was used to deform a generic finite

element model by using a latitude-longitude parameterizing

approach. Schenkel et al. [16] proposed a block structured

hexahedral type grid representation for each segmented contour

in order to reconstruct a LV model with a structured mesh for

performing computational fluid dynamics flow analysis. However,

the usage of tagged MRI to aid in the deformation process is

mostly restricted to the ventricles, as the large inter-slice distance

combined with significant distortion occurring near the valve

regions contribute to the difficulty of resolving the motion

displacement at the atria.

According to Frangi et al. [1], incorporating prior shape

knowledge in the segmentation process is advantageous as it

allows segmentation, image analysis and shape modeling to be

combined into a single framework. A recent review of segmenta-

tion methods for short-axis cardiac MR images was presented by

Petitjean and Dacher [17]. One of the approaches is to use

statistical shape modeling by training on a set of sample models

[18] to obtain a set of variability parameters. Lötjönen et al. [19]

made use of both long- and short-axis MR images to create such a

statistical model of the atria, ventricles and epicardium using a

point distribution model, but these model components are disjoint

from each other. Berg and Lorenz [20] went on to create a full

Figure 1. 4D heart modeling algorithm flowchart. Using the segmented contours from the first time step, we go through each adjacent pairs of
contours and establish the intra-connectivities between them. Using these connections, we reconstruct a 3D mesh model and set it as the generated
mesh model of the first time step. For each subsequent time step, the segmented contours are passed through the tree-based connectivity process
to establish their inter- and intra-connectivities. They are then compared with the mesh model from the current time step in a sub-mesh by sub-mesh
manner. If there is no 1-to-1 contour correspondence, they are then passed through the 2D topological change process before performing the 1-to-1
contour matching process. Finally, the mesh model of the current time step is generated when the mesh is fully deformed.
doi:10.1371/journal.pone.0093747.g001
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heart model by using generic shapes such as spheres (atria), tubes

(vessels), and ellipsoids (ventricles) to model the main cardiac

anatomies. However, it requires manual placement of landmarks

for initialization. Ecabert et al. [21] improved on the robustness of

the technique by including a priori shape knowledge, and later

using a 3D implementation of the generalized Hough transform

[22] for better initial localization of the image. Zhang et al. [23]

used important landmarks such as the valves and ventricular

septum cusps to act as control points to guide the automatic model

fitting process for four-chamber heart modeling. Using a

combination of prior shape knowledge in the form of an altas

and manually placed landmarks, a generic model can often be

deformed and used to map properties, such as Vadakkumpadan et

al. [24] for fiber orientation and Vadakkumpadan et al. [25] for

shape metrics, onto a reconstructed LV model using large

deformation diffeomorphic metric mapping. However, both

mapping approaches are restricted to the ventricular regions only.

One of the biggest obstacles in MR-based 4D full heart

modeling has been the modeling of the passageways between the

ventricle and the atrium and the complex vessels such as the

pulmonary veins and aorta. This is largely due to the large inter-

slice distance which creates strongly anisotropic voxels. During

cardiac contraction, these vessels deform, possibly in directions

perpendicular to the imaging planes. From the perspective of the

short-axis image plane, this manifests as merging and splitting of

the boundary of the region of interests, which causes difficulties

during the 4D reconstruction process. To the best of our

knowledge, no previous MR-based work has attempted to resolve

this issue. In our work, we propose a methodology that aims to

mitigate this issue by utilizing a tree structure to link and track the

contours throughout the cardiac cycle, in order to reconstruct a

4D cardiac mesh model with 1-to-1 vertex correspondence.

Overview of Method

The raw data input to this algorithm are the segmented contour

lines, which are drawn on a set of short-axis MRI images over one

cardiac cycle (see Figure 1). We establish a connectivity

relationship between the images in two ways: (1) How the

contours are connected to each other within the same time step,

and (2) how the contours from one time step are connected to the

contours in the next time step. Connectivities within the same time

step relates to the morphological structure of the heart in that

particular time step; connectivities across adjacent time steps

provide information related to the motion of the heart across that

time step.

To establish contour connectivities, both within and across time

steps, a tree-based approach is proposed. Contours from the first

time step are used to build an initial 3D model of the heart with a

high mesh quality. The tree-based approach acts as a pre-filtering

process to remove contour connectivities that are weak, which

occurs due to the large spatial interval spacing between the MRI

slices. For every subsequent time step, the set of segmented

contour lines from that time step, together with its contour

connectivities information, is matched with the current 3D mesh

model to begin the deformation process, using a radial basis

function approach. They are matched and deformed in a sub-

mesh by sub-mesh manner, where a sub-mesh is part of the 3D

mesh model, sandwiched by a pair of adjacent contours. Once all

the sub-meshes are deformed in the 1-to-1 contour matching

process, a 3D mesh model is then generated for that time step.

The main challenge occurs during 2D contour topological changes,

when there are no 1-to-1 connections between contours across

time steps. In such an event, we have to determine both the

direction of the vertical motion that the heart is undergoing, as

well as the location of the 2D contour topological branching which

manifests as a ridge feature in the 3D model. With both

information, we apply a 2D sine-based deformation function

using the ridge feature as its center to induce the vertical motion,

and therefore ensuring that the contours can be associated in a 1-

to-1 manner across that time step.

Constructing a 3D model of the First Cardiac
Frame

In this section we describe how we perform filtering to remove

unwanted connections between segmented contours from adjacent

slices, and then detail the reconstruction and refinement process of

the 3D heart model, based on the MR images from the first time

step. For clarity, we term each delineated border as a contour, a

set of non-intersecting contours lying on a plane as a slice, a set of

slices that are parallel to each other and taken in the same time

step as a frame, and a set of frames taken at different time steps as

a sequence.

Model Definition
For convenience of explanation (but without loss of generality),

we assume that each 2D contour is orientated such that it is lying

in the xz-plane. As such, each slice is separated in the y-axis by an

interval value d, which corresponds to the inter-slice distance of

the MRI data. The slices are indexed from 1, starting from the

slice with the largest y-value, ŷy. We define points p lying on the ith

indexed slice as pi~((x,y,z)Dx,z[R,y~ŷy{d(i{1),iw0) and

contour C consisting of n number of pi points such that

Ci,n~(fpigDDfpigD~n) ð1Þ

A slice S at index i with n distinct contours is defined as

Si,n~(fCi,mgDDfCi,mgD~n) ð2Þ

A frame F in time step t with n slices is defined as

Ft,n~(fSi,mgD0viƒn) ð3Þ

Finally, a sequence SQ is with n time steps is defined as

SQn~(fFt,mgD0vtƒn) ð4Þ

Figure 2. Determining connectivity between contours. In A, the
red contour has a higher proportion (3 out of 14, 21.4%) of its perimeter
lying inside the blue contour, as compared to the blue contour (3 out of
24, 12.5%) lying inside the red contour. However, the higher proportion
is not enough to make a valid connection between the two contours. In
B, the higher proportion of the two is 42.1% (8 out of 19), and a
connection is thus formed between the two contours.
doi:10.1371/journal.pone.0093747.g002
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Tree-Based Connectivity
There are two possible connectivity relationships that can be

established between two distinct contours. Intra-frame connectivities

can be formed between two contours from adjacent slices within

the same time step, while inter-frame connectivities can be formed

between two contours that are contained within the same slice

index but from adjacent time steps. This entire set of connectivity

relationships within a sequence is termed as a tree-based connectivity.

The 3D surface reconstruction stage makes use of the intra-frame

connectivities, while the deformation stage makes use of the inter-

frame connectivities. In total, each contour can have up to four

possible distinct types of connections, above and below, which are

intra-frame connections; and prev and next, which are inter-frame

connections. The four different connectivities type are defined by

the following functions:

above(Ci,nDFt,q )~fCj,mDFt,q Dj~i{1g

below(Ci,nDFt,q )~fCj,mDFt,q Dj~iz1g

where Ci,nDFt,q[Ax:Ci,n5Si,x5Ft,q, and

prev(Ci,nDFt,q,SQr )~fCi,mDFj,q,SQr Dj~t{1g

next(Ci,nDFt,q,SQr )~fCi,mDFj,q,SQr Dj~tz1g

where Ci,nDFt,q,SQr[Ax:Ci,n5Si,x5Ft,q5SQr. Note that the two

sets of functions are the dual of each other, that is, if

below(Ci,njFt,q )=�, then Ci,nDFt,q(above(below(Ci,nDFt,q )). Simi-

larly, if next(Ci,njFt,q,SQr )=�, then Ci,nDFt,q,SQr(next(prev

(Ci,nDFt,q,SQr )).

The tree-based connectivity is constructed by comparing each

contour against all the other contours from the other adjacent

slices and each pairing is given a similarity index. This similarity

index measures the degree of overlap between the two contours

when they are projected onto the same plane. We can compute

this efficiently by finding the proportion that one contour lies

within the interior of the other contour (in terms of perimeter), and

vice versa. The larger of the two proportion values is then taken as

the similarity index (see Figure 2). The similarity index can then be

defined as

similarity(Ci,n,Cj,m)~

max(
j(fpigCi,n

\\Cj,m)j
jfpigCi,n

j ,
j(fpjgCj,m

\\Ci,n)j
jfpjgCj,m

j )
ð5Þ

where \\ refers to a intersection operation based on a 2D

orthogonal projection onto the xz-plane and fpigCi,n
[Vpi5Ci,n.

We can further expand the definition to include similarity index

for slices, i.e.,

similarity(Si,n,Sj,m)~X
VCi,p(Si,n

(max(similarity(Ci,p,Cj,q)jVCj,q(Sj,m)) ð6Þ

Figure 3. Tree-based connectivity data structure. The red lines
depict the input contours from the MR images. The blue lines are drawn
to represent intra-frame connectivities (above and below) between the
individual contour lines.
doi:10.1371/journal.pone.0093747.g003

Figure 4. Surface reconstruction from segmented contours. In
A, the two contours are shown in their original position in 3D
perspective view. In B, the two contours are projected onto the same
plane, and areas where they do not intersect are triangulated. In C, we
can see the reconstructed surface between the two contours as they
are restored to their initial position.
doi:10.1371/journal.pone.0093747.g004

Figure 5. Common errors during reconstruction. In A, two sets of
segmented contours are shown in 3D perspective, with the pair of blue
contours from the same MRI image and the pair of red contours from
another MRI image. In B, all four contours are projected onto the same
plane. One of the blue contours is seen to have a very small intersection
with a red contour. The resulting erroneous reconstruction is shown in
C. In D, an example of such an erroneous surface reconstruction is
shown when using the general marching cube algorithm.
doi:10.1371/journal.pone.0093747.g005
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When all similarity indices between each distinct pairs of

contours from both slices are obtained, the tree-based connectivity

data structure is populated as follows: Intra-frame comparison fills

in the functions for above and below, while inter-frame

comparison fills in for the prev and next functions. In cases where

there is only one pairing with non-zero similarity index, the

assignment is straightforward. Otherwise, two situations could

happen: Either branching (intra-frame)/contour topological

change (inter-frame) has occurred, or one of the similarity index

is a very weak one. To decide between both potential situations,

weak connections are filtered away first by setting a minimum

similarity index threshold of 30% (see Figure 2). The underlying

assumptions for selecting a threshold value of 30% is discussed in

more detail in appendix S1.

Our pseudocode for establishing the intra-frame and inter-

frame connectivities is as follows:

Pseudocode: above & below

INPUT: Ci,n|Ft,q

let Sabove = Sj,m where Sj,m,Ft,q, j = i21

for all Cabove,Sabove

compute currentrsimiliarity(Ci,n|Ft,q
,Cabove)

if current .0.3

above(Ci,n|Ft,q
)rCmax

below(Cmax)rCi,n|Ft,q

Pseudocode: prev & next

INPUT: Ci,n|Ft,q,SQr

let Sprev = Si,m where Si,m,Fj,q,SQr, j = t21

for all Cprev,Sprev

compute currentrsimiliarity(Ci,n|Ft,q,SQr,Cprev)

if current .0.3

prev(Ci,n|Ft,q,SQr)rCmax

next(Cmax)rCi,n|Ft,q,SQr

After weak connectivities are filtered off, we proceed to

construct a final complete set of tree connectivity by using the

concept of a minimum spanning tree. For intra-frame connecti-

vites, the goal is to have an unbroken chain of connections that can

traverse all the contours within a single frame. By representing the

contours as nodes and the similarity indices as edges in a graph, we

seek to construct a connected graph using the minimum number

of connections. The only constraint is that those connections that

are already established during the filtering stage are fixed and non-

removable. A simple way to implement this is by using Kruskal’s

algorithm, where we sort all the edges from the highest similarity

index value to the lowest. An edge that is not fixed is picked and if

it connects two nodes that are unconnected, we add and form

connections between the two nodes. Otherwise, the edge is

removed. In this way, we can always establish a fully connected

connectivity tree for the frame. A similar process is used for inter-

frame connectivities, where we only consider contours from the

same slice number throughout the entire sequence. Figure 3

illustrates the intra-frame connectivities for one single frame.

Reconstruction from Segmented Contour Lines
In this section, we describe our algorithm for surface

reconstruction from segmented contour lines, which is improvised

from the work of Barequet and Sharir [26]. The algorithm can be

simplified to the problem of surface reconstruction between two

sets of non-intersecting closed contour loops, where each set exists

on a single plane and where both planes are parallel to each other

(see Figure 4A). In order to create a surface that fits the contours

from two adjacent slices, we first project the contours from both

slices onto a common plane that is parallel to both slices (see

Figure 4B). The internal area of the union of the these two

contours consists of two different regions: Regions where the

contours overlap, and regions where the contours do not overlap.

We proceed to perform a boundary constrained delaunay

triangulation of the regions where the contours do not overlap,

by using points from the discretization of the contours. Since the

two contours intersect, the interior of both contours are naturally

split into different regions, and each non-overlapping region are

bounded by perimeter segments from both contours. Thus, in each

of the distinct non-overlapping region, the triangulation within will

have triangles that consists of points from both contours. Note that

for the top-most and bottom-most slices, we simply triangulate the

interior of the slices in order to create a complete closed manifold.

The last step of the reconstruction then is to separate the contours

by projecting them back to their original planes. As some of the

triangles contain vertices from both contours, they will naturally

form a surface that wraps around both contours, hence resulting in

the desired surface reconstruction between the contours (see

Figure 4C).

There are two main issues arising from this approach. The first

issue arises when there are minor intersections between the

contours (see Figure 5). This can be resolved by using the tree-

based connectivity data structure that was created a priori since we

only need to form surfaces between contours that have connec-

tions defined in the connectivity data structure. The other issue is

the possibility that some triangles in the reconstructed surface

might have all three vertices belonging to the same contour,

thereby resulting in a flat triangle after the contours are projected

back. In the likely case that another flat triangle exists on the other

side of the contour, the resulting surface will contain a collapsed

triangle-pair, thereby forming a disconnected internal volume. In

order to prevent such a problematic configuration, we inject new

vertices into the triangulation before lifting. By using a chordal axis

transform (CAT) approach [27], the new vertices introduced by

the CAT essentially act as a set of ‘‘lifting’’ points to break up the

flat triangles to prevent a collapsed configuration. These points not

only help to create a relatively smoother volume but can also be

used as interpolation points in the top-most and bottom-most slices

to create a rounded tip.

Surface Smoothing and Refinement
The large inter-slice interval d (with respect to the size of the

human heart) of the MRI scan typically results in a reconstructed

surface that is coarse, rough and potentially containing bad quality

triangles. We improve the surface quality by an iterative two step

Figure 6. Sub-mesh. The image on the left shows the 3D mesh model
of the left heart that is deformed to fit the contour lines (shown in red).
The image on the right shows a sub-mesh that is bounded by a pair of
contour lines.
doi:10.1371/journal.pone.0093747.g006
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process of first smoothing the surface to improve the average

aspect ratio of surface triangles, and then increasing the vertex

count by inserting additional vertices.

To achieve a volume preserving mesh smoothing with bounded

error control, we adapt the well known lDm algorithm by Taubin et

al. [28,29], summarized by Equation (7). For each mesh vertex vi,

its new position vi
0 is determined by displacing the original position

by the discrete laplacian multiplied by l(0vlv1) such that

vi
0~vizl

X
j[i�

wij(vj{vi) ð7Þ

where wij~
1

Di� D, and i� is the set of neighbors of vi. After updating

all the vertex positions, a second pass is performed by replacing l

in Equation 7 with m in which mzlv0 and kPB~ 1
l z 1

m w0,

where kPB is the pass-band frequency. Typically, 0:01vkPBv0:1
produces good results.

Applying smoothing will inevitably result in vertices shifting

away from the original surface mesh model. To control the error

introduced, we devise an lDmDe algorithm that incorporates an error

correction scheme by taking into account the deviation of each

vertex from its normal plane before smoothing. The aim is to

prevent the smoothing algorithm from modifying the position of

the vertex beyond a certain tolerance edev from its normal plane.

The unit normal vector n̂ni at vertex vi is defined using the scheme

proposed by Max [30]. Next, we find the deviation vector �qqi such

that �qqi~vi{vi
0. Then, vi

0 is conditionally modified such that,

vi
0~vi,0z

di
edev

�qqi when diwedev

where the deviation from the normal plane, di, is equal to �qqi
:n̂ni.

Note that this error correction is performed for both the l and m
passes of the smoothing scheme.

To upsample the model, new vertices must be added to the

mesh model. However, without an original base model, the

position of new vertices can be hard to determine. To resolve this

issue, we use the approach by Su and Kumar [31] for refining the

mesh model. For each triangle ti with vertex normals

{N0,N1,N2}, we fit a quartic Bézier patch S(u,v,w) over it such

that

S(u,v,w)~
X

izjzk~4

Pi,j,k
4!

i!j!k!
uivjwk ð8Þ

where Pi,j,k are the control points of S and (u,v,w) are the

Barycentric coordinates associated with ti. Essentially, for a point

qi lying on ti, we compute the barycentric coordinates of qi in ti

and then use these barycentric coordinates to compute the

compensated position of qi in the space of S. In doing so, the

geometry could be faithfully preserved throughout the refinement

process.

4D Morphing of the Heart Model

The initial 3D model of the heart is reconstructed based on the

contours taken from the first frame. Using the contours from

subsequent frames and their corresponding tree-based connectiv-

ity, we deform the initial heart model to conform to the contours

in the subsequent frames. This process is performed iteratively

until we achieved a set of 3D models that has 1-to-1 vertex

correspondence, and this forms the 4D heart model. In this

section, we explain the methodology to perform such a deforma-

tion.

Methodology of the Deformation Process
The goal of the deformation process is to modify the heart

model of a particular frame to fit the contours of the next frame

without changing the mesh connectivity. To implement the

deformation process, we split the heart model into logical sub-

meshes using the MRI planes as the partitioning planes. As each

sub-mesh (except the topmost and bottommost) is sandwiched

between two partitioning planes (see Figure 6), we can compute

the deformation for each sub-mesh independently. Using an

example for illustration, consider two adjacent slices Si,q and Sj,q,

where j~iz1 and below(Ci,nDSi,q
)~Cj,mDSj,q

, where each contains

just a single contour (q~1), and a surface f between them.

Considering just Si,q, we use C to represent Ci,nDSi,q
and C’ to

represent next(Ci,nDSi,q
).

Figure 7. Contour matching for generating a source-target
point set. In A, we wish to map contour X (shown in red) to contour
X ’. Both contours are mapped and projected onto the same plane. In B,
the intersection points between both contours are found and is used to
split both contours into segments. The segments are then compared to
generate the source-target point set.
doi:10.1371/journal.pone.0093747.g007

Figure 8. Ridge detection. In A, contour A is broken down into three
different bands. Within the middle band, two points are chosen to mark
the start and end points of the ridge. In B, a ridge is represented by the
yellow path that traverse between the start and end points from the
middle band of contour A.
doi:10.1371/journal.pone.0093747.g008
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Taking these two contours C and C’, we wish to find a mapping

of the points on C (source points) onto the contour C’ (target

points). Note that the target point set does not have to correspond

to the actual points on C’, rather they just need to lie on the 2D

polygon, as defined by the points on C. The detailed process to

achieve this mapping will be described in the next section. Using

both sets of source points and target points, we generate a radial

basis function (RBF) interpolant [32] of the form

~ff (x)~
XN

k

wkw(Ex{xkE), ð9Þ

where the kernel function w : Rz?R is univariate and radially

symmetric, and wk is a set of 3-dimensional weights. Our choice of

the kernel function is the Hardy Multiquadric, w(r)~
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2zc2
p

,

where c is a constant defined individually for each source point,

based on the distance to its closest neighbor. By determining the

weights of the RBF, we are able use it to interpolate where the new

surface f’ lies on.

The advantage of using RBF is that there is a 1-to-1

correspondence between the vertices from f to f’. For the case

where there is only one sandwiching slice for the sub-meshes, we

find a vertex that is the furthest away from the plane of the slice,

and add that point to both the set of source point and target point.

This prevents the source-target set to have only points residing in

two dimensions, which will otherwise result in singularity issues for

the RBF computation. In this standard deformation process, we

assume that the number of contours in f is equal to f’ for both the

top and bottom slices of f. However, it is possible to have

Dnext(C)Dw1 or Dprev(C’)Dw1, which is a situation that we termed

as 2D contour topological change and has to be handled separately.

Contour Matching
Using C and C’, we wish to map the points in C onto the

polygon as defined by the points in C’. In doing so, we want to

minimize the distance of the mapping for the points and to avoid

any crisscrossing of the motion paths (source to target paths) of the

points. Minimizing the mapping distance prevents distortion from

occurring in the new surface f’. Moreover, avoiding crisscrossing

of motion paths will prevent singularity issues during RBF

transformation.

To achieve a good mapping, we project C and C’ onto a

common plane. Next, the intersection points between C and C’
are then used as breaking points to split both C and C’ into

segments. Each individual segment in C is then matched against

its corresponding segment in C’, and the points in each segment

are then mapped from C to C’ proportionally. From empirical

findings, four breaking points are usually more than enough to

adequately perform the matching process (see Figure 7). To avoid

crisscrossing of motion paths, we further divide up each time step t

into 10 equal time steps t1 to t10 and similarly with the motion

path of each point. With the smaller time step, the motion paths of

the source set are less likely to cross each other.

Handling 2D Contour Topological Changes
A 2D contour topological change occurs when there is no 1-to-1

matching of contours during the contour matching process, i.e.,

Dnext(Ci,n)Dw1 or Dprev(Ci,n)Dw1. For such situations, we first

determine the direction of the vertical motion that is occurring at

the contour, then locate the ridge feature, and finally apply a 2D

sine-based deformation function centralized at the ridge feature.

The goal is to make sure that there is a 1-to-1 matching of all the

contours between the current frame and the next frame.

Table 1. Listing of applied R values.

R value

Slice Position Upward Motion Downward Motion

1 0.2 20.2

2 0.4 20.5

3 0.7 (Incident) 21.2 (Complement)

4 1.2 (Complement) 20.7 (Incident)

5 0.5 20.4

6 0.2 20.2

The amount of R value applied to the different slices adjacent to both the
incident and complement slices for both upward and downward motion cases.
doi:10.1371/journal.pone.0093747.t001

Figure 9. Reconstructed 4D heart model. For each dataset, we
select and show three of its 3D surface models. The left model is taken
from the first frame, the center model is selected from the middle
frame, while the right model is taken from the last frame.
doi:10.1371/journal.pone.0093747.g009
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Determining Vertical Motion. Vertical motion is deemed

to have occurred when the number of contours on the same slice

differs from the next time step, resulting in a 2D topological

change of the contours on that slice. This slice is referred to as the

incident slice (SI
i,n), where a straightforward contour matching and

deformation process will not work, since a one-to-one correspon-

dence between the contours does not exist.

To resolve this, we need to ascertain the direction of the vertical

motion using a heuristic as follows: To determine the type of

vertical motion for the case of splitting change, where Ci,q~SI
i,n

and n~1:

similarity(Ci,q,below(next(Ci,q)))v

similarity(Ci,q,above(next(Ci,q))),[upward

similarity(Ci,q,below(next(Ci,q)))w

similarity(Ci,q,above(next(Ci,q))),[downward

To determine the type of vertical motion for the case of merging

change, where VCi,q5SI
i,n and Dnext(SI

i,n)D~1:

similarity(SI
i,n,below(next(Ci,q)))v

similarity(SI
i,n,above(next(Ci,q))),[upward

similarity(SI
i,n,below(next(Ci,q)))w

similarity(SI
i,n,above(next(Ci,q))),[downward

For the case of upward vertical motion, the slice below the incident

slice is referred to as the complement slice, i.e., below(SI
i,n). For the

case of a downward vertical motion, the complement slice is the

slice above the incident slice, i.e., above(SI
i,n).

Ridge Detection. Before we can apply a vertical deformation

around the vicinity of the incident slice, we need to determine

where the branching of contours has occurred, which is at a ridge

feature. A ridge feature is a path described by a sequence of edges

that are roughly equidistant from the two contours. The desired

effect is to apply a stronger vertical deformation at the source of

the branching, while gradually reducing the strength as we move

further away from it. We use a 2D sine-based function, with its

center localized along the ridge feature, as the vertical deformation

function.

To extract the ridge, we have to first locate the two end points of

the ridge. Assuming that the incident slice contains contour A and

the complement slice contains two contours, B and C, we proceed

to project all the three contours onto a common plane. For each

vertex point on A, we compute its nearest distance to both B and

C. For vertex points where its nearest distance to both B and C do

not differ by more than 10%, we term it as the middle band (see

Figure 8A). Typically, two contiguous and disjointed middle bands

will be formed. However, in the unlikely case where multiple

contiguous middle bands are formed, we select the two largest

bands and discard the rest. A point in each band is identified such

that the difference between its distance to both B and C is the

smallest. These two points are then selected as the end points of

the ridge. The ridge is represented by the geodesic path computed

between these two end points. A simple greedy algorithm that

always selects the next edge such that it is closer to the end location

is sufficient to extract the ridge. Figure 8B shows an idealized

image of the ridge feature that is formed between two adjacent

slices.

Applying Vertical Motion. To induce smooth vertical

deformation, we have to expand the affected regions to include

other sub-meshes around the incident slice. This allows the

deformation to gradually spread its effect across several slices,

thereby creating a smoother transition to the next frame. Hence,

we considered two layers of adjacent sub-meshes above and below

Table 2. Dataset Profile.

Dataset No. Slice Resolution (mm) Vertex Count Triangle Count No. of Frames No. of Slices
No. of Frames with
Topological Changes

1 1.7761.7765 17260 34516 24 24 4

2 1.7761.77610 19456 38908 24 15 2

3 1.7761.77610 20429 40854 24 12 2

4 1.4561.4568 17757 35510 21 12 2

5 1.4561.4568 21384 42764 21 14 2

Profile of the 5 datasets used for testing.
doi:10.1371/journal.pone.0093747.t002

Figure 10. Mesh conformity with input segmented contours.
Each frame of the generated 3D mesh model for each dataset is tested
for its fidelity to the input contours. The mean distance separation over
all frames for each dataset is shown in this chart. The standard deviation
of the separation is shown as a line bar for each dataset.
doi:10.1371/journal.pone.0093747.g010
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the incident sub-mesh. In total, six different slices are affected,

labeled from 1 (topmost) to 6 (bottom). The deformation employs a

2D sine function, with its center located along the ridge feature.

This allows us to apply the largest deformation at the ridge feature,

while gradually reducing its effects, as we move away from the

ridge.

We proceed to project all the affected contours located on the

six slices onto a common perpendicular plane, together with the

ridge feature. On this perpendicular projection, the parameter l is

set to be the furthest 2D distance between the ridge and any point

on the incident slice. We then use a 2D sine function to compute

the amount of vertical displacement VDp of each point p on the

contour as a function of its 2D distance to the ridge Dpr.

VDp~
d( R

2
) sin(p(

2Dprzl

2l ))z1
h i

if Dprvl,

0 if Dprw~l:

(
ð10Þ

The value R acts as a control variable to adjust the amount of

deformation experienced by each individual contour. An R value

of 1 shifts a vertex by d upwards, while an R value of 21 does the

opposite. By setting R independently, as illustrated in Table 1, we

can then adjust and smooth the effect of the deformation across

the slices. After inducing the vertical motion, a 1-to-1 correspon-

dence can be established for each slice between the current time

step and the next. We can then proceed using the standard

deformation process to deform the mesh into the next time step.

Results and Discussion

We implemented the 4D heart deformation algorithm in C++
(with no multi-threading optimization) on an i7 core 3.07 GHz

machine and tested it on five sets of MRI scanned data of the left

heart of five healthy patients. An additional dataset consisting of

an idealized model of the left heart is included as a reference

comparison. The MRI data was acquired using steady state free

precession sequence with retrospective electrocardiographic gat-

ing, and consisted of contiguous images covering the left atrium to

the apex of the left ventricle. As the datasets are obtained from

different sources, they differ in terms of the slice thickness of

images and time difference between frames. Hence, the number of

slices required to cover the left heart and the number of frames

required for one heartbeat is different for each dataset. The

contours of the endocardial surface are segmented manually by a

cardiologist using the CMRTools software developed by Cardio-

vascular Imaging Solutions Ltd. These segmented contours are

then used as input for our testing purposes.

Experimental Setup
For each patient dataset, we apply the 3D reconstruction

algorithm on the input contours taken from the first frame to

generate a conforming 3D mesh model of the left heart. Our input

contours delineate the full left ventricle, the left atrium and part of

the aorta. Using surface smoothing and refinement techniques

described previously, the 3D mesh models are refined to achieve a

realistic 3D surface mesh of the left heart. A table listing the profile

of each dataset and its reconstructed 3D mesh model is shown in

Table 2. Using this refined 3D mesh model, a set of 3D mesh

models is generated to form a 4D heart model of the left heart,

based on the deformation algorithm (see Figure 9). Each individual

Figure 11. Illustration of inter-frame 2D contour topology changes in reconstructed 4D heart model. A sequence of images (left to right,
top to bottom) depicting the modeling of 2D contour topological deformation. A red plane is added as a reference, to illustrate the change in the
number of contours over that plane throughout the cardiac cycle. The contours (the intersection between the red reference plane and the heart
model) are observed to merge and split again.
doi:10.1371/journal.pone.0093747.g011

Table 3. Distribution of Triangle Angle Quality.

Dataset No. % of angles (in degrees) between

40–50 50–60 60–70 70–80 Total

1 First Frame 18.54% 26.68% 21.53% 15.68% 82.45%

Mid Frame 18.48% 26.09% 24.47% 16.56% 85.62%

Last Frame 18.02% 27.09% 26.24% 16.04% 87.41%

2 First Frame 16.34% 30.77% 31.84% 13.59% 92.56%

Mid Frame 16.61% 31.71% 27.73% 14.97% 91.04%

Last Frame 17.73% 29.95% 28.77% 14.73% 91.20%

3 First Frame 15.33% 31.25% 32.87% 13.51% 92.98%

Mid Frame 17.25% 30.78% 28.53% 15.05% 91.62%

Last Frame 16.27% 32.77% 28.58% 14.65% 92.29%

4 First Frame 16.07% 31.86% 31.38% 13.94% 93.26%

Mid Frame 17.70% 30.25% 27.44% 16.05% 91.46%

Last Frame 16.33% 31.51% 29.57% 14.42% 91.85%

5 First Frame 14.95% 31.46% 34.05% 13.20% 93.68%

Mid Frame 19.25% 26.27% 26.47% 17.20% 89.21%

Last Frame 18.77% 28.61% 25.88% 16.21% 89.49%

This table shows the percentage distribution of triangles with angles that are
within good and acceptable ranges. In addition, the table listed the distribution
patterns within each dataset as it transits from the first frame to the middle
frame and finally to the last frame.
doi:10.1371/journal.pone.0093747.t003
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3D mesh model in the generated set conforms to the stack of

segmented contours lines at its corresponding frame. Additionally,

the set of 3D mesh models maintains vertex correspondence

throughout.

Our goal is to generate a set of good quality mesh models that

conforms to the given segmented contours over all the frames

covering one cardiac cycle. Our experimental setup therefore

consists of measuring the conformity of the mesh model to the

given segmented contours and the quality of the mesh as it

deforms from frame to frame. Lastly, we provide the computa-

tional time of each dataset as an indicator of the performance of

the algorithm.

Mesh Conformity
For each dataset, we measure the conformity of the set of 3D

mesh models against the input segmented contours at each

corresponding frame in terms of absolute geometrical deviation.

The comparison is done by taking measurements at a constant

interval along the input segmented contours. Based on our

experience, a constant interval of 0.2 mm is sufficient for our

purpose as a higher sampling will not affect the final value of

average distance separation between contour and mesh. At each

interval point on the input segmented contour, we measure its

distance to the nearest point on the 3D mesh model. We then take

the average of all the geometrical deviations of all the sampling

points in each frame. Finally for each dataset, we tabulate the

mean and standard deviation of the averaged geometrical

deviation of all the frames. The results for the five datasets are

shown in Figure 10.

As observed in the figure, although the slice difference for the

datasets ranges from 5 mm to 10 mm, the average geometrical

deviation between the contours and the mesh models across

datasets are similar, which is around 0.041 mm to 0.049 mm

(maximum is around 0.047 mm to 0.057 mm). Taken as a

percentage of the slice difference, the average separation lies

between 0.41% to 0.85% of the slice difference. This is a very

small value and it shows that the geometry of the 3D mesh models

conforms very well to the input segmented contours.

For the case of 2D contour topological changes, we illustrate the

conformity of our 3D mesh models to the slices as it undergoes

topological change in a series of screen shots taken from Dataset 1

(see Figure 11). A red plane depicting the scanning plane of the

MRI is shown to intersect with the generated 3D mesh model. In

addition, we are able to observe the distinct merging and splitting

of contour(s) on the red plane, which is consistent with the drawn

contours in the dataset.

Mesh Quality
Maintaining vertex correspondence is one of the key objectives

of the 4D heart deformation algorithm as the 3D mesh model

deforms from frame to frame. Moreover, the algorithm has to

constantly ensure that the mesh quality is of an acceptable quality

at each time step. Generally, the angles of the triangles within the

mesh give an indication of the mesh quality. There are two

indicators that we measure in this experimental setup. One is the

percentage of triangle angles that lie within the range of 40 to 80

degrees, which is typically considered to be within good quality

range. In addition, we track this percentage value as the mesh

deforms from the first frame to the mid frame, and finally to the

last frame. The other indicator that we measure is the number of

bad quality triangles which occur per frame. A bad quality triangle

is one which contains an angle of less than 25 degrees.

In Table 3, the percentages of good quality triangles in the five

datasets are shown. This includes a breakdown of values into

Table 4. Occurrence of bad quality triangles.

Dataset No.

1 2 3 4 5

No. of bad quality triangles per frame 2.708 0.875 0.375 0.333 0.875

% occurance 0.0078% 0.0022% 0.00091% 0.00093% 0.0020%

This table shows the average and percentage occurrence of triangle with low aspect ratio per frame for each dataset. A triangle containing an angle lower than 25
degree is considered to be of bad quality.
doi:10.1371/journal.pone.0093747.t004

Figure 12. Computational time performance. In A, the mean CPU
time (in milliseconds) incurred per vertex for normal frames in each
dataset is shown. In B, the same information for frames with 2D contour
topological changes is shown. The standard deviation in CPU time
across different frames is shown as a line bar for each dataset.
doi:10.1371/journal.pone.0093747.g012
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smaller 10 degree ranges from 40 to 80 degrees. We observe from

the table that the distribution of angles remained fairly consistent

as the mesh deforms over all the frames. This is in spite of the fact

that large deformation occurs at frames with slices undergoing 2D

contour topological changes. Overall, 80% to 90% of the angles

are within the range of good quality.

In addition, the rate of occurrence of bad quality triangles is

shown in Table 4. From the results, we noted that their rate of

occurrence is in fact very low: Most of the datasets have an

average of less than one bad quality triangle per frame. Dataset 1,

however, has a higher occurrence rate of 2.708 per frame. This is

because it has more slices (~24) per frame due to the fact that it

has the smallest slice thickness among the datasets. These slices

restrict the motion of the 3D mesh models as it is actually a

constraint on the shape of the 3D mesh model. As there is less

leeway for the triangles to be smoothed out, the occurrence rate of

bad quality triangle generally tends to increase. Nevertheless, the

percentage occurrences of bad quality triangles is still very low

(ranging from 0.0009% to 0.007%) for the five tested datasets.

Computational Time
We present the results of the computational performance in two

graphs: Figure 12A shows the average CPU time taken per vertex

for normal frames, while Figure 12B shows the average CPU time

taken per vertex for frames that have topological changes

occurring in them. The standard deviation for each dataset is

also shown as a black bar on the data chart. Generally, the average

computational time is around 4.5 milliseconds per vertex for

normal frames, and 6 milliseconds per vertex for frames with 2D

contour topological changes. There is little timing variability

among frames, both within and across datasets. Typically, for a 3D

mesh model with a vertex count of 20000, it would take

approximately 1.5 minutes to complete a frame. To generate a

4D heart model consisting of 20 frames would take around half an

hour to complete, which is considered to be adequate for practical

usage. We acknowledge that further optimization can be made to

further improve its performance, such as inclusion of parallel

programming which can exploit the natural compartmentalization

of computational load for each sub-mesh.

Comparison with Idealized Model
For all the patient datasets, the inputs are a set of segmented

contours obtained from the MRI images. As such, when

measuring the conformity of the 3D generated models, we are

only able to compare them with the set of segmented contours. As

a point of reference, we include an additional dataset where the

input is extracted from an idealized 4D mesh model of the left

heart. This dataset consists of three frames. The first and last frame

is exactly the same, and they depict the state of the left heart in the

end-diastolic state. The middle state depicts the end-systolic state

of the left heart. The surface of the idealized model is constructed

by first sweeping an ellipse (major axis of 2 units in the x-axis and

minor axis of 1 unit in the z-axis) centered at (3,0,0), 180 degrees

clockwise about the z-axis. The whole model is then translated

such that the saddle point is exactly at the origin. The end-diastolic

(first and last frame) state is formed by scaling the idealized model

using a scaling factor of (5,20,18), while the end-systolic (middle

frame) state is similarly formed by using a scaling factor of (3.5,

18.75, 14). The end-systolic state is then further translated by

(0,25,0) to account for the vertical shortening with respect to the

end-diastolic state, which results in 2D topological changes

between each frame. For both states, the boundaries of the model

(2 ellipses) is then extruded upwards in the y-axis to a height of

y = 35. Finally, the models are finely meshed with a vertex count of

47040 and 34400, respectively, and presented in Figure 13A.

Using a planar intersection with the mesh models at an interval of

5 units, we are able to extract a set of segmented contours that is

similar to the set obtained from the five patient datasets and run it

through our algorithm. The 4D model generated using our

method is then compared with the idealized model for geometrical

conformity, shown in Figure 13B. The tabulated results are listed

in Table 5.

Figure 13. Idealized Dataset. In A, the idealized mesh models for the end-diastolic state (47040 vertices) and the end-systolic state (34400
vertices) of the left heart are shown. Using these models, we extracted segmented contours from them at a regular slice interval of 5 mm. The
segmented contours are then used as input to our algorithm over three frames (first and last frame are set as the end-diastolic state, while the middle
frame is set as the end-systolic state). The generated mesh models for the three frames, colored based on the geometrical deviation per vertex, are
shown in B.
doi:10.1371/journal.pone.0093747.g013

Table 5. Comparison with idealized model dataset.

Frame No. 3D Model Segmented Contours

Mean Max RMS Mean Max RMS

1 0.074 1.195 0.107 0.030 0.443 0.032

2 0.078 0.917 0.103 0.045 0.392 0.045

3 0.081 1.244 0.115 0.036 0.316 0.033

This table shows the Hausdorff distance of our generated model with the
idealized mesh model. The results of comparing with the segmented contours
are also included for reference. All values are in millimeters (mm).
doi:10.1371/journal.pone.0093747.t005
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The results showed that in the three frames, with two of them

having 2D contour topological changes, the mean Hausdorff

distance ranges from 0.074 mm to 0.081 mm, which is around

1.48% to 1.62% of the inter-slice distance. These values, although

higher than the mean difference compared with the segmented

contours, are still relatively low and indicate a good approximation

to the original idealized model. It was observed that regions of

higher errors tends to occur at the saddle and apical region. For

the apical region, the profile is approximated by a series of points

that are generated using the CAT approach described in the

earlier section. These points are pulled downwards to generate the

shape of the apical cap, which resulted in a flatter tip as compared

to the original ellipsoid. For the saddle region, its profile is

determined by the ridge, which was extracted and deformed

during the 2D topological change deformation stage. After

deformation, the profile of the ridge tends to deviates significantly

from the original smooth profile of the ellipsoid surface.

Limitations and Future Work
Indeed, we recognize that the current limitation of our

approach is the lack of incorporation of the twisting motion of

the heart. To our best understanding, the gold standard in

extracting myocardium twisting is via tagged MRI [11,33], albeit

that the method still suffers from tag fading. Nevertheless, a lack of

this twisting motion does not necessary mean that it is irrelevant to

computational physiological modeling. As shown in [16], a

hexahedral grid representing myocardium motion was generated

and employed for time dependent simulations of blood flow in

human left ventricle. Even though twisting motion was not

incorporated in the model, the numerical results showed some

realistic prediction of the intra-ventricular flow pattern in

comparison with data obtained from MRI flux measurement.

However, it is essential for boundary-prescribed computational

fluid dynamics simulations to have a 1-to-1 vertex correspondence

or a consistent surface mesh topology in order to perform the

hemodynamic computation, which is what our method can offer.

In fact, it is usually the mesh generation portion of the simulation

workflow that creates the bottleneck, and our method could serve

to shorten the overall simulation turnaround time. Hence, we

believe that our proposed approach has utility in actual

computational applications. In addition, our approach can

potentially be refined in the future by incorporating more accurate

motion-related information in the RBF routine of the algorithm,

especially when motion imaging modality (such as tagged MRI)

improves.

Another point of discussion is concerning the input to our 4D

heart deformation algorithm, which is the set of manually

segmented contour lines that are drawn across all slices throughout

the cardiac cycle. This is a laborious task which might take hours

to complete even for a skilled practitioner. Our future goal is to

incorporate a robust image segmentation algorithm into our work.

There is a huge pool of literature on automatic image

segmentation for CMR data. While these ‘‘automatic’’ solutions

might not be foolproof under actual clinical conditions, they can

already serve to speed-up the segmentation task significantly. In

clinical research using cardiac MRI data, the segmentation task

can be performed using a semi-automatic approach with slight

user intervention to great effect. This is feasible because MRI has

much fewer slices as compared to CT. In principle, it does not

matter where the segmented contours are obtained from, as it is

not the focus of this work.

Our 4D models are created based on geometrical deformation,

in a sub-mesh by sub-mesh, frame by frame manner. This allows

us to maintain a high level of conformity to the input contours

(average of 0.04 mm to 0.05 mm). However, it has also resulted in

the mesh having a slight ‘‘stair-case’’ look. Part of the reason for

this could be due to patient movement during image capturing.

We can further mitigate some of it by using more advanced mesh

smoothing techniques. A possible approach might be using

Hermite functions [34] to create smooth interpolated representa-

tion of the ventricles, using an image registration based method

developed by Barber et al. [35] to deform the template mesh to

other patient MRI data. However, to achieve that level of

smoothness, a compromise will have to be made in terms of

conformity to the input data (average of 0.37 mm to 1.42 mm).

This technique is further extended by Zhang et al. [36], who use

CT data along with some user interaction to trace out a center-line

path (similar to our tree-based connectivity), to create a full heart

model model that can be deformed to fit other patient CT data. As

a point of comparison, we created a detailed and smoothed model

of the 4D full heart model based on Dataset 1, consisting of both

the left and right heart. Several views of the first frame of the 4D

full heart model is presented in Figure 14.

This methodology can be easily extended to other human

anatomies with dynamic motion, such as the lungs, or be utilized

as a base mesh model that can be used to quickly generate other

patient’s heart model through the deformation process. In essence,

as long as the cross-sectional area of anatomy’s internal region

captured on the 2D MRI image is not relatively small as compared

to the MRI inter-slice distance, for example those of the blood

vessels, this methodology should still be applicable.

Conclusion

In this paper, we presented a methodology for the automatic 4D

reconstruction of a patient specific cardiac mesh model using

segmented contour lines from MRI images. The methodology is

Figure 14. Full Heart Model. Using Dataset 1, we created a full 4D heart model which consists of both the left and right heart. The left heart is
shown in blue and the right heart is shown in red. In A, we present the view with the left heart in front. In B, we present an angled view from the top
depicting the right heart in front. In C, another top angled view from a different perspective is presented. All three views are taken from the first
frame.
doi:10.1371/journal.pone.0093747.g014
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able to handle inter-frame and intra-frame 2D contour topological

changes which occur during the course of the cardiac cycle. The

output is a sequence of high quality 3D mesh models with 1-to-1

vertex correspondence that depict the cardiac shape at each time

step. Such a model is useful for downstream computational

simulation purposes.

Appendix

Determining Similarity Index Threshold
For determining the minimum similarity index threshold value, we

based our selection on a few basic assumptions within an idealized

situation (see Figure 15). In the figure, the pair of horizontal lines

represent a pair of adjacent MRI scanning planes, while another

pair of inclined parallel lines represent the cross-sectional view of

the aorta. The two pairs of parallel lines intersect at an angle of a

degrees. The pair of MRI scanning planes has a separation

distance of D, while the diameter of the scanned aorta is w. The

reason for choosing the aorta is such that our input of short-axis

aligned MRI images of the human heart is taken with respect to

the left ventricle, and hence between the left atrium and the aorta,

the orientation of the aorta is more likely to be more angled with

respect to the left ventricle.

Our MRI inter-slice scanning distance ranges from 5mm to

10mm, while the diameter of a human aorta ranges from 25mm to

35mm, depending on the gender. A conservative assumption

would therefore be that w is equal to 2.5 times of D. For a, we take

the minimum possible angle that the aorta can likely make with

the left ventricle to be at 15 degrees. In Figure 15, the 1-

dimensional overlap between the two contours (shown in red and

blue lines) is the ratio
a

b
. The value of

a

b
can be computed as

a

b
~1{

Dcos(a)

W
ð11Þ

Using the value of 10mm for D, the resulting ratio is 0.61.

Taking the computation to one higher dimension in order to

compute the similarity index, it would be akin to measuring the

perimeter intersection between two ellipses with an equation of

2x

b

� �2

z
2y

W

� �2

~1 and
2(x{(b{a))

b

� �2

z
2y

W

� �2

~1. Assum-

ing that the two ellipses have an intersecting ratio of 0.61, their

computed similarity index based on perimeter intersection would be

0.308. This is the underlying principle in using 30% as our

minimum similarity index threshold.
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