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A visual analysis approach and the developed supporting technology provide a comprehensive solution for analyzing large 
and complex integrated genomic and biomedical data. This paper presents a methodology that is implemented as an 
interactive visual analysis technology for extracting knowledge from complex genetic and clinical data and then visualizing 
it in a meaningful and interpretable way. By synergizing the domain knowledge into development and analysis processes, we 
have developed a comprehensive tool that supports a seamless patient-to-patient analysis, from an overview of the patient 
population in the similarity space to the detailed views of genes. The system consists of multiple components enabling the 
complete analysis process, including data mining, interactive visualization, analytical views, and gene comparison. We 
demonstrate our approach with medical scientists on a case study of childhood cancer patients on how they use the tool to 
confirm existing hypotheses and to discover new scientific insights.
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Introduction

Among cancers, acute lymphoblastic leukemia (ALL) is 
the most common cancer occurring in children and is the 
driving paradigm for the work presented in this paper. 
Despite presenting with similar clinical features, ALL 
patients do not always respond in a similar manner to the 
same treatment strategies. The underlying complexities of 
the disease are not always clearly reflected by the clinical 
presentation or pathological results. Genomic variation, 
typified by single-nucleotide polymorphisms (SNPs), have 
considerable influence on how humans develop diseases and 
respond to pathogens, chemicals, drugs, vaccines, and other 
agents [1]. Similarly, gene expression patterns in diagnostic 
bone marrow can predict the sub-type of pediatric ALL as 
well as indicate relapse potential [2, 3]. The co-regulated 
activity of genes leads to metabolic actions that are driven by 
small changes in the expression of a large number of genes 
rather than large changes in only a few [2]. As a result, 

understanding genomic data and biomedical data (e.g., 
annotated clinical attributes, treatment details, domain 
ontologies, and patient’s background) is crucial to impro-
ving the diagnosis and treatment of ALL.

As a rule, the knowledge discovery process involves the 
dialog between experts from different domains, including 
laboratory scientists, biostatisticians, computational biolo-
gists, and clinicians. In reality, most techniques were deve-
loped based on statistical analysis with simple visualization 
[4] in an attempt to create techniques that would be appli-
cable in several domains. Basic statistics and visualizations 
without effective interaction and capabilities to control the 
visual data mining process are often insufficient for the 
analysis and exploration processes.

Intelligent visualization of complex genomic data will 
therefore bring the insight of information as well as the 
discovery of relationships, non-trivial structures, and irregu-
larities that may pertain to the disease course of the patient. 
Genomic datasets are complex data structures with mea-
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surements for millions of SNPs affecting the activity of 
several thousand genes. These genomic ‘attributes’ are built 
into models that inform us about individual patients and 
allow cross-referencing and determining the interconnec-
tions between patients. It is important then to provide 
adequate tools in order to visualize these models and 
interactions and to simultaneously examine many attributes 
in the context of relevant clinical properties that can be 
measured in real time for the purpose of assessing a patient’s 
clinical course and directing his clinical management.

Fundamentally, a large number of attributes need to be 
reduced to a manageable size so that data visualization 
techniques can be effectively applied. Typical dimensionality 
reduction methods applied to microarray data include prin-
ciple component analysis [5], non-negative matrix factori-
zation [6], multidimensional scaling [7], and local linear 
embedding [8]. The choice of method to apply depends to 
some extent on the nature of the information expected to be 
encoded in the dataset, since the quality of the resulting 
reduced matrices can vary across different datasets. Remark-
ably, most of the visualization techniques use matrix 
heatmaps, genomic coordinates, or networks (or pathways 
metaphor) to represent multidimensional genomic data 
[9-11].

- Heatmaps are common graphical representations that are 
used to present genomics values as matrices of colors. 
Matrix heatmaps are typically represented as rectangles 
(such as cBio Cancer Genomics Portal [12] and Caleydo 
StratomeX [13]) and occasionally as circles (such as 
CircleMap [14]).

- Genomic Coordinates represent oncogenomics data by 
showing alterations tied to their genomic loci. This 
approach is only suitable for analyzing the genomic 
topography of alternations or for inspecting particular 
genomic loci [9]. Typical techniques in this approach are 
Genomics Viewer [15], UCSC Cancer Denomics 
Browser [16], and Savant Genome Browser [17].

- Networks (or graphs) can be used to show changes in state 
for 1) interpreting and exploring large biological net-
works and 2) assembly and curation of pathways (such 
as Cytoscape [18], VANTED [19], VisANT [20], 
NAViGaTOR [21], and Cerebral [22]). 

Visualization techniques for gene expression techniques 
that include reasonably advanced visualizations are pre-
sented in [23-25]. Other good visualization tools show the 
interdependencies of genes by bringing gene expression into 
context with pathways [26] or using dimension reduction 
methods to provide multi-dimensional data visualizations 
[27]. Web-based visual analysis integrates multiple visuali-
zation components, such as scatterplot, phylogenetic tree, 
and genome-wide circus viewer, to enable the analysis [28]. 

Although these tools provide somewhat effective ways for 
the analysis of data, they do not effectively present the data 
such that medical analysts can interactively explore and 
manipulate the information. Our approach seeks to provide 
a capability for viewing patients in the similarity space based 
on detailed genomic and gene of interest analysis, repre-
senting the underlying biological basis for the disease.

This paper presents a novel visual analysis approach and a 
tool where medical scientists can interrogate large and 
complex genomic and biological data. We focus on patient- 
to-patient comparisons through the biological data, inclu-
ding background and treatment, and high-dimensional 
genomic data, including Affymetrix expression microarrays 
and Illumina SNP microarrays. The innovation lies in its 
capability of providing seamless and multiple views of data, 
from overview of the entire patient population with the 
similarity space to overviews, detailed views, and genes of 
interest (GOI) views of selected items, for patient-to-patient 
comparison. The technology provides various ways to 
display the multi-dimensional data in cooperation with the 
automated analysis. In addition, by integrating domain 
knowledge into the development, we have provided  mea-
ningful visualization for medical data analysis as well as a 
quality assurance tool to verify the effectiveness of the 
automated analysis. 

Methods
Biological background and data analysis

The expression and genomic SNP profiles of 100 pediatric 
B-cell ALL patients treated at The Children's Hospital at 
Westmead were generated using Affymetrix expression 
microarrays (U133A, U133A 2.0, and U133 Plus 2.0) and 
Illumina NS12 SNP microarrays, respectively. Each Affy-
metrix expression microarray has 22,277 attributes, while 
each Illumina SNP microarray has 13,917 attributes. Each 
attribute was mapped to a probe of DNA (or a gene), and the 
value for each attribute corresponded to the expression 
levels or genotype for the gene (each DNA spot contains 
picomoles (1012 moles) of a specific DNA sequence, known 
as probes or reporters). The annotations for each gene were 
mapped on separate files. Expression microarrays were 
hybridized with diagnostic bone marrow samples and 
genomic microarrays were hybridized with remission peri-
pheral blood samples. The patients were treated following 
the Berlin-Frankfurt-Munich 95 (BFM95) protocol or the 
complimentary Australian and New Zealand Children's 
Hematology and Oncology Group Study VIII (Study 8).

Using these datasets, we aimed to develop a predictive 
model of treatment outcome by identifying genes capable of 
differentiating patients that survived and those that did not. 
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Fig. 1. The visual analysis loop. Visual analytics model, reflecting
the engagement of the domain knowledge in the visual analytics 
process. GOI, genes of interest.

To achieve this, we applied an attribute deletion approach: 
identifying and removing genes that were almost certainly 
not involved in a biological phenomenon and patient 
comparison. We used the attribute importance ranking that 
was implemented in ‘Random forest’ [29] to identify these 
genes. The remaining informative genes were then used to 
build a similarity space whereby the distances between 
patients in this space were indicative of genetic similarity.

The expression values were z-score-normalized within 
each platform, concatenated, and z-score-normalized to 
minimize inter- and intra-platform biases. For the genomic 
SNP profiles, the theta scores were used to represent 
genotypes. The two datasets were then concatenated, and 
30% of all the patients were withheld from the model- 
building process as a validation set. Eight bootstraps of the 
validation set's patients were generated, and for each 
bootstrap, a random forest was performed. Each random 
forest produced an attribute ranking list, and we combined 
these eight lists to create a global list of an attribute’s 
importance. The expression and SNP values for the top 250 
genes in this global list were used to create a 3D similarity 
space using singular value decomposition－a matrix decom-
position technique [30].

The visual analytics model

Our visual analytics model reflects the importance of the 
domain knowledge in the visual analytics process (see Fig. 
1). Earlier, we mentioned the importance of validating a 
method by the outcomes in the discipline that the method is 
used. To do this, visual analytics must adapt to the respective 
discipline and conform to the language and norms expected 
of that discipline. For example, the expression of identified 
significant genes is required to be validated by the domain 
experts when the analysis is undertaken in independent 
laboratories.

An appropriate visualization helps the analyst to gain an 
understanding of the data and construct knowledge through 
our powerful human visual perception and reasoning capa-
bilities. We provide three interactive views for patient-to- 

patient comparison, including 1) overviews of the entire 
patient population in the similarity space, 2) detailed views 
of selected patients, and 3) GOI. We describe these visua-
lizations in the following sections. Domain analysts should 
be able to interact and explore through different views to 
make further discovery of, and insights into, the data. They 
can obtain a better understanding of the data and their 
structures and contribute their domain expertise to the 
knowledge discovery process. From the discovery of new 
knowledge, the analyst can evaluate, refine, go beyond, and 
ultimately confirm hypotheses built from previous iterations 
and automated analysis. The challenge presented to the 
construction of appropriate visualization is to cover the 
range of visualizing all of the data but making only all of the 
relevant data available to the analyst when it is relevant to do 
so. 

The presented work was developed with strong involve-
ment from cancer researchers at the Children's Hospital in 
Westmead, Sydney, Australia, who are experts in ALL 
research. The philosophy behind the work is that with this 
new way of looking at genetic and clinical details from the 
perspectives of both domain knowledge and technologies, 
visual analytics can provide a medium for the discovery of 
genetic and clinical problems, potentially leading to im-
proved ALL treatment strategies.

Interactive visualization

The microarray automated data analysis produced a 
similarity space of the patients based on their genetic 
properties. A mapping table of 250 GOI is also created during 
this process. In order to present these results in a form 
suitable for visual analysis by medical experts, we have 
created interactive visualizations that operate with the 
treated data. The interactive visualization is applied to 1) 
present a flexible, changeable, and meaningful display of the 
patient cohort; 2) filter, explore, and manipulate the 
information; and 3) interactively provide the details of both 
the original and processed data on demand. Details of the 
interactive visualization components are presented as 
follows.

Overview of patients

The prototype version of the new interactive visualization 
system provides the set of views addressing the needs 
described above. The visualization provides a global over-
view of the entire cohort structure and the relative patient- 
to-patient comparisons but then allows the analyst to drill 
into the details of the relationships. Displaying the entire 
visual structure at once allows analysts to move rapidly to 
any location in the space. This makes less effort to navigate 
across the large structures and explore specific parts. 
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Fig. 2. 2D visualization of the entire 
patient sample. The entire 100 patients
in the 2D similarity space with 
mapping attributes of 1) color → risk 
stratification (red, very high risk; 
orange, high risk; blue, medium risk; 
green, normal; and purple, unknown),
2) shape → gender (O, female; X, 
male), and 3) bar → status (top-bar, 
deceived; no-bar, survived). It shows 
that most of the deceased patients are
located in the top-left area.

Fig. 3. 3D visualization of the entire patient sample. The entire 
100 patients using the orange-purple color-blind friendly scheme 
using the same dataset as in Fig. 2. 1) Main colors (spheres) 
represent year of birth, 2) outer colors (signs) represent risk 
stratifications (red, very high risk; orange, high risk; yellow, medium
risk; green, normal; and grey, unknown), and 3) status (bright 
outer-bound, deceived; no-out-bound, survived). 

We utilized and extended our former works [31, 32] to 
provide a flexible, simple, yet powerful interface of the 
patient population in the similarity space. The visualization 
is capable of displaying both 2D and 3D visual projections of 
the same structure and switching between them from the 
same “area” in the dataset (see Figs. 2 and 3). Although each 
user might have a different preference, the 2D visualization 
is normally a better choice, thanks to its simplicity and 
familiarization to the analyst, its flexibility in interaction and 

attributed mapping, no obscuration, and perspective correc-
tion. The following sections are limited to the 2D version 
that was extended from TabuVis [31]. It is a robust and 
powerful visual analysis system that provides flexible, custo-
mizable, and effective visualization for multidimensional 
data. Our innovation lies in the ability to provide an 
easy-to-use yet effective way to view multidimensional data 
at different angles by mapping various attributes to different 
visual properties. 

Key aspects for visually analyzing data with multiple 
attributes are quality and appropriateness of the analytical 
platform whose presentation can be adjusted via domain 
experts. The extended system consists of multiple compo-
nents enabling the analysis process, including data proce-
ssing, automatic marks, customizable visualization via 
interaction, control attributes, filtering, statistical display, 
save/open works, and many other figures. 

The overview visualization supports several data types, 
including Integer, Float, Text (string), Boolean (true/false, 
yes/no, or 0/1), Date (with various format), Date and Time, 
and Percentage. The data types are categorized into two 
groups: Categorical (text and boolean) and Quantitative 
(integer, float, date, date and time, and percentage). We also 
map each data type to a color for better identification, 
particularly text → dark blue, boolean → blue, integer → red, 
float (and percentage) → orange, and date (and time) → 

purple. The color scheme can be easily modified via a 
property file and/or menus when running (see Fig. 2).

Patient’s positions

The patient’s positions are mapped into the 2D space 
according to his genetic property. This property reflects the 
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Fig. 4. Visualization at an exploration
stage. Patients with medium risk who 
were treated with the Study 8 and BFM
95 protocols. 

genetic similarity of the patients. Two patients are close 
together if their genes are similar, and conversely, they are 
located far from each other if their genetic properties are 
different. For example, Fig. 2 clearly illustrates two distinc-
tive groups of patients, marked by the dash-line ovals. The 
small group contains mostly deceased patients, while the 
other contains patients that responded well to the treatment 
and survived the disease. The fact that the deceased patients 
are located close to each other in the gene space may support 
the hypothesis that genetic properties are essential to 
determine whether a patient is likely to respond well in the 
context of the clinical treatment.

Interactive exploration

Mapping property
Rich graphical attributes are employed to provide clinical 

and background properties of the patients. The attributes are 
carefully selected based on the feedback from the medical 
analysts. The mapping property and items can be easily 
adjusted, filtered (or hidden), and/or re-mapped to different 
attributes (e.g., patient background and biomedical infor-
mation) via interactive menus to suit the preferences and 
new requirements. The mapping options are label, axes, 
colors, size, shapes, and visual bars.

Filtering
From the visualization, users can interactively filter out 

uninteresting patients to enhance the view of the associated 
data. Filtering can be applied to all categorical and quan-
titative attributes through interactive menus. The filtering 
allows the researcher/clinician (domain expert) to extract, 
picture, and interrogate specific features for the patients 

selected within the similarity space.
Fig. 4 illustrates the view at a navigational stage showing 

all medium-risk patients only. Patient identifications are also 
displayed in this example. The figure highlights three 
patients with similar clinical presentations, such as they 
were all stratified as medium risk (MR) (blue color), but 
having diverse outcomes. These patients were managed on 
the two treatment protocols BFM95 (larger size, ALL48) and 
Study 8 (smaller size, ALL134 and ALL323). With the 
patients placed into a similarity space based on genetic data, 
we have applied further computational methods to extract, 
visualize, and compare data from the chosen patients. By 
looking at the figure, we can quickly see that ALL323 is 
located at the top-left, while the other two patients are 
positioned closely together at a distance from the first pa-
tient. This observation indicates that the two surviving 
patients ALL48 and ALL134 are genetically similar and that 
they are genetically different from the deceased patient, 
ALL323. 

Probe set analysis

The system also provides a capability to show and 
compare the property of a particular probe set across the 
patient’s population. This property allows the analysts to 
have a comparative view of how a probe set in a gene behaves 
across the population. Fig. 5 shows an example of the 
visualization of the population that is colored by the value of 
the probe set “212022_s_at” at the gene “MKI67.” The figure 
clearly indicates the significant difference of patients in the 
bottom-left cluster, which are mostly painted with “gree-
nish” colors, corresponding to the high values, in compa-
rison to reddish colors, corresponding to low values. It raises 
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Fig. 5. Visualization showing the map-
ping by a probset. Probeset “212022_
s_at” is applied to specify the colors 
across the population; green color 
corresponds to high values and red 
color corresponds to low values. It 
indicates clearly the significant dif-
ference of patients in the bottom-left 
cluster, who are mostly painted with 
“greenish” colors corresponding to the
high values, in comparison to reddish
colors corresponding to the low 
values.

Fig. 6. Visualization with clustering. Four groups of patients in the
cohort corresponding to four colors (red, orange, green, and blue).
The first group (red color) contains mostly deceased patients (with
a bar on top).

Fig. 7. Detailed view of the genomic and biological data of a 
patient. Detailed view for patient ALL323. The top-left panel 
displays information of the Affymetrix expression microarrays; the 
top-right panel displays information of the Illumina SNPs; the 
middle table displays all background information of the patient; and
the bottom table displays the treatment details. The view also 
highlights the pattern of the gene expression data and a gap in the
single nucleotide polymorphism data.

a new hypothesis that the probe set “212022_s_at” (or the 
gene) might play an important role in specifying the simi-
larity space.

Clustering

We provide a clustering method to group the patients in 
the similarity space. The clustering is used to enhance the 
visibility of patients in the space as the groups who are 
potentially sharing similar genomic properties. In addition, 
by using a filtering method, the analysts can quickly filter out 

unwanted clusters for clearer views of the population. We 
applied the k-means++ clustering algorithm [33] in the 
implementation. The algorithm was chosen because of its 
ability of choosing the initial values (or "seeds") for the 
popular k-means clustering algorithm and thus avoiding the 
sometimes poor clustering outcomes found by the standard 
k-means algorithm. The number of clusters can be specified 
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Fig. 8. Visualization of a patient at various navigational stages and options. Views of patient ALL323 when the genes of interest are 
emphasized from the structure (A), the view shows the genes of interest only (B), the significantly different genes are highlighted (C),
the significantly different genes are highlighted within the genes of interest (D), zoom in is applied to single-nucleotide polymorphism 
data (at the right-panel) (E), and further zoom is applied to gene expression data (at the left-panel) (F) so that detailed information of 
the probe sets in genes is displayed.

via a menu. Fig. 6 shows an example of the visualization of 
the entire patient population who are painted with 4 colors 
corresponding to 4 clusters.

Patient-to-patient visual analysis

From the overview of all patients, users can select one or 
more patients as well as groups of patients to analyze further. 
At first glance, the analytical view provides full information 
of both genomic and biological data. The layout of the panels 
is as follows: 1) the top-left panel displays information of the 

Affymetrix expression microarrays, 2) the top-right panel 
displays information of the Illumina SNPs, and 3) the middle 
table displays all background information of the patients, 
and the bottom table displays the treatment details (see Fig. 
7). Each probe set in the gene is represented as a point on the 
x-y coordinate system. All genes are distributed orderly from 
top to bottom along the y-coordinate while their values are 
represented horizontally at the x-coordinate. This visual 
projection follows the biological rule―the order in which 
genes are displayed is sorted according to chromosomal 

(A) (B)

(C) (D)

(E) (F)
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Fig. 9. Comparison windows for patients. Comparison windows for three patients, namely ALL323, ALL48, and ALL134, respectively.
The difference is highlighted in the yellow boxes in the single nucleotide polymorphism panel and the corresponding enlarged red boxes.

order. A quick sort process is performed in prior to the 
visualization. By providing an overview of the entire genetic 
and biomedical information, the analysts can identify 
patterns and abnormalities before exploring further. 

Fig. 7 shows an example of the analytical window of the 
genetic and clinical data corresponding to patient ALL323. 
We can see that the Affymetrix expression microarray values 
of this person vary from －2 to 4, in which the majority of the 
genes’ values are [－1, 0]. It is interesting to see that there is 
a region of loss of heterozygosity in ALL323 (highlighted by 
the red dash-line rectangle).

Following our revised model of the visual analytics 
process, the analytical exploration is an essential process to 
discover insight and knowledge. We provide a variety of 
functions to support the visual exploration and analysis, 
including highlighting the importance or difference, zoo-
ming, filtering, detailing on demand, and comparing mul-
tiple patients or groups of patients. A user can interactively 
highlight GOI and significantly different genes as well as 
deemphasize the others. This feature allows one to gain a 
better view of those GOI in comparison with the entire gene 
structure. The user can also select the option of displaying 
those GOI only. A semantic zooming technique is applied to 
zoom in (or zoom out) on any particular area of focus (see 
Fig. 8), which allows the analyst to explore and view in detail 
the genetic information. The level of details is updated 
dynamically depending on the amount of focused genes and 
the size of the windows. This property ensures the best fit of 
information on the available space. In addition, detailed 
information of a particular gene is shown when the mouse is 
over the gene (see Fig. 8E and 8F). 

Fig. 8 shows an example of the visualization of patient 
ALL323 (same as Fig. 7) when various options and navi-
gations are applied. In particular, the figure presents the 

views when a) the GOI are emphasized from the structure, b) 
the view shows the GOI only, c) the significantly different 
genes are highlighted, d) the significantly different genes are 
highlighted within the GOI, e) zoom in is applied to SNP 
data (at the right panel), and f) the user zooms in on the gene 
expression data (at the left panel) so that the detailed 
information of probe sets in the genes is displayed.

We also provide a mechanism to compare multiple 
patients by aligning the analytical windows together. This 
figure is particularly helpful for identifying the similarities, 
differences, regularities, and irregularities of the patients. 
Fig. 9 presents the view of genetic and clinical information of 
the 3 chosen patients (highlighted in Fig. 4). First, the 
complete data of each patient can be directly compared. By 
way of example, the figure indicates a significant difference 
of patient ALL323 when compared to the other two patients 
ALL48 and ALL134―in particular, a region of loss of 
heterozygosity in ALL323, a region that may contain the 
genetic differences with ALL134 and ALL48, which may 
explain the differences in treatment outcome despite being 
considered similar according to the clinical presentation. We 
now describe the technical details for visualization of the 
complete set of SNPs and probe sets for the genes 
represented by the 250 developed features.

Visual analysis of GOI 

The traditional methods usually use heatmaps to show all 
probe sets or genes in the datasets. Although this approach 
can show the overview, its visualizations are very dense. It 
makes it really difficult to analyze those important genes in 
detail from the crowded population. Our system innova-
tively focuses the interactive visualization of the GOI 
resulting from the automated analysis. By reducing the 
overhead of analyzing a large quantity of genes, the analysts 
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Fig. 10. Genes of interests visual analysis for patients. There are 5 separate visual components the primary patient probeset heatmap
component (component A), the gene zoom component (component B), the color gradient and Gaussian curve component (component 
C), the gene ontology and probeset annotation component (component D), and the patient biomedical data component (component E).

can easily compare the GOI through a large population of 
patients.

The Gene Comparison Interactive Visualization is desig-
ned to allow an analyst to drill down further into the genetics 
and treatment data of patients identified as significant by the 
processes described in the previous sections. This visuali-
zation implements several mechanisms whereby the simi-
larity and differences between patients and groups of 
patients can be examined in greater detail. 

An important feature of this interactive visualization is 
the use of active regions to indicate what the analyst is 
currently focused on. Knowing this makes it possible to infer 
what extra information the analyst might find useful and to 
make sure that it is available. This interactive visualization 
consists of 5 separate visual components: A) the primary 
patient probe set heatmap component, B) the gene zoom 
component, C) the color gradient and Gaussian curve 
component, D) the gene ontology and probe set annotation 
component, and E) the patient biomedical data component 
(see Fig. 10). 

These 5 components are designed to interact with each 
other as well as other components, including the “Patient- 
to-Patient Visual Analysis” (described in section 6) and the 
main visualization (described in section 5) in several 
different ways to assist the analyst to examine the simila-
rities and differences between significant patients and 
significant groups of patients. Fig. 11 presents an overview 
of the visualization of the entire Genes of Interest Visual 
Analysis module when the 3 patients highlighted in the 
similarity space are added. Please note that the figure shows 
both the probe set heatmap component and the patient 
information component. 

Results and Discussion

The prototype has been used for analyzing the biomedical 
and genomic datasets of 100 ALL cancer patients, from the 
perspectives of domain knowledge and technologies. In spite 
of the size limitation of the dataset due to the expensive data 
collection, the discovery is quite encouraging in the case of 
ALL patients. This pilot result will place a foundation, 
enabling further enhancement and discovery using more 
comprehensive datasets and/or clinical trials. 

On the basis that patients who cluster together will have 
genotypically similar tumors, it is then anticipated that 
newly diagnosed and as yet untreated patients will be 
compared directly to local ‘biologically’ similar neighbors. 
By comparing the management and treatment outcomes for 
patients in this manner, the analyst (i.e., clinician) can glean 
specific information from the local neighbors that will assist 
with their clinical decision making for the individual patient, 
moving towards the ‘personalization’ of medicine. The 
analysis has partially confirmed this accuracy of the simi-
larity space. To illustrate this, Fig. 11A highlights three 
patients with the red-dash ellipses, where the deceased 
patient ALL123 is at the top left and the surviving patients 
ALL26 and ALL302 are located close to each other at the 
near-bottom right. These patients have similar clinical 
presentations, such as all being stratified as high-risk, but 
diverse outcomes. Fig. 11B shows the detailed views of the 
biomedical and genomic data of the three selected patients, 
showing the significant difference in gene expression values 
of patient ALL123 in comparison with ALL26 and ALL302. 
This property may explain the differences in treatment 
outcome of the three patients despite the similar clinical 
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Fig. 11. A seamless analysis from overview to detailed view to genes of interest. Transition view from overview of three patients (ALL123,
ALL26, and ALL302) in the similarity space (A) to patient-to-patient comparison view (B) and finally to the genes of interest view (C).

presentation and treatment regimen. The interactive 
heatmap visualization of the expanded set of SNPs and gene 
expression probe sets used in the array platforms allows the 
analyst to examine each specific genetic attribute repre-
sented by the 250 features (Fig. 11C) that further confirm 
the hypothesis.

We also carried out an analysis for different groups of 
patients. The experiments also confirm the effectiveness of 
the similarity space. For example, the genetic analysis of four 
clusters of patients (see Fig. 5) has unveiled that all probe 
sets of the gene MKI67 of the patients in cluster 0 (at the 

bottom-left and painted with a light-pink color) are signi-
ficantly different from the others (see Fig. 12). Further 
visualization with the probe set mapping across the patient’s 
population has confirmed this property (see Fig. 5). Details 
of the other findings (and the confirmation of the prognoses) 
are described further as follows.

1. There is little coherence between the genomic property 
and the biomedical property, such as risk, dead, or survival 
rate. Similar patients in terms of background and clinical 
information might have significant differences in their 

(B)

(C)

(A)
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Fig. 12. Genetic variation in the clusters of patients. All probe sets in gene MKI67 (highlighted) in group 0 (or cluster 0) are significantly
different from the other groups.

Fig. 13. Genetic variation in patients despite the similarity in biomedical data. Details of several genes of interest for the four patients:
ALL92, ALL129, ALL321, and ALL323. The patients’ clinical properties are similar, including medium risk, male, deceased, and Study
8 protocol. However, the Affymetrix expression microarrays and Illumina SNP values are quite varied among these patients.

Fig. 14. The survival rate by year of treatment: treatment within 5 years from birth (A), treatment after within 5 to 10 years from birth
(B), and treatment after 10 years from birth (C), respectively. Early treatments are more effective than late treatments.

genetic properties. For example, Fig. 13 illustrates the 
details of several genes of interest for the four patients: 
ALL92, ALL129, ALL323, and ALL321. The patients’ 
clinical properties are similar, including MR, male, 

deceased, and Study 8 protocol. However, the Affymetrix 
expression microarrays and Illumina SNPs values are 
quite varied among these patients.

2. Early treatments are more effective than late treatments 

(A) (B) (C)
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Fig. 15. The genetic property of high-risk patients. For the very high-risk patients, the genetic property of patient ALL302 (the only survivor
at the bottom-right) is significantly different from the others (at the top-left). Further examination using the 250 genes of interest confirms
this hypothesis for the expression values, especially for the genes ABHD10, LEPREL1, CNOT4, CHD9, EPOR, RASAL2, ZNF141, and
SLC25A31.

Fig. 16. Views of patients who are females (A) and males (B), respectively. Female patients tend to fare better than male patients overall.

(see Fig. 14). Particularly, there was only one death out of 
19 cases (95% chance of survival from the disease) if the 
treatment was started within 5 years after birth. The dead 
case also happened to a very high-risk patient who was 
unlikely to survive because of the disease. If the treatment 
was started after 5 years but within 10 years from birth, 
the survival rate is 86% (3 deaths out of 22 cases), and if 
the treatment was used after 10 years from birth, the 
survival rate reduces significantly to 69% (4 deaths out of 
13 cases). 

3. Among the very high-risk patients ALL123, ALL143, 
ALL144, and ALL302 (top-left), patient ALL302 (near 
bottom-right) was the only survivor whose genetic 
property was significantly different from the others (at the 
top-left). Further examination using the 250 GOIs 
illustrated in Fig. 15 confirms this hypothesis for the 
expression values, especially for the genes ABHD10, 

LEPREL1, CNOT4, CHD9, EPOR, RASAL2, ZNF141, and 
SLC25A31. The variation at a particular gene or a combi-
nation of these genes might have contributed to the sur-
vival rate or an improvement in treatment. This finding 
can be verified by further analysis using larger and more 
comprehensive datasets and, ultimately, the actual proof 
of the clinical experiments.

4. Patients who were born in later years have a better chance 
of survival. For example, the rate of survival for those 
patients born after 1995 was approximately 94% while the 
rate for those patients born before 1995 was appro-
ximately 83%. This property reflects the improvement in 
treatment technology, treatment methodology, and living 
conditions.

5. Female patients tend to fare better than male patients 
overall (see Fig. 16). There is a 92.5% chance of survival in 
females (3 dead cases out of 40) versus an 88.3% chance 

(A) (B)
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Fig. 17. Views of patients with different protocols, including Study
8, BFM 95, Interfant 99, and others. The larger items represent 
deceased patients, and the colors represent the protocols, including
Study 8 (green), BFM 95 (blue), Interfant 99 (orange), and others 
(red).

Fig. 18. Views of patients with different treatment protocols, 
including chemotherapy and bone marrow transplant. Chemothe-
rapy is more effective in treatment (green color). It is interesting 
that nearly one-half of all patients did not have any treatments (blue
color). The untreated patients mostly had standard to medium risks.

of survival in males (7 dead cases out of 60). 
6. The Study 8 protocol is dominant. The BFM 95 protocol is 

mostly applied to standard- to medium-risk patients who 
were born before 2000. The Study 8 protocol is a much 
more popular method, and it was used for patients 

regardless of risk strategies and age. Fig. 17 shows the 
protocols used in ALL treatment, including Study 8 
(green), BFM 95 (blue), Interfant 99 (orange), and others 
(red).

7. Chemotherapy is more effective in treatment. It is 
interesting that nearly one-half of all patients did not have 
any treatments (or there were no treatment records) on 
record. The untreated patients mostly have standard to 
MRs. The bone marrow transplant treatment method has 
little effect on the survival rate (only 1 out of 5 cases 
survived). The most commonly chosen treatment method 
is chemotherapy, the survival rate for which is over 90% 
(see Fig. 18).
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