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Abstract

Inflammation and extracellular matrix (ECM) remodeling are important components regulating

the response of the left ventricle (LV) to myocardial infarction (MI). Significant cellular and

molecular level contributors can be identified by analyzing data acquired through high-throughput

genomic and proteomic technologies that provide expression levels for thousands of genes and

proteins. Large scale data provide both temporal and spatial information that need to be analyzed

and interpreted using systems biology approaches in order to integrate this information into

dynamic models that predict and explain mechanisms of cardiac healing post-MI. In this review,

we summarize the systems biology approaches needed to computationally simulate post-MI

remodeling, including data acquisition, data analysis for biomarker classification and

identification, data integration to build dynamic models, and data interpretation for biological

functions. An example for applying a systems biology approach to ECM remodeling is presented

as a reference illustration.
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CARDIAC REPAIR POST-MYOCARDIAL INFARCTION: THE PROBLEM

INTRODUCED

Following the onset of myocardial infarction (MI), the left ventricle (LV) undergoes a series

of molecular, cellular, and extracellular matrix alterations that combined are known as LV

remodeling. LV remodeling includes four overlapping phases: cardiomyocyte death, an
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acute inflammatory response, granulation tissue formation, and scar formation.1 Irreversible

cardiomyocyte death begins after approximately 20 min of ischemia, and myocytes loss has

been attributed to necrosis, apoptosis, and other cell death mechanisms. Cardiomyocyte

death releases complement C5a, which stimulates the inflammatory response and begins the

wound healing cascade.2 Figure 1 shows the time course of cardiac healing and the

processes involved at each time period.

An early increase in cytokines and chemokines stimulates neutrophil infiltration into the

ischemic area, making neutrophils the first responder leukocyte. Neutrophils release

inflammatory mediators and proteinases to degrade ECM and provide chemotaxis signals for

subsequent macrophage infiltration.3 During the initial macrophage response, classical M1

pro-inflammatory macrophages prevail and facilitate inflammation and ECM degradation.

Subsequently, macrophages convert to an alternative M2 anti-inflammatory subtype that

promote resolution of inflammation, ECM synthesis, and scar formation.4, 5 A timely switch

and dynamic balance between M1 and M2 macrophages is believed to be required to

promote appropriate cardiac repair.

Granulation tissue is formed in the infarct area between 2 and 14 days after MI and is

characterized by the enhanced presence of macrophages, myofibroblasts, new blood vessels,

and ECM components. At this stage, myofibroblasts in both the infarct and remote non-

infarct regions produce abundant ECM, with the myofibroblasts in the infarct region being

more active than those in the non-infarct region.6 In the final stages of wound healing,

granulation tissue matures into a collagen-rich, cross-linked scar that spans the entire infarct

region and infiltrates into the remote region. The time period for completion of each phase

varies depending on the species, with rodents showing an accelerated wound repair and

healing compared to larger animal models and humans.7

During the different phases post-MI, inflammation and ECM turnover play significant roles

in LV remodeling. Inflammation is a bi-directional response, with both necessary and

deleterious roles in the repair process. Appropriate inflammation fosters removal of tissue

and cell debris to form a stable scar. Excessive and prolonged inflammation or insufficient

inflammation both hinder normal cardiac repair by stimulating continual tissue destruction

and infarct expansion.8

ECM provides the scaffolding structural support for granulation tissue formation. The

balance between ECM degradation and synthesis is critical for stable scar formation.

Excessive ECM accumulation can increase wall stiffness and stimulate the development of

diastolic dysfunction. On the other hand, insufficient or improper ECM deposition can

promote cardiac rupture and maladaptive cardiac remodeling.5, 9 The ECM environment

plays a key role in scar formation by transducing mechanical, electrical, and chemical

signaling pathways.10 The ECM coordinates responses between myocytes in the viable non-

infarcted remote region and neutrophils, macrophages, endothelial cells, and fibroblasts in

the infarct region. Therefore, investigating the mechanisms of inflammation and ECM

remodeling post-MI will help us to better understand MI responses that can stimulate

adverse LV remodeling and lead to the development of congestive heart failure.

Ghasemi et al. Page 2

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



As described above, one critical feature of post-MI LV remodeling is the importance of the

time course of inflammation and matrix turnover. For example, early neutrophil recruitment

provides a key signal for subsequent macrophage trafficking and polarization, which

coordinate myofibroblast phenotype and function. Due to different roles of these cellular and

molecular players in MI response, significance of the players varies with time and temporal

profiles of these players carry such information for us to discover. With this consideration,

time course data are necessary to identify key markers and their underlying regulatory

mechanisms. To address this need, systems biology provides useful techniques including

temporal clustering for identification of key markers and differential equation models to

characterize and interpret regulatory mechanisms with time course data.

Challenges of systems biology approaches using –omics technologies

During the last three decades, advancements in molecular and cellular biology have yielded

dramatic progress in biomarker discovery and functional characterization that improve our

understanding of mechanisms of LV remodeling.11 There is a vast amount of experimental

data deposited in public databases with respect to gene and protein expression, cellular

responses, and tissue remodeling post-MI. These data cover temporal as well as the spatial

response between infarct and remote non-infarcted myocardium.12 The recent emergence of

genomics and proteomics datasets provides a chance for researchers to examine the whole

system instead of focusing on only one or several molecules.13, 14 The generation of these

very large datasets has also generated issues on how to best analyze and extract useful

information from the data.

To address this need, systems biology approaches have been proposed and developed to

elucidate the mechanisms of biological response that can be applied to our example of post-

MI LV remodeling.15 Systems biology is the conceptual framework that analyzes and

integrates complex and highly diverse information acquired largely from isolated high-

throughput -omics datasets.16 This approach is a transition from the molecular cell biology

method that studies each data set individually to a more complete systemic analysis and

integration to interpret the dynamics of the entire biological system. According to the

different levels of the organism being studied, systems biology has adopted different

processing methods. It incorporates all -omics technologies, including genomics, proteomics

(and its subspecialties, such as matridomics and degradomics), matabolomics, and

interactomics with signal processing algorithms. It also allows characterization of the

supramolecular networks and functional modules that represent the most essential aspects of

cell organization and physiology with mathematical modeling and graphical networks.12

One problem encountered when applying systems biology approaches is how to handle very

large datasets. The advanced high-throughput –omics technology can offer expression levels

for >1,000 genes or proteins in one experiment. Additionally, such experiments might be

quickly repeated many times for temporal progression information, in different organs from

different species for comparative information, or with different dosages of interventions,

which increases the dimensionality of the data compared to previous snap-shot data.17–19 In

addition to this big data set problem, integrating datasets collected from gene, protein, and
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cellular components to depict whole spectra of the dynamic progression is another challenge

for systems biology generally and the cardiac research field specifically.

In this review, we will summarize current methods of systems biology for data acquisition,

analysis, integration, and interpretation to understand cardiac inflammation and ECM

deposition in the setting of MI. A systemic flow chart of this approach is presented in Figure

2.

ACQUIRING LARGE DATASETS TO OBTAIN SUFFICIENT INFORMATION

Recent technologies such as next generation sequencing techniques can produce huge

amounts of genomic data in less than a week, while assembling the first human genome data

took about ten years and the cooperation of >200 research groups worldwide.17 As another

example, proteomics studies frequently utilize multidimensional techniques for data

acquisition, including different approaches for separation of proteins (1D vs. 2D

polyacrylamide gel electrophoresis in buffers of differing solubility), several techniques for

separating peptides (1D liquid chromatography (LC) vs. 2D LC vs. isoelectric focusing), and

a variety of methods for mass spectrometry (MS) such as matrix-assisted laser desorption/

ionization, electrospray ionization, and ion trap or time of flight analysis to generate MS and

LC-tandem MS data.18 Measurement of a large number of biomarkers (e.g., covering the

whole genome) of a single cell for several samples over a period of time is also an example

that shows the high dimensionality possible in data acquisition.19

Using arrays to examine the molecular level

Gene and protein arrays provide a relatively high-throughput method for examining multiple

molecules simultaneously, and it is useful to segregate molecules based on their potential

involvement according to patterns of change in levels. Genes or proteins that do not increase

or decrease post-MI are assumed to maintain a steady state during the response, assuming

that the right time window was sampled. Both inflammatory and ECM gene and protein

arrays are commercially available (e.g., from Qiagen, Biorad, and R&D). While it is well

accepted that mRNA levels do not always reflect protein levels, measuring multiple gene

levels is technically easier than measuring multiple protein levels. Additionally, measuring

mRNA or protein levels does not give information on protein quality. This is an especially

important consideration for ECM, as ECM proteins generally undergo at least one post-

translational modification. Typical modifications include glycosylation and proteolytic

processing. Therefore, proteomics data will be much more important for studying the

dynamics of ECM remodeling for protein quantification. Additionally, MS-based

proteomics has the capability of evaluating proteins and their complex interactions.

Techniques to obtain proteomics data for ECM specifically are reviewed and summarized

below.

Using matridomics to examine the extracellular matrix level

Matridomics is defined as the comprehensive study of all ECM protein components

expressed in a tissue at the time of evaluation. This proteomic array technique describes the

global, integrated changes of ECM in a given condition, which has several advantages over
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transcriptomics or traditional one target studies.20 Matridomics provides direct information

on ECM protein quantity and quality. Barallobre-Barreiro and colleagues have used an

innovative proteomic approach to analyze the cardiac ECM in a porcine model of ischemia/

reperfusion.21 The detection and identification of the relatively low abundant cardiac ECM

is a challenge that requires a sequential extraction procedure to enrich for ECM proteins.

Using such an approach led to the identification of 139 cardiac ECM proteins by liquid

chromatography/mass spectrometry, and 15 of these ECM proteins had not been previously

shown to be involved in cardiac remodeling. A comparison between the ischemic region and

border zone revealed much higher proteins in the infarct area but similar mRNA levels in

both regions, which highlights the disparity between mRNA and protein levels. Further, the

ECM proteins delineated a signature of early- and late-phase LV remodeling, with

transforming growth factor β1 (TGFβ1) signaling at the core of the interaction network.

Importantly, these novel cardiac ECM proteins identified by proteomics approach in the pig

were also validated in human samples.

Our team has expanded on this approach by recently exploring a decellularization technique

where the mouse LV tissue was extracted into fractions using three extraction buffers of

increasing solubility potential, which we named the Texas-3 step protocol.22 The LV tissue

was first incubated in a neutral low salt buffer with proteinase inhibitors to extract the most

easily soluble components. The LV tissue was then decellularized with 1% sodium dodecyl

sulfate with proteinase inhibitors to collect soluble cellular proteins, including the large

amount of mitochondrial proteins present in LV tissue. As a final step, the decellularized

tissue was subjected to acid extraction, deglycosylation, and solubilization using a 4 M

GnHCl and 50 mM sodium acetate buffer with proteinase inhibitors to collect the insoluble

ECM fraction. This protocol allows qualification and quantification of ECM components in

tissue samples by removing highly abundant cellular and mitochondrial proteins.22

Using degradomics to examine the matrix metalloproteinase level

Degradomics is defined as a proteomic approach to catalogue all proteinases, inhibitors, and

substrates in a tissue at the given time of evaluation.23 Multiple matrix metalloproteinases

(MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) have been shown to be

involved in post-MI cardiac remodeling by regulating ECM turnover, inflammation,

apoptosis, and angiogenesis.5, 24 Accumulating evidence suggests that ECM fragments

cleaved by proteinases, the matricryptins, have biological effects and actively regulate

angiogenesis, inflammation, and fibrosis.10, 25 Matricryptins are active ECM fragments that

contain a cryptic domain that is only exposed after conformational changes of the parent

ECM.26 The presence of cryptic sites may provide key signals to regulate cell migration,

proliferation, differentiation, morphogenesis, survival, ECM turnover, angiogenesis, and

tissue repair by binding to corresponding receptors (e.g., integrins).10, 27

Collagen fragments generated due to MMP-9 cleavage have been shown to inhibit

angiogenesis and stimulate MMP-9 expression, which forms a positive feedback loop to

maintain MMP-9 levels.28, 29 Collagen IV can be cleaved by MMPs to generate both

proangiogenic and antiangiogenic fragments.30 In addition, matricryptins mediate the

inflammatory response by modulating chemotactic activity for inflammatory cells,
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amplifying phagocytic function, activate immune responses, and altering the gene

expression profiles of leukocytes.31

Our group has identified in vivo candidate substrates for MMP-7 and MMP-9 in 7 day post-

MI infarct tissue using 2-dimensional gel electrophoresis analysis and mass spectrometry

based approaches.32, 33 In the MMP-7 null mice, the infarct area showed a lower intensity of

spots that were identified to include fibronectin (Fn1) and tenascin-C (TnC). In vitro

cleavage assays verified that Fn1 and TnC fragments were generated by MMP-7. Further,

infusion of exogenous recombinant MMP-7 restored the production of Fn1 and TnC

fragments in MMP-7 null mice, confirming that Fn1 and TnC are in vivo MMP-7

substrates.32 This was the first report to identify Fn1 and TnC as in vivo MMP-7 substrates

using a proteomics approach.

Using a similar proteomics approach, we found Fn1 could also be cleaved by MMP-9 in the

MI setting.33 In these studies, using only infarct tissue provided a way to naturally focus on

ECM, because ECM proteins are enriched in the scar tissue at day 7 post-MI. Under normal

conditions, mitochondria accounts for >30% of the myocyte volume, and myocyte comprise

>90% of the LV volume. Compared to these levels, ECM components are in very low

abundance and harder to analyze by mass spectrometry because of the noise contributed by

mitochondria and other intracellular components. One goal of our ongoing projects is to

investigate ways to further enhance ECM representation in our analyses.

Using genomics and proteomics deposition databases

Tremendous amounts of gene expression data have been deposited in public databases.

Currently, a query of NCBI Gene Expression Omnibus (GEO) leads to public data

repositories including 11,752 platforms, 61,727 samples, 39,713 series, and 3341 datasets-

as of July 15, 2013. A total of over 1 million microarray results were available by the year of

2008, and the number of available microarrays doubles every 2–3 years. A summary of the

data deposition resources available online is provided in Table 1.

Similar to genomics databases, several worldwide organizations have provided online

proteomics database repositories, including the PRoteomics IDEntifications (PRIDE) and

Global Proteome Machine (GPM) databases. PRIDE is a public, user-populated proteomics

data repository.34, 35 Users can upload, download, and view raw data generated by mass

spectrometry proteomics experiments, including raw spectral data, peptides, protein

identifications, and associated statistics through a free web interface as listed in Table 1.

GPM gains the advantage of allowing researchers to use its proteomics data and tools to

interrogate a number of proteomes.36 Currently, there is no specific data service focusing on

cardiovascular research proteomics, and such a resource would significantly benefit the

field.

It is worth mentioning that the protein-protein interaction databases such as Database of

Interacting Proteins (DIP), mammalian protein-protein interaction database (MIPS), Human

Protein Reference Database (HPRD), Biological General Repository for Interaction Datasets

(BioGRID), IntAct database, and HomoMINT database, among others, provide information

on a total of >70,000 proteins and 330,000 interactions.37–42 The reported data represent
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gene and protein expression profiles from different species under varying experimental

conditions. Therefore, there is an urgent need to systemically integrate and analyze such data

to elucidate the underlying regulatory mechanisms.

PERFORMING DATA ANALYSIS TO HARNESS THE INFORMATION

Before data analysis can be performed, the data must be cleaned to remove possible sources

of noise, such as those coming from experimental design errors, measurement noise, and

technical errors. These noises overlap with the inherited individual differences of biological

processes, leading to a difficulty in determining true measurements. Thus, data cleaning is

needed to filter noises and control the quality of data before any further investigation of the

biological system can be undertaken. Several statistical methods have been used for

detecting and correcting measurement outliers. These methods include finding the average

or median of the data, computing the p-value, using boxplots for visualizing outliers, and

using boot strapping methods to assign measures of accuracy to sample estimates.43

Data analysis or mining is defined as an automatic process of retrieving and discovering

important and useful information in a large data set. Many computational methods have

been proposed to find new significant biomarkers with relevant biological meaning. These

techniques include unsupervised machine learning techniques such as clustering and

principal component analysis (PCA), as well as supervised learning approaches that utilize

the prior knowledge of the system under investigation such as support vector machine

(SVM).

Clustering methods are generally used to classify objects of a large population into smaller

groups called clusters. The similarity between members in each cluster is higher than that

among members of different clusters. Clustering is often applied to biological studies to find

gene or protein co-regulatory partners. The underlying assumption is that genes or proteins

sharing similar behavior may regulate a biological process together and can be classified as

one cluster. This approach has also been used to find sets of biomarkers associated with a

specific function.44 Clustering methods are useful for predicting which group a biomarker

belongs to and what functions that biomarker has. As more and more data are accumulated,

researchers face the problem of comparing and integrating data collected under different

attributes such as treatment dosages, species, and genotypes. This has led to biclustering

methods that can identify not only significant markers but also the contribution of each

attribution.

We have used a biclustering method to find the significant biomarkers of MI that could

differentiate treatment strategies.45 This biclustering algorithm was performed on gene

expression levels in the LV of mice before MI (control) and 28 days after MI with saline,

aliskiren, valsartan, or a combination of both drugs treatment that was started at 3h post-MI

(Figure 3). In another study, the differentially expressed genes were classified based on their

functions, and >200 genes were identified as being related to MI.46

PCA is a mathematical method that converts a set of possibly related observed variables into

a set of linearly uncorrelated variables by orthogonal transformation. PCA is usually used to

reduce the dimensionality of expression data that will eventually identify groups of genes
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that have similar characteristics.47 Barallobre and colleagues used a PCA approach to

identify the 20 most significantly expressed proteins in the ECM that were related to MI.21

These applications provide a promising direction to integrate systems biology approaches

into experimental research to focus on hypothesis generation and data analysis.

In addition to clustering approaches, SVM is another popular classification method that was

originally developed by Vapnik and Cortes in 1995.48 The SVM algorithm can predict

which group the input belongs to by maximizing the margin between support points and

using nonlinear mapping based on the model obtained from the training dataset. It has been

widely applied to breast cancer diagnosis, protein sequencing, and ECG signal analysis for

cardiovascular research on arrhythmias.49–52 To date, no application of SVM on

inflammation and ECM remodeling has been conducted.

INTEGRATING DATA TO DEVELOP INTERPRETATIONS

Data analysis can elucidate the relation of data based on correlation analysis, an approach

familiar to engineers, bioinformaticians, and biologists. More advanced integration,

however, is required to interpret the spatiotemporal dependence embedded in the data.

Furthermore, clear biological meaning of the data analysis should be presented to bridge the

knowledge gap between biologists and bioinformaticians. Different integration schemes

including differential equation and graphical network modeling have been proposed to

integrate experimental data.

Mathematical modeling for temporal dynamics using differential equations

Ordinary differential equations (ODE) and partial differential equations (PDE) have been

applied to model the temporal and spatial changes of biological and physical variables in a

continuous format.53–55 Due to the complexity of PDE solving and modeling techniques, we

use ODE to illustrate the modeling method here. ODE-based algorithms are able to infer the

nonlinear dynamic nature of high dimensional regulatory mechanisms and predict the

behavior of a system based on the constructed model.53, 54 There are two approaches in

studying regulatory relationships characterized by physical and influence

methodologies.56–59 In the physical approach, exact physical interactions between molecules

such as transcription factors and their promoters are investigated and the impact of other

factors in the regulatory mechanism is ignored. In the influence approach, regulatory

interactions among molecules are studied such that every regulation is considered as an

input and output. The regulatory process is not controlled by real interactive molecular

bindings, although the model sheds light on hidden indirect associations among molecules.

The general format of ODEs for this approach is written as follows:

(1)

where Xi denotes molecular concentration of the ith gene or protein at time t, with time-

derivative term , the regulatory effect of other external stimuli such as chemical

compounds or genetic perturbation are illustrated by Y, and the network dynamic model is

characterized by fi(.), which reveals dynamic interactions among all molecule Xis. θ is
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represented as the model-parameter vector. To simplify the ODE equation (1) and reduce the

computation load, the network dynamic model is approximated such that the changing rate

of molecular concentration of the ith gene or protein is affected by weighted accumulation of

all molecular expressions. The kernel of such ODE model is in linear format and represented

in equation (2): 58, 59

(2)

The construction of the model described in equation (2) is formulated by determining

associated weights, θijs, that describe the influence of molecule j on molecule i. In the

presence of some prior biological knowledge about their kinetic rates, only a subset of

parameters, θij, is required to be estimated. Least square and Bayesian approaches are wildly

applied to estimate the unknown parameters.60, 61

The difficulties of parameter estimation lie in the fact that many parameters in the model

need to be estimated, and there is a lack of data samples to estimate the parameters

accurately. In this case, we need to limit the number of unknown parameters or take

advantage of sparsity of such regulatory networks to reduce the dimension of the

dataset.58, 62, 63 Different parameter estimation approaches with time series data have been

proposed for both linearly and nonlinearly parameterized systems.54, 61, 64–68

While using such a linear format simplifies the modeling techniques, problems that arise

with such a simplification approach include 1) how to accommodate the innate nonlinear

dynamics of biological regulation due to multiple protein binding sites for protein

interaction; and 2) how to approximate nonlinearly parameterized chemical reactions such as

a hill equation with linear format.

ODEs and PDEs are deterministic mathematical model, i.e., the output of the system is

determined given one set of parameters, initial condition, and input, while real biological

processes demonstrate strong individual differences. With the same input, same biological

processes may have different initial conditions and parameters. In most current research,

variations of the system outputs are due to different initial conditions and noises. Sensitivity

of parameters are examined to further simplify the differential equation model by focusing

on key sensitive parameters and ignoring non-sensitive parameters in the model.69 Under

such direction, bifurcation analysis has been applied to illustrate the effect of parameter

variation on system outputs.70 Additionally, the effect of noises is confined within a stable

system, i.e., a bounded input leads to bounded outputs. Currently, very few studies have

been reported to use stochastic differential equation model to represent individual

differences.71–73 There is a lack of research linking the distribution of key parameters to

distribution of the output.

Many differential equation models of cardiovascular systems can be found in the website

supported by the Bassingthwaighte group (http://bioeng.washington.edu/Models/). The

complexity of ECM metabolism and inflammation signaling in the post-MI setting lends
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itself to ODE approaches. Our team has established an ODE model of cardiac remodeling

post-MI to quantify the balance between the construction and destruction of ECM.74 To

establish this ODE model, we first determined key variables representing ECM metabolism

using our experimental results. We examined the expression of 84 ECM genes at 7 days

post-MI and identified 17 differentially expressed genes (>2.5 fold and p<0.05). Among

these genes, collagen I was selected as a key factor, because it is the major collagen in the

myocardium. Osteopontin expression levels increased 206-fold in the infarct region

compared to the control group, suggesting strong macrophage activation at day 7 post-MI.

TIMP-1 expression increased 31-fold in the infarct compared to the control group,

suggesting strong inhibition of proteolytic activity. Specifically, TIMP-1 inhibits MMP-9

and MMP-9 degrades collagen. Periostin gene expression level was increased 5.5-fold, and

TGFβ1 gene expression level was increased 2.6-fold in the infarct sample at day 7,

suggesting significant fibroblast functions post-MI. Based on these experimental results, the

regulatory network of ECM metabolism includes the cellular contributions of macrophages

and fibroblasts, and molecular contributions of TGFβ1, MMP-9, collagen I, and TIMP-1 as

main components influencing LV remodeling.

With the determination of these variables, we further examined the regulatory relationship

with in vitro experiments and published literature to determine the parameters in the ODE

model. For example, we determined the fibroblast secretion rate of collagen stimulated by

TGFβ1 and the macrophage infiltration rate stimulated by TGFβ1. After we determined the

variables and parameters of the ODE model, we simulated the model and validated the

model by comparing our computational results against temporal profiles of these variables

from other research groups. Our computational predictions agree well with the observed

experimental data.

Besides our group, Vovodotz and colleagues have developed several differential equation

models for inflammatory responses by combining experimental and computational

approaches.75 The Popel laboratory has developed theoretical model for collagen

degradation by MMPs at the molecular level.76, 77 ODE models have also been widely

adopted for other cardiovascular research topics in addition to ECM metabolism and

inflammatory signaling. ODE models on cardiac electrophysiological from cellular level to

organ level have been generated.78–81 Noble and colleagues developed a cardiac electrical

activity model in 1985.82 Since then, Luo-Rudy models and Jafri-Rice-Winslow model have

been reported and widely used to describe mechanisms of cardiac Ca2+ regulation in

myocytes.83 All of these models illustrate the use of ODE as a promising way to interpret

time course progression such as that seen in the MI response.

While differential equation models can represent biological measures, such as molecular

concentration and cellular density, with respect to temporal and spatial dynamics, most

models are built with influence methodologies without attempting to interpret the detailed

binding information. In addition, the modeling procedure and analysis heavily depend on

engineers and mathematicians due to the technical details, and this process is not very user

unfriendly for typical biologists to understand or use the model. Graphical network models,

including Bayesian network and protein-protein interaction (PPI) network, are new

emerging representations that can improve model usage by biologists.
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Using protein-protein interaction networks

A PPI network visualizes the interactions among proteins by representing each protein as a

vertex and each interaction as an edge. Different measurements have been used to

investigate structural properties of a network, including centrality analysis (shortest path,

betweenness centrality, closeness centrality, and eccentricity) and clustering analysis (local/

global clustering coefficient for community detection, average clustering coefficient with

respect to degree). The shortest path is a pairwise concept that defines the minimum number

of edges required to move from one vertex to another. Betweenness centrality measures the

frequency of appearance of a vertex or link in the set of all shortest paths.84, 85 High

betweenness centrality indicates that a vertex or edge is more frequently used to flow the

information in the network. Closeness centrality measures how many steps are required to

access every other vertex from a given vertex.84 The vertex with the smallest closeness

centrality requires the least number of edges to spread information to other reachable

vertices in the network. Eccentricity of a vertex measured the shortest path distance from the

farthest vertex in the graph.86 Local clustering coefficient describes the connectivity of the

neighbors of a vertex.87 A higher clustering coefficient means the neighbors are densely

connected to each other. A tremendous amount of recent research has investigated the

structural properties of PPI networks using these network concepts.88–90 However, studies

are needed to identify key proteins of PPI network using only the structural properties.

Key proteins in a PPI network can be identified with enrichment analysis from DAVID with

respect to Gene Ontology (GO) for functional linkage.91, 92 GO is a controlled vocabulary of

terms that characterizes gene products in terms of their cellular components, biological

processes, and molecular functions in different species. Significant effort has been

contributed to such interpretation and available public resources such as Uniprot (http://

www.uniprot.org/) and iProClass (http://proteininformationresource.org/).93–97

When the number of proteins studied in a disease is small, it is possible to predict and

validate functionality of each important protein. When many proteins are involved in the

process, finding the most useful proteins as biomarkers is tedious and hard if not impossible.

LV remodeling is a highly complicated process that includes vast amounts of protein

changes with respect to signaling pathways, inflammatory response, and angiogenesis, all of

which are coordinated by ECM remodeling.

Targeting the MI-specific proteins provides the opportunity to study MI responses in detail

and propose preventive or treatment strategies. Our team has established a PPI network

based on a set of known seed proteins and compared it with 100,000 randomly generated

networks to demonstrate the specificity of the MI-specific network.98 Azuaje and colleagues

have established a PPI network focusing on the inflammatory response post-MI to find the

new prognostic biomarkers for LV dysfunction.28, 99 They identified inflammatory proteins,

including TNF receptor-associated factor 2, SH3 domain-containing-binding protein 1, and

Ubiquitin C protein family members. Their associations of these proteins with clinical

outcomes post-MI provided the functional characterization of the network.

Ren and colleagues provided a NetCAD platform to construct a PPI network for coronary

artery disease. Their PPI network provides physicians and scientists important information
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about the molecular mechanisms and potential targets for therapies of coronary artery

disease.100 There have also been several groups that studied the effects of drugs on MI

outcomes using PPI networks.101–103 In a recent study, we introduced a multiple-delayed

linear regression model to estimate the time delay between the transcription factors and their

targeting genes post-MI.104 A regulatory network was generated with different time delays

where genes with high degree of connectivity were identified as potential biomarkers for

MI, including specificity protein 1 (Sp1), histocompatibility 2-K1 (H2-K1), v-rel

reticuloendotheliosis viral oncogene homolog A (Rela), nuclear factor NF-kappa-B p105

subunit (Nfkb1), and interleukin 18 (Il18).

BIOMARKER IDENTIFICATION: A CASE STUDY

We applied a sparse singular value decomposition (SSVD) biclustering algorithm to analyze

gene expression data for significant biomarkers post-MI under different treatments methods

(Figure 2).45

Data acquisition (Figure 3A and B): data includes expression of 84 ECM genes in the LV

infarct region of C57BL/6J wild type (WT, n=30) mice. The mice were divided into 5

groups; control group at day 0 (number = 6) and 4 treatment groups at 28 days post-MI. The

treatment groups include MI with saline treatment (S, number = 6), MI with Aliskiren

treatment (A, 50 mg/kg/day, number = 6), MI with Valsartan treatment (V, 40 mg/kg/day,

number = 6), and MI with Aliskiren and Valsartan treatment (A+V, number = 6).

Data analysis (Figure 3 C and D): We examined the p-value of gene expression to control

the data quality. We then computed fold changes of genes expression at day 28 compared to

its average value at day 0 and applied the SSVD biclustering algorithm. The most significant

feature of the fold change data found by this algorithm is shown in Figure 3. Out of 84 ECM

genes evaluated, 10 were differentially regulated in the infarct region.

Data integration (Figure 3 F): We further examined the biological functions involved with

these significantly expressed genes to confirm the coherence between analytical results and

biological meanings. For each gene set, we searched DAVID for enriched gene ontology

(GO) terms for their associated biological processes.80 We observed 23 biological processes

that are significantly involved with the 10 genes in the infarct region.

LIMITATIONS AND FUTURE DIRECTIONS

While the above approaches give promise for uncovering underlying mechanisms of LV

remodeling post-MI using systems biology approaches, there are several areas where future

work is needed (Table 2).

For cardiac ECM proteomic analysis, tissue solubility is a challenge that needs to be

considered. Although the decellularization procedure greatly removes intracellular

components and enriches ECM, not all of the ECM proteins are easily dissolved, especially

high molecular weight glycoproteins, proteoglycans, and cross-linked ECM. This may mask

potentially important ECM protein changes. Therefore, future studies are warranted to

further improve proteomic protocols that focus on ECM.
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Plasma or serum can be a valuable source of biomarkers for MI patients, and more research

is needed to determine how well changes in the blood mirror changes in the LV tissue. Most

studies using animal models analyze cardiac tissue to understand the molecular mechanisms

of MI-induced remodeling. Indeed, tissue examination offers invaluable information on the

pathogenesis. Because cardiac tissue samples cannot easily be collected in clinics to evaluate

patient prognosis, however, having biomarkers that spill over into the blood to serve as

surrogate indicators will be critical. The Human Proteome Organisation (HUPO) has an

ongoing project to identify all proteins in the human plasma. Berhane and colleagues

identified 3020 proteins in human plasma using mass spectrometry.105 Subsequently, a

subset of these proteins has been annotated as cardiovascular related proteins based on the

published literature. Several groups have analyzed the plasma proteomics after depletion of

albumin and identified hundreds of proteins.106, 107 Given the magnitude of differences

among the least and most highly expressed proteins, plasma evaluations remain challenging.

Identifying which of these proteins best track with LV remodeling is the next step.

Applying systems biology approaches to achieve personalized medicine has been a hot topic

over the past five years. In personalized medicine, there is a paradigm change from

diagnosis and treatment of disease for an overall population to personalized monitoring and

preventive medicine for individuals.108 This aim may not be achievable without gathering

the whole dataset for each patient through –omics technologies, together with incorporating

novel methods to find the most informative biomarkers of the disease and will likely include

methods that are able to combine spatial and temporal data and integrating the relevant –

omics data into more comprehensive models to predict the behavior of the biological

system.109, 110 Whether we can reduce the number of variables that must be assessed for

accurate model building remains to be determined.

Synthetic biology is another trend of systems biology, which builds up a biological system

from its cells to the whole organ or living organism.111 In this approach, each cell is

considered to be a computer that is involved in the flow of information by signaling

interactions from and to their neighborhood environment. The living organism is the

integration of all these modules (cells). This approach requires extensive data acquisition,

big data management, and integration that is currently challenging on several levels.

CONCLUSIONS

In this review, we introduced the significance and challenges of applying systems biology

approaches, using the inflammatory response and ECM remodeling following MI as an

example. We summarized possible systems biology approaches to handle vast sums of data

at multiple stages from acquisition, analysis, integration, and interpretation to elucidate the

spectra for systemic studies. This review should provide a useful reference guide for

researchers new to this area by summarizing the possible algorithms and resources available

for computational modeling.
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Figure 1.
The time course of cardiac healing after myocardial infarction (MI), demonstrating the

overlap of processes involved at each time period. About 20 min following MI, myocytes

undergo irreversible necrosis and/or apoptosis to induce complement C5a release and

initiates an acute inflammation. During the acute response period, infiltrated neutrophils and

macrophages release inflammatory mediators and proteinases to degrade extracellular matrix

(ECM) and engulf dead tissue debris. Thereafter, granulation tissue is formed, characterized

by the presence of macrophages, myofibroblasts, new blood vessels, and ECM components.

Eventually, a scar enriched in collagen forms and matures.
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Figure 2.
Comparison between the gene expression levels of 84 extracellular matrix (ECM) genes

after myocardial infarction (MI) in the infarct region of saline treated mice and 3 treatment

groups (aliskiren- A; valsartan- V; and combination-A+V) for the 4 most significant layers

obtained by SSVD biclustering. The biclustering method was used to find potential ECM

biomarkers of cardiac remodeling after MI. The original matrix is shown at the top, the

reconstructed matrix containing the four most significant layers is shown in the middle, and

the reconstructed matrix containing layer 1 is shown at the bottom. The highlighted columns

represent the genes identified as potential ECM biomarkers. In the color legend, the red

color means that a gene expression is up-regulated, while dark blue represents down-

regulation of a gene expression with respect to the expression levels at day 0.
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Figure 3.
Flow chart of data acquisition, analysis, integration, and interpretation used for systems

biology approaches.
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Table 1

Public resources of available data and tools for systems biological approaches

Database Specification Website

Genomics GEO http://www.ncbi.nlm.nih.gov/geo/

Proteomics UniProt http://www.uniprot.org

PRIDE http://www.ebi.ac.uk/pride/

GPM http://gpmdb.thegpm.org

DIP http://dip.doembi.ucla.edu/dip/Main.cgi

MIPS http://mips.helmholtzmuenchen.de/proj/ppi/

HPRD http://www.hprd.org

BioGRID http://thebiogrid.org

IntAct http://www.ebi.ac.uk/intact/

HomoMINT http://mint.bio.uniroma2.it/HomoMINT/Welcome.do

Data integration Mathematical models http://bioeng.washington.edu/Models/).

Data interpretation DAVID http://david.abcc.ncifcrf.gov

iProClass http://pir.georgetown.edu/pirwww/dbinfo/iproclass.shtml

GEO- Gene Expression Omnibus; UniProt-Universal Protein Resource; PRIDE-Proteomics Identifications Database; GPM-The Global Proteome
Machine; DIP-Database of Interacting Proteins; MIPS-Mammalian Protein-Protein Interaction Database; HPRD-Human Protein Reference
Database; BioGRID-Biological General Repository for Interaction Datasets; IntAct-Mollecular Interaction Database; HomoMINT- Human Protein
Interactions in the MINT Database); DAVID-The Database for Annotation, Visualization and Integrated Discovery; PIR-Protein Information
Resource.
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Table 2

Future advances needed for better use of experimental and computational approaches to define post-MI LV

remodeling.

Experimental Computational

• Better solubilizing ECM proteins to fully catalogue
changes in the post-MI LV

• Optimizing plasma/serum evaluations to provide
surrogate markers of tissue remodeling

• Applying systems biology approaches to personalized
medicine

• Using synthetic biology to reconstruct the LV remodeling
system to include molecular, cellular, and tissue level
functions
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