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Over 1,000,000,000 people and innumerable other animals are

currently infected with one or more helminths [1]. These highly

prevalent infections contribute to significant illness and economic

losses due to impaired worker productivity and livestock health. As

such, it is tremendously important to vaccine and anthelminthic

drug development efforts to understand the complex interactions

between host and parasite, including helminth manipulation of

host tissues. The extensive coevolution of helminths and their hosts

often blurs the line between what is host-mediated and what is

parasite-driven. However, we have drawn explicit examples from

the literature to highlight five major themes of helminth

manipulation of host tissues: disruption of epithelial barriers,

reinforcement of epithelial barriers, alteration of lymphoid tissue,

modulation of tissue vascularity, and tuning of granulomatous

responses. Herein we focus on examples of direct molecular level

effects on host tissue to highlight strategies common to numerous

helminths in their efforts to survive and reproduce within their

hosts.

Disruption of Epithelial Barriers

A major tool in the helminth arsenal is the ability to

compromise the host epithelium, which is the first line of defense

against parasitic infection. For instance, schistosomes encounter

numerous epithelial barriers in their life cycle. These barriers

include the skin during its invasion by cercariae, the lung during

schistosomular transit, and the intestine and bladder during egress

of schistosome eggs in the fecal and urinary streams, respectively.

Based on in vitro studies, schistosomal cercariae are thought to

employ proteases such as cercarial elastase to degrade human skin

elastin and collagen during the first stage of infection, allowing

penetration of skin epithelium [2–4]. When schistosome worms

mature, mate, and lay eggs, it becomes essential for the eggs to exit

the host body, as the parasite life cycle will not continue without a

secondary host. Schistosoma haematobium eggs, in particular, have

developed molecular strategies for easing passage from the bladder

tissue to the urinary stream (Figure 1). Mouse bladders injected

with S. haematobium ova exhibit decreased transcription of all

uroplakin genes and various tight junction related genes [5]. The

structural proteins that these genes encode are essential for the

maintenance of bladder epithelial integrity and the sequestration

of urine from tissues extraneous to the bladder. The altered

transcription of these genes may benefit helminth survival by

facilitating access to the bladder lumen and the next stage of the

life cycle.

In contrast to schistosomes, or blood flukes, which aggressively

invade their host through the skin, many gastrointestinal

helminths traverse host epithelia after being ingested. The

whipworm, Trichuris trichiura, may alter host intestinal epithelial

cells using secretory proteins. It is postulated that these proteins

enable the worm to form ion conduction pores in the lipid

bilayer of cecal epithelial cells, allowing the parasite to burrow

its head into a nutrient-rich, intracellular microenvironment,

and providing shelter from the mechanical movements of gut

tissue [6–8].

Likewise, Strongyloides stercoralis perturbs mucosal integrity by

disrupting the balance between cell death and proliferation in the

small intestine. Infection with this helminth induces increased

apoptosis and inhibits cell proliferation in the duodenum and

upper jejunum, the sites of adult parasite residence [9]. A

compromised intestinal barrier may facilitate the autoinfection

phase of St. stercoralis infection, in which the rabtidiform larvae

penetrate the intestinal mucosa to perpetuate infection.

Thus, diverse helminths exhibit the common strategies of

compromising host epithelia in order to more successfully feed,

remain in their preferred anatomic niches, and complete their life

cycles.

Reinforcement of Epithelial Barriers

In addition to breaching host epithelia to facilitate infection,

helminths reinforce epithelial barriers to reduce host morbidity

and thereby promote parasite survival. It is conjectured that S.

japonicum ova have the ability to induce increased impermeability

of the colonic epithelial barrier, which diminishes bacterial

translocation and associated host morbidity and mortality. This

reinforcement of the epithelial barrier is likely mediated by an egg-

triggered increase in occludin, an integral tight junction protein

[10].

Similarly, it is possible that the presence of S. haematobium eggs in

the host bladder triggers hyperplasia of the urothelium as part of a

protective resealing response to ova-induced tissue damage and

concurrent inflammation [5]. Non-parasite-related in vitro studies

have shown that hyperplastic urothelium exhibits greater trans-

epithelial resistance than normal urothelium. However, cells

comprising this modified barrier are less differentiated, suggesting

that this is a transient phenomenon associated with urothelial

repair [11]. The hyperplastic response is likely employed to rapidly

reestablish and maintain transepithelial resistance, allowing time

for urothelial cells to sufficiently differentiate and complete

restoration of the urothelial barrier. Besides trematodes, this
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hyperplastic implementation has been demonstrated in a variety of

helminthic infections, including the nematodes Trichinella spiralis,

Nippostrongylus brasiliensis, and Heligmosomoides polygyrus (Figure 1)

[12]. Despite numerous examples of parasite-associated epithelial

hyperplasia, it remains unclear if the hyperplastic response is

parasite- or host-mediated.

Alteration of Lymphoid Tissue

The exploitation of host immune structures is a particularly

striking example of the adaptive mechanisms helminths have

evolved to bypass host defenses. It has been proposed that S.

mansoni worms remodel the vasculature and structure of Peyer’s

patches in the gut, rendering this tissue more suitable for egg

deposition and excretion [13]. Modification of the high endothelial

venules supplying Peyer’s patches increases the amount of eggs

that can be accommodated in these lymphoid tissues. Further-

more, S. mansoni ova are cytotoxic to Peyer’s patch fibroblasts,

subsequently reducing overall stromal and lymphocyte cellularity.

These methods may work in concert to facilitate egg excretion into

the fecal stream and the resulting propagation of the worm life

cycle.

Filarial nematodes also alter lymphatic tissue, possibly to

transform these host structures into a more suitable microenvi-

ronmental niche. Excretory secretory products from Brugia malayi

have been demonstrated to induce lymphangiogenesis, promoting

lymphatic epithelial cell proliferation and differentiation (Figure 1)

[14]. This effect is lymphoid tissue-specific and possibly not

mediated by conventional adaptive immune processes, since severe

combined immunodeficiency (SCID) mice deficient in B and T

cells also exhibit lymphatic dilation in response to filarial infection

[15]. This study, however, does not exclude the involvement of the

innate immune response.

Modulation of Tissue Vascularity

Helminth modulation of vasculature is also a potent mechanism

by which worms control host tissues to generate favorable

microenvironmental niches. Dirofilaria immitis infection results in

canine and feline cardiopulmonary dirofilariosis due to parasite

Figure 1. Schematics of various strategies employed by helminths to modulate host tissues. A, disruption of epithelial integrity. B,
epithelial cell hyperplasia. C, lymphatic endothelial cell differentiation. D, angiogenesis. E, egg-based granulomatous responses.
doi:10.1371/journal.ppat.1004014.g001
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residence in the pulmonary arteries and right ventricle. As such, D.

immitis excretory secretory antigens directly affect vascular

endothelial cells, inducing vasodilation and decreasing endothelial

barrier permeability to monocytes [16]. These effects have the

potential to greatly benefit the parasite, as the dilation of blood

vessels enables the host to accommodate additional filaria, and the

reduction in monocyte mobility allows for control of perivascular

inflammation, enhancing the longevity of the host and parasite.

The theme of parasite-associated vascular remodeling is further

exemplified by T. spiralis invasion of human host musculature. In

order to maintain chronic infection, it is hypothesized that T.

spiralis larvae transform resident myocytes into nurse cells,

complexes that protect the parasite from host immune responses

[17,18]. Nurse cells are innervated by a complex system of venules,

hypothesized to be the result of T. spiralis-mediated angiogenesis

(Figure 1). The induced vasculature provides the parasite with a

constant supply of nutrients as well as a reliable waste disposal

system. During the early stages of infection, elevated expression of

vascular endothelial growth factor (VEGF) can be observed in

nurse cells, despite the absence of a hypoxic event which, in the

majority of situations, initiates the formation of new vessels. This

altered VEGF expression may implicate a parasite-mediated

effect, although the precise mechanism by which larvae directly

induce angiogenesis has not been elucidated.

It is noteworthy that cancers also employ a variety of strategies

to induce angiogenesis and hypervascularity. The amplified

production of VEGF by neoplasms allows for a sustained and

adequate supply of nutrients and oxygen that intensify tumor

growth [19]. Clearly, methods of co-opting tissue vascularity are

not limited to helminths, and the elucidation of the parallel

mechanisms by which parasites and cancers, in essence ‘‘self’’-

derived parasites, accomplish these tasks should be of interest to

parasitologists and tumor biologists alike.

Tuning of Granulomatous Responses

Finally, helminths are able to modulate host granuloma

development, one of the most prototypical mammalian responses

to chronic infection. Schistosome ova require the formation of

granulomas to translocate from the gut and bladder to their

respective lumens [20,21]. In fact, S. mansoni egg excretion is

reduced and mortality markedly increased in mice lacking a

granulomatous response [22]. To ensure that the host immune

response will adopt the necessary Type 2 phenotype, schistosome

worms have the ability to prime immune cells toward the Type 2

environment before egg deposition [23]. Furthermore, schistosome

ova themselves may directly affect granuloma comprising cells

(Figure 1): alternatively activated macrophages primed by secreted

egg antigen down-regulate Type 1 immune responses, decreasing

inflammation-associated mortality [24,25], and S. mansoni eggs are

effective inducers of Type 2 responses [26]. Thus, while the

granuloma benefits the parasite life cycle, it may also protect the

host from the damaging effects of immune hyperresponsiveness.

This down-regulation of the potentially harmful host immune

response is repeatedly conserved across helminth-host interactions.

It is conjectured that the cestode Taenia solium also actively down-

regulates Type 1 host granulomatous responses, employing

excretory secretory proteins to alter host mRNA expression of

pro-inflammatory cytokines [27]. The viable cysticerci seem to

have the ability to guide the immune system towards a Type 2

response, potentially decreasing inflammation and reducing

damage to the parasite. Tellingly, it is only when metacestodes

have begun to degenerate that disease pathology manifests

[28,29], highlighting the active, parasitic modulation of host-

driven granuloma formation.

Conclusion

Helminths evade, hijack, and modulate host immunity, often to

the benefit of both the helminth and infected host. Clarifying the

prolific methods that parasite worms employ to manipulate their

hosts will allow us to more fully understand tissue pathogenesis,

parasite transmission, and the immune system more broadly.

Cancer biologists may also take interest in this line of research, as

tumors employ similar mechanisms to suppress host immune

function and promote cancer progression through increased

vascular permeability and angiogenesis [19,30]. Through work

along these lines of inquiry, we can hasten the eradication of

helminthic diseases altogether, one of the great scourges of human

and animal health worldwide.
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