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Abstract

Central nervous system (CNS) complications resulting from diabetes is a problem that is gaining

more acceptance and attention. Recent evidence suggests morphological, electrophysiological and

cognitive changes, often observed in the hippocampus, in diabetic individuals. Many of the CNS

changes observed in diabetic patients and animal models of diabetes are reminiscent of the

changes seen in normal aging. The central commonalities between diabetes-induced and age-

related CNS changes have led to the theory of advanced brain aging in diabetic patients. This

review summarizes the findings of the literature as they relate to the relationship between diabetes

and dementia and discusses some of the potential contributors to diabetes-induced CNS

impairments.
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1. Introduction

Diabetes mellitus is an endocrine disorder of carbohydrate metabolism resulting from

inadequate insulin release (insulin-dependent diabetes mellitus, or type 1 diabetes; T1D) or

insulin insensitivity (non-insulin-dependent diabetes mellitus, or type 2 diabetes; T2D), both

of which result in hyperglycemia if uncontrolled. T1D is believed to occur in response to an

autoimmune destruction of insulin producing pancreatic β cells, whereas T2D may be

triggered or worsened by a number of factors including obesity, hypertension, and other

features of the metabolic syndrome. For many years it has been well accepted that diabetes

often results in microvascular and macrovascular disease, leading to complications such as

retinopathy, peripheral neuropathy, stroke and coronary heart disease [1]. There is now

evidence illustrating that both T1D and T2D can also cause complications within the central

nervous system (CNS). Manifestations of diabetes-induced CNS complications may include

structural alterations or brain atrophy, as well as changes in electrophysiological properties

that ultimately result in deficits in cognitive performance [2]. These diabetes-induced CNS

complications may be associated with or exacerbated by cardiovascular disease, including
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hypertension [3,4] and cerebral vascular complications [5–8]. Additional factors that may

contribute to diabetes-induced cognitive impairment include disrupted insulin signaling and

glucose homeostasis in the CNS [9].

Under normal circumstances glucose is the predominant metabolic fuel source of the adult

brain and is transported to the CNS from the periphery via facilitative glucose transporters

[10]. Since the brain can neither synthesize nor store glucose for extended periods of time, it

is essential that proper glucose regulation be achieved in the periphery to ensure appropriate

glucose transport to the CNS [11], processes that may be disrupted in poorly-controlled

diabetes. Many brain structures, such as the hippocampus, are extremely sensitive and

responsive to changes in glucose homeostasis. For example, dysfunctional glucose

regulation and/or insufficient insulin availability elicits neuronal synaptic reorganization

[12] and increased proliferation of astrocytes [13] in the hippocampus of streptozotocin

(STZ) diabetic rodents, an experimental model of T1D. Additionally, glucose and insulin are

both instrumental regulators of cognitive function [14–21], further supporting the hypothesis

that inefficient regulation of these two factors may contribute to cognitive deficits in

diabetes phenotypes.

The discrete etiologies and pathological manifestations of these subtypes of diabetes provide

insight as to the differential deleterious effects of T1D and T2D on cognition. While it could

be argued that these impairments may not hinder daily cognitive functioning in diabetic

individuals, these alterations in cognition and brain structure may over time lead to an

acceleration of CNS aging [22] or an increased risk for age-related diseases such as

Alzheimer’s disease (AD) [23]. Accordingly, this review will examine the diabetic brain and

its associated changes in both T1D and T2D, with particular emphasis on diabetes-induced

deficits in the structural and functional properties of the hippocampus. Additionally, this

review will highlight the potential contributors to diabetes-induced brain changes and will

provide a general discussion of how several diabetes-associated CNS changes correlate with

an increased risk of AD and advanced brain aging in both the clinical and pre-clinical

settings. Although animal models of diabetes and aging cannot fully parallel these states in

humans, data from non-human studies will be referred to and acknowledged for

contributions made in providing insight into mechanisms relevant to the clinical setting.

2. The relationship between cognitive decline and diabetes

There is an increasing appreciation that cognitive decline occurs in both T1D and T2D.

However, there are differences concerning the relative degree of cognitive dysfunction and

the way in which these cognitive abnormalities are manifested in the two sub-types of

diabetes. For example, although there may be commonalities between the underlying

mechanisms involved in diabetes-induced cognitive impairments, many studies have shown

that T1D is more likely to be associated with psychomotor slowing and reductions in mental

efficiency [24], while cognitive deficits in T2D are often in the areas of psychomotor

efficiency, attention, learning and memory and executive function [25]. Moreover, some

studies suggest that diabetes-induced CNS complications occur more rapidly in T2D than in

T1D. For instance, in a comparative study of cognitive function, those with more than 30

years of T1D had comparable cognitive profiles to T2D patients with seven years of disease
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duration [26]. Also, when compared to T2D patients, T1D patients had better brain magnetic

resonance imaging (MRI) ratings [26], which measure changes in brain volume, silent

infarcts and white matter lesions (WML). Hyperintense lesions, as measured by T2-

weighted and proton density MRI, occur in white matter (referred to as white matter

hyperintensities, WMH or WML) as well as in gray matter [27,28]. The clinical significance

of WML remains undetermined [28,29]; however, WML have been associated with

diabetes, AD, normal aging, impairments in cognition, and accelerated cognitive decline

[27,28,30–33]. As such, increases in WML in diabetic individuals may lead to the

development of a cognitive phenotype similar to that of aged individuals.

The differential effects of T2D and T1D upon cognition raise the question of the underlying

causes for the cognitive differences in these two diseases. One potential clue as to why T1D

and T2D may differ in the progression of cognitive impairment is a potential interaction

between diabetes and age [34,35]. This theory is consistent with the fact that T2D is more

prevalent with increasing age and the observation by Biessels and Kappelle that clinically

relevant decreases in cognitive function are more likely to occur in elderly T2D patients

[36]. Additionally, T1D is a disease that often affects individuals before the age of 18 [37]

which presents the possibility that developmental compensations may contribute to the less

severe cognitive deficits observed in T1D patients when compared to T2D patients. Another

possible explanation for the differential effects of T1D and T2D upon cognitive function is

insulin resistance, a feature more prevalent in T2D than in T1D. In support of this

hypothesis, insulin resistance was identified as the best predictor of T2D diagnosis in a study

of pre-diabetic individuals [38]. Additionally, insulin resistance is associated with a host of

conditions including, hyperglycemia, hyperinsulinemia, hypertension, dyslipidemia, and

increased central adiposity collectively termed the metabolic syndrome [39]. Many features

of the metabolic syndrome may contribute to cognitive impairment independently or in

combination with one another [39]. Although the incidence of cognitive deterioration is

more prevalent in older T2D, younger T2D and T1D patients are not immune to the

deleterious consequences of diabetes upon brain structure and function.

3. Type 1 diabetes and cognitive impairment

T1D is a life-long disorder usually diagnosed in younger individuals (50–60% younger than

18 years of age) [37] and therefore raises concern regarding how this disease and its

treatment may impact cognitive performance. In this regard, it has been reported that

children with T1D show impairment on tasks of declarative memory compared to age

matched non-diabetic controls [40]. Typically, T1D is treated in either a conventional or

intensive manner with exogenous insulin [1]. Insulin treatment increases the risk of

hypoglycemic episodes [1,41], and increases the potential for cycling between

hypoglycemia and hyperglycemia, both of which can be harmful to the brain, especially the

developing brain [42–44]. Additionally, both hyperglycemia and hypoglycemia are known

to cause acute cerebral dysfunction [45] and are associated with decline in intellectual

performance [39]. While some investigators report no independent correlation between

preceding severe hypoglycemic events and cognitive function in adult T1D patients [46],

several clinical studies report that hypoglycemic events negatively affect cognition. For

example, Hershey et al. reported that children with more frequent and earlier onset of
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hypoglycemic events had worse performance on tests of short and long delay spatial

memory than did other tested groups [47]. A higher frequency of hypoglycemic events

during a relatively short period of time, as is more often the case in diabetic children than

adults, could account for discrepancies between studies. Nonetheless, these studies

emphasize the importance of maintaining good glycemic control for diabetes patients.

It is important to note that although T1D patients may perform less well on some cognitive

tasks when compared to control subjects, scores for diabetes patients are often within the

normal cognitive range [48]. In a study comparing young to middle aged T1D patients with

age-matched controls, the diabetic persons performed more poorly on tests of executive

function, short term memory, psychomotor efficiency and a measure of mental efficiency;

however, all subjects scored within a normal cognitive range [49]. These results imply that

although there are deficits in cognition in T1D, these deficits are mild and may not fall

below ratings of the general population. However, the potential unfortunate outcome of

these ‘mild’ cognitive deficits in T1D patients is a predisposition for more rapid

deterioration of cognitive function in later life. Indeed, cumulative CNS complications in the

hippocampus may lead to cognitive decline, as well as increased risk for neurological

comorbidities [35,50].

3.1. Diabetes and the hippocampus in type 1 diabetes

The hippocampus is an important structure for the integration of learning and memory in the

mammalian CNS [51] and is particularly sensitive to changes in glucose homeostasis. For

example, improper glucose homeostasis may impact the electrophysiological properties of

hippocampal neurons. In particular, studies performed on rodent models of T1D and models

of improper glucose regulation show dysfunctional synaptic plasticity with specific deficits

in long-term potentiation (LTP) and long-term depression (LTD) [52–54]. Typically these

animal models have impairments in LTP and an enhancement of LTD when compared to

controls. These electrophysiological changes may be an underlying contributor to some of

the impairments exhibited by diabetic animal models on cognitive performance. Indeed,

STZ diabetic rats that exhibit these electrophysiological changes in LTP and LTD perform

less well on spatial memory tasks when compared with control rats [55].

Clinical imaging studies have provided insight into additional factors that may contribute to

cognitive deficits observed in T1D patients, including structural and morphological changes

in the hippocampus. In this regard, the odds for better performance on delayed memory

tasks were greater in T1D patients with no periventricular WMH [49]. However, this study

as well as others identified no overall changes in brain matter composition or volume in T1D

patients [43,48,49]. Conversely, some reports have identified changes in brain structures and

brain volume in T1D [56–59]. The discrepancies in brain imaging studies of T1D may be

related to patient age, age of diabetes onset, hypoglycemic events, or differences in

statistical analysis. Some studies have shown that age of diabetes onset may be one of the

most critical contributors to CNS structural abnormalities [58], although this may be a

secondary effect related to the number of hypoglycemic and/or hyperglycemic events

experienced by the patient. Structural analyses in the hippocampus of experimental models

of T1D have yielded more consistent findings.
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In histological studies, STZ diabetic rats display morphological changes in the hippocampus,

including dendritic atrophy in the CA3 pyramidal neurons [12]. In addition, T1D rats exhibit

redistribution of the synaptic proteins synaptophysin and post-synaptic density 95 (PSD-95),

which could be indicative of ongoing synaptogenesis in the hippocampus of STZ rats [60].

Collectively, these clinical and pre-clinical data illustrate that the extent of cognitive

impairment and brain morphology abnormalities in T1D remains to be unequivocally

determined. However, the literature to date suggest that structural changes, which may

underlie cognitive decline, are likely occurring in T1D patients, effects that may have

detrimental consequences over extended periods of time.

4. Type 2 diabetes and cognitive impairment

A number of studies have examined the relationship between T2D and cognition. Some

studies suggest that cognitive performance does not differ between T2D patients and non-

diabetic controls when the influence of age, premorbid IQ, body mass index (BMI) and

depression are taken into account [61]. However, many clinical and pre-clinical studies

contradict this finding and support the concept that T2D is associated with cognitive decline.

In this regard, T2D patients have been identified as having mini-mental state examination

(MMSE, a measure of cognitive ability) scores in the impaired range when compared to age-

matched controls [62]. Moreover, lower cognitive scores on performances of general

cognition, verbal memory, and category fluency have also been reported in men and women

with T2D [63]. These findings are in agreement with other studies suggesting an increased

occurrence of cognitive impairment in older T2D individuals [64]. More recently, Convit

and coworkers reported that the cognitive deficits in T2D patients may be more selective for

hippocampal-related memory performance and that these deficits are correlated with the

degree of glycemic control [65]. These clinical data are supported by observations from

animal models of T2D. For instance, the db/db mouse exhibits deficits in the water maze, a

hippocampal-dependent spatial learning task [66]. Moreover, our previous studies revealed

that type 2 Zucker fa/fa diabetic rats perform more poorly compared to their lean littermates

in the variable-interval delayed alternation test of learning and memory [67]. It can be

concluded from these studies that T2D subjects experience deficits in hippocampal-based

cognitive performance, deficits that may be attributed to changes in brain structure and

volume.

4.1. Hippocampal structure and function in type 2 diabetes

A number of studies suggest that patients with T2D are more likely to have structural brain

abnormalities [64,68], such as cerebral infarcts [69], when compared with T1D patients and

non-diabetic individuals. In an MRI study of subjects with vascular disease, patients with

T2D were more likely to have a smaller brain parenchymal fraction and more WMH than

patients with vascular disease but without diabetes [33]. Alternatively, a review of imaging

studies measuring structural brain changes in diabetic patients found no consistent data

concerning WML but found a correlation between brain atrophy and T2D [70]. In particular,

the hippocampus and other temporal lobe structures appear to have high susceptibility to

diabetes-associated atrophy [65,69,71], and most studies of T2D-related structural

rearrangement provide evidence for the occurrence of some identifiable CNS damage,
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especially within the hippocampus [50]. Changes in hippocampal morphology may be

accompanied by electrophysiological changes in T2D, which may contribute to cognitive

decline. For example, electrophysiological deficits are observed in the hippocampus of

experimental models of T2D such as the db/db mouse and the Zucker rat [66,72]. In the

clinical setting, a study of middle aged T2D patients identified differences between right,

left and overall P300 wave latencies in diabetics compared to controls [62]. The P300 wave

is a cortical neurophysiological characteristic reflecting the speed of neuronal events

underlying information processing and appears to be strongly associated with attention and

short-term memory. Changes in P300 are important to note due to the fact that T2D-induced

cognitive changes often include deficits in attention and learning and memory [25].

Interestingly, changes in P300 wave are also a trait observed in normal aging [73], which

provides a potential functional deficit common to both diabetes and normal brain aging.

Overall, these studies provide data indicating that cognitive decline is a neurological

consequence of T2D that may be partly attributable to structural rearrangement and changes

in the electrophysiological properties of hippocampal neurons. Importantly, these

neurological consequences of diabetes appear to parallel those observed in the aging brain.

5. Aging, neurodegenerative diseases and diabetes

5.1. The normal aging brain

The process of normal aging is characterized by decreased ability to remember new facts,

decline in cognitive performance, structural and morphological brain changes, modifications

in electrophysiological properties, and increased risk of diabetes and insulin resistance

[73,74]. There is a trend for a slight decrease in brain weight and volume in aged people [74]

and a correlation between atrophy rates and decline in cognitive ability [75,76]. In a six year

longitudinal study of older individuals, brain atrophy was reported to be most correlated

with age, heavy drinking and glycosylated hemoglobin index (HbA1c), an indicator of long

term glycemic control [77]. Reorganization of the structural and chemical balance of the

hippocampus in aged people and animals can be correlated to age-related memory deficits

and changes in synaptic plasticity [73,78–80]. For example, with increasing age, there is a

decrease in the number of synapses in the dentate gyrus and specific synapse loss of cortical

inputs to the hippocampus in both humans and animals [73]. In aged rats, the hippocampus

has approximately one-third fewer synaptic contacts from the entorhinal cortex when

compared to younger rats [73]. In addition to decreased synapse number, hippocampal

interneuron populations are decreased in the aged brain; specifically, GAD67

immunoreactive interneurons are decreased in the CA1 region of the hippocampus of old

rats [81]. These data compliment reports of decreases in specific interneuronal populations

in other hippocampal regions such as the hilus [82]. Decline in hippocampal interneuron

populations may have functional consequences since interneurons have been shown to be

crucial for a variety of cognitive functions including memory [83]. As described above,

many of these changes observed in the aging hippocampus are also seen in diabetic patients

and animal models of diabetes, changes that may predispose diabetic subjects to

neurodegenerative diseases such as AD. The commonalities between the diabetic brain and

the aging brain support the idea that diabetes induces advanced brain aging, especially in

T2D patients [84]. However, advanced age is a risk factor for both diabetes and cognitive
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decline. As a result, it is challenging to differentiate between these factors in order to

determine whether diabetes induces brain aging or interacts with normal aging to create an

exacerbated phenotype. A concept referred to as “the brain reserve hypothesis” may provide

insight into this question.

The brain reserve hypothesis was first suggested to explain incongruence between

pathological brain damage and cognitive and functional performance in older individuals

[85]. This hypothesis is based on the theory that individuals with higher levels of education

have an increased capacity to make adjustments so that cognition does not suffer in response

to brain atrophy or structural changes [85]. A modified theory of brain reserve in relation to

diabetes has been discussed by Ryan and Geckle, which proposes that older individuals have

less brain reserve making them more susceptible to diabetes-induced CNS changes [84]. It is

possible that this revised hypothesis is not only applicable to older diabetic patients but

perhaps to all diabetic patients irrespective of age. If this hypothesis is correct, diabetes

patients would be more susceptible to CNS insults arising from diabetes and less capable of

adapting in order to reduce or eliminate cognitive deficits. The addition of an increasing

number of insults, such as the features of the metabolic syndrome in T2D or hypoglycemic

episodes in T1D patients, would further increase CNS vulnerability. As such, poorly

controlled diabetes would create a neuronal milieu in which diabetes patients are more

vulnerable to the aging process and age-related diseases such as AD.

5.2. Diabetes and age-related comorbidities: Alzheimer’s disease

Alzheimer’s disease (AD) is the most common form of dementia in the United States

[86,87]. Risk factors for AD may include age, genetics, a variety of cardiovascular

complications and diabetes [88]. The onset of AD is generally subtle, followed by a

progressive decrease in cognitive function characterized by memory loss [87,89].

Histologically, AD is identified by an abundance of neuritic plaques and neurofibrillary

tangles in areas of the cerebral cortex, hippocampus and other temporal lobe structures of

postmortem tissue [87,90]. Neuritic plaques are formed from an accumulation of amyloid-β
(Aβ) peptide which is produced by cleavage of amyloid precursor protein (APP) [87].

Neurofibrillary tangles are composed of abnormally hyperphosphorylated tau protein, an

axonal protein that promotes microtubule assembly and stability [87]. Hyperphosphorylation

disrupts proper tau function and may lead to synapse dysfunction, neuron degeneration and

cognitive impairment [91].

Some clinical and epidemiological studies have demonstrated an association between

diabetes and the development of comorbid AD. Data from the Religious Orders study, a

study of aging in Catholic priests, nuns and brothers across the US, show a 65% increased

risk of developing clinical manifestations of AD in diabetic patients compared to non-

diabetic controls [23], findings that are consistent with a number of other studies [4,92–94]

but not all [95]. In addition, some researchers have identified an association between

borderline non-overt diabetes and increased AD risk [96]. One plausible explanation for

potential increased risk of AD in diabetes is insulin resistance. Plasma insulin levels are

elevated in type 2 patients and in AD patients [88,92,97], which presumably reflects insulin

resistance. Additionally, in AD patients, administration of insulin increases plasma levels of
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Aβ [98], which would potentially increase CNS levels of Aβ that could accumulate into

neuritic plaques. In control non-demented subjects, insulin causes a decrease in plasma Aβ
levels [98], further supporting differences in the insulin system of AD patients compared to

non-AD subjects. Unlike the increases in plasma insulin levels, there is a decrease in

cerebrospinal fluid (CSF) levels of insulin in AD patients compared to non-AD controls and

a positive correlation between CSF insulin and dementia severity in AD [97]. Such results

would support the idea that insulin resistance may be a contributor to cognitive impairment

and dementia in AD patients.

Some researchers suggest that insulin aids in the clearance of Aβ, at least in the periphery

[98], but others support the concept that insulin leads to the release of intracellular Aβ,

thereby increasing secretion into the extracellular space and facilitating Aβ accumulation

[88]. Under physiological conditions, insulin signaling cascades have been implicated in the

regulation of tau phosphorylation [99]. Briefly, insulin signaling leads to the activation of

phosphoinositide 3-kinase (PI3K), which phosphorylates and activates Akt. Activated Akt in

turn phosphorylates and inactivates the cytoplasmic enzyme glycogen synthase kinase-3β
(GSK3β). In the brain, GSK3β is one of the kinases involved in the phosphorylation of tau

[99]. In the normal brain, insulin signaling activation reduces the phosphorylation state of

tau, whereas deficits in insulin signaling could cause hyperphosphorylation of tau [99].

Whether these mechanisms contribute to hyperphosphorylation of tau in AD patients or

diabetes patients remains to be verified. However, hyperphosphorylation of tau is observed

in experimental models of diabetes. In a study of Alzheimer-associated pathologies in

animal models of diabetes, both T1D and T2D rats exhibited decreases in phosphorylated

Akt and phosphorylated GSK-3β [100], which may have contributed to the development of

histological AD features. Additionally, tau is hyperphosphorylated in STZ diabetic mice

[101–103]. Moreover, histological studies from our lab identified hyperphosphorylated tau

immunoreactivity in the hippocampus of fatty Zucker rats, AD-like pathology that is not

observed in lean control rats (Fig. 1).

There are a limited number of human postmortem studies that have examined histological

features of AD in the diabetic brain and these studies have yielded inconsistent findings.

Some studies report no association [104,105], while another study reports a negative

correlation between diabetes and the presence of neuritic plaques and neurofibrillary tangles

[106]. A number of possibilities could explain the discrepancy between postmortem and

clinical data relating AD to diabetes. For example, diabetic individuals with comorbid AD

may be less likely to survive to an older age and therefore may not be included in these

postmortem studies [106]. Additionally, there is the possibility that diabetes does not

increase the risk of developing histological features of AD but instead creates a cognitive

phenotype that resembles the clinical symptoms of AD, a phenotype which may be more

pronounced in individuals of older age. In support of this concept, data from the Religious

Orders study show a correlation between diabetes and clinical symptoms of AD [23] while

no correlation was later found between postmortem histopathological AD features and

diabetes in this same population [104]. Nonetheless, as detailed above, some features

associated with AD are observed in diabetic patients and would support the idea of diabetes

increasing the risk of AD or AD-like symptoms. The association between increased risks of

developing mild cognitive impairment (MCI) or AD in diabetes patients requires further
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analysis, including additional post-mortem studies assessing histopathological features such

as hyperphosphorylated tau. It is crucial that further investigation be continued in order to

elucidate the mechanistic mediators that increase neuronal vulnerability and thereby

facilitate cognitive decline and progression of AD symptomatology in diabetic patients.

6. Potential contributors to diabetes-induced brain aging

6.1. Insulin and glucose

The discovery of centrally located insulin receptors [107,108] has lead to a greater

appreciation of the multi-faceted functions of insulin within the CNS. The expression of

insulin receptors in the hippocampus has driven the hypothesis that insulin is an important

contributor to or regulator of cognitive function [109,110] a theory supported by clinical

evidence. For example, chronic intranasal insulin administration improves cognitive

performance in both AD and non-demented individuals [17,88,111–113], and acute insulin

administration has been shown to improve declarative memory in AD patients [114].

Moreover, administration of the insulin sensitizer, rosiglitazone, ameliorates cognitive

decline in non-diabetic AD patients [115]. Rosiglitazone-induced cognitive improvement is

also observed in animal models of AD [116], which may be mediated in part through

increases in dendritic spine density, an effect of rosiglitazone observed in primary cortical

cultures [117]. Insulin is also known to exert direct and indirect effects over various

neurotransmitter systems. For example, insulin increases N-methyl-D-aspartate (NMDA), α-

amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA) and gamma-aminobutyric acid

(GABA) receptor surface expression [118–120], and indirectly regulates particular

neurotransmitters, such as epinephrine [18,121–123]. Insulin also modulates basal synaptic

transmission [124–126] and restores normal synaptic plasticity in the hippocampus of

animal models of diabetes [55]. Additionally, cognitive training strengthens insulin

signaling in the hippocampus of non-diabetic rats [127], effects that may further enhance the

functional activities of neurotransmitters that are critical for synaptic plasticity and cognitive

function. Under pathological conditions, previous studies have revealed that hyperglycemia,

endocrine dysfunction, deficits in hippocampal plasticity and behavioral performance

observed in experimental models of diabetes are inhibited by insulin replacement [55,128].

Such results suggest that decreases in insulin receptor (IR) activity may be an initiating

factor producing deficits in hippocampal plasticity and ultimately cognitive decline.

Another important contributor to brain function, especially as it relates to cognition, is

glucose. In this regard, fasting plasma glucose levels were negatively correlated with

episodic memory and recall in a study of normal healthy women [129]. Also, glucose

administration improves cognitive performance in people and animals irrespective of pre-

existing cognitive impairments [19,20,114,130,131]. During hippocampal-dependent

cognitive tasks, extracellular levels of glucose are decreased in the hippocampus of rodents,

implying increased glucose uptake and utilization by cells [15]. The intimate connection

between glucose and cognition [129,132] reinforces the importance of maintaining the

delicate balance of glucose levels within the brain. Studies in experimental models of

diabetes provide additional support for the importance of tight glycemic control. For

example, moderate recurrent hypoglycemia improved performance on a hippocampal

Wrighten et al. Page 9

Biochim Biophys Acta. Author manuscript; available in PMC 2014 April 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



dependent cognitive task in the euglycemic state in male rats, as compared to control

animals. However, during acute hypoglycemia, recurrent hypoglycemic animals performed

no better than chance on a maze task [133]. These data suggest that familiarity with the

experience of hyperglycemia or hypoglycemia may cause the brain to become more efficient

at utilizing glucose and other means of energy during cognitive tasks, but only when

sufficient glucose is available. Although these data suggest that a more constant glycemic

index is perhaps better than fluctuations between glycemic states, harmful CNS

consequences may nonetheless accompany a non-euglycemic environment, including blood–

brain barrier dysfunction [122], deep subcortical white matter lesions and other structural

deficits [43,64]. Although the data on the effects of glycemic control show a bit of

discrepancy, overall, it appears that bouts of hypoglycemia and hyperglycemia make a

significant contribution to cognitive performance impairments via a variety of mechanisms

[134].

6.2. Advanced glycation end products and oxidative stress

In addition to altering cognitive performance, poor glycemic control increases the

accumulation of advanced glycation end products (AGE) [135], products formed by the non-

enzymatic reaction between sugars and amino groups, and oxidative stress in the brain,

which may lead to cellular and molecular damage [136]. In this regard, AGE and oxidative

stress have both been identified as potential contributors to diabetes-induced brain aging

[22,137]. Accumulated AGE are present in normal aging and in certain pathological

conditions such as AD and diabetes [138–141]. Among the actions of AGE are effects on

extracellular matrix proteins and basement membrane components which can cause or

facilitate vascular complications [135,142]. Additionally, AGE generation increases

proinflammatory mechanisms in the vessels that enhance oxidative stress. An increase in

oxidative stress leads to AGE accumulation and thus creates an unremitting cycle [140]

which may contribute to a host of complications and imbalances.

In physiological conditions there is a delicate balance between the synthesis of oxygen free

radicals and the activities of anti-oxidant pathways to protect the organism; an imbalance of

the oxidant/anti-oxidant equilibrium favoring the former creates a situation of oxidative

stress [143]. Studies from animal models have strengthened the relationship between

oxidative stress, aging and cognitive performance. For example, increases in oxidative stress

in the rat hippocampus are associated with decreases in behavioral performance in

hippocampal-dependent learning and memory paradigms, such as the Morris water maze

[143–145]. During aging, antioxidant enzyme activity and expression decreases [146–148],

suggesting that oxidative status may shift towards accumulation of oxidative stress products.

There are similar imbalances in oxidant/anti-oxidant pathways in animal models of diabetes

[9]. The free radical hypothesis of aging proposes that aging is the result of random harmful

effects on tissue due to oxygen free radicals [149,150], a hypothesis that may be applicable

to diabetic individuals as well. As such, deleterious AGE accumulation and imbalances in

oxidative stress status may be among the etiological factors that contribute to the

pathogenesis of age-related and diabetes-induced cognitive impairments. The potential for

disruption of proper AGE metabolism and oxidative stress status in diabetes [137] provide
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additional explanations as to how diabetes might worsen or accelerate the brain aging

process.

6.3. HPA axis dysfunction

Many pathological conditions are associated with hypothalamic–pituitary–adrenal (HPA)

axis dysregulation, including diabetes (For review see [9]). The relationship between

glucocorticoids (GCs) and obesity, a common feature in T2D patients, is relevant in terms of

induction of insulin resistance. In this sense, lipolysis induced by GCs increases free fatty

acid levels in blood, which in turn causes hyperglycemia through the stimulation of hepatic

gluconeogenesis and a reduction in glucose uptake by competing with glucose for oxidation

[151]. Consequently, a compensatory increment in insulin secretion leads to

hyperinsulinemia, downregulation of insulin receptors and insulin resistance. Short-term

corticosterone (CORT) administration to rats produces peripheral insulin resistance and also

decreases insulin sensitivity in the hippocampus, including decreases in insulin-stimulated

translocation of the insulin sensitive glucose transporter GLUT4 [152]. Interestingly,

adrenalectomized STZ rats and db/db mice provided low dose of CORT replacement exhibit

improved spatial memory and novel object recognition compared to sham operated animals

and adrenalectomized animals given high levels of CORT replacement [153]. Such results

support the notion that HPA axis dysfunction and/or exposure to elevated glucocorticoid

levels contributes to the cognitive deficits observed in diabetic animals. It appears that most,

if not all, of the comorbidities associated with diabetes or insulin resistance are characterized

by HPA axis dysfunction [154,155]. Although cause and effect have not been determined in

many of these situations, these findings may place impairments in HPA axis function at the

center of diabetes-induced advanced brain aging.

6.4. Obesity

Ongoing epidemiological studies by the Centers for Disease Control estimates that more

than 60% of the adult US population may be categorized as either overweight or obese

[156]. Since there is a positive correlation between risk of T2D development and obesity

[157], understanding the relationship between obesity and cognitive function is an important

health care issue. In this regard, obesity has been both positively and negatively correlated

with dementia in older individuals [158–160]. However, among middle-aged people there is

a common trend for obesity to be negatively correlated with cognitive performance [3,161].

Obesity-related CNS abnormalities may be due to obesity-induced insulin resistance and/or

impaired glucose tolerance [157,162], as described in previous sections. In addition, obesity

may contribute to dementia and other cognitive impairments by increasing the incidence of

vascular pathologies [163,164]. An additional consideration in obesity phenotypes is the

potential for increases in plasma levels of adipocyte-derived hormones, such as leptin, that

may have deleterious consequences on the CNS.

Leptin is synthesized and secreted by adipocytes and is transported across the blood–brain

barrier (BBB) via a saturable transport system [165]. The actions of leptin in the

hypothalamus are well described, especially in relation to normal metabolism and in

pathophysiological settings such as diabetes and obesity phenotypes [166]. There is now a

growing literature to support a role for leptin in the facilitation of hippocampal synaptic
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plasticity [167]. For example, studies by Harvey and co-workers determined that leptin

enhances hippocampal excitability via NMDA receptor mediated mechanisms and regulates

hippocampal plasticity by converting short-term potentiation into LTP in young rats [168].

Confocal immunofluorescence analyses also determined that leptin regulates the

morphological features of primary hippocampal cultures, including the motility of dendritic

filopodia [169]. These structural and functional enhancements of hippocampal plasticity

may contribute to leptin’s ability to improve hippocampal-dependent behavioral

performance [170–172]. Alternatively, genetic mutations that result in disrupted leptin

signaling such as in the db/db mouse and the Zucker fa/fa rat are associated with reductions

in LTP [66,72] and impaired performance of hippocampal-dependent tasks [66,67]. Such

results indicate that decreases in leptin signaling contribute to deficits in hippocampal

synaptic plasticity and suggest that leptin resistance, a well described phenomenon in the

hypothalamus, may also be observed in the hippocampus in diabetes/obesity phenotypes.

7. Conclusions

Through findings from both human and animal studies, the underlying mechanisms involved

in diabetes-induced CNS complications are coming under greater scrutiny and becoming

better appreciated. It is extremely difficult to decipher a causal relationship between many of

the endocrine and metabolic changes observed in diabetes and to appoint specific

contributions of each factor. It is unlikely that any single factor is solely responsible for the

CNS complications in diabetic subjects. Rather, a variety of factors likely act in additive or

synergistic ways to impair neuronal homeostasis, increase neuronal vulnerability and

eventually contribute to cognitive decline (see Fig. 2). Since some studies suggest that

diabetic patients exhibit cognitive performance that is within the normal range, the

magnitude or importance of memory decline in diabetic patients is often debated. However,

the combination of the structural and functional changes within the hippocampus that elicit

subtle decreases in cognitive function may be progressive and silently lead to increased risk

of age-related neurological disorders. Indeed, the deleterious consequences of diabetes

undoubtedly accumulate over time and ultimately produce detrimental effects in the CNS.

Such realities emphasize the importance of patient education as it relates to maintaining a

healthy life style through diet, exercise and medication. Additionally, there is a continued

need for clinicians and pre-clinical scientists to identify the factors that are involved in the

etiology and progression of the neurological complications of diabetes, as well as identify

the fundamental basis that may cause diabetes patients to be more susceptible to develop

comorbid MCI or AD. Therefore, one critical mission of ongoing research is the

identification of these mechanistic mediators, which may lead to the development of novel

therapeutic strategies to prevent or reverse the neurological consequences of diabetes in the

CNS.
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Fig. 1.
Hyperphosphorylation of tau is increased in the hippocampus of Zucker type 2 diabetic rats.

Representative photomicrographs demonstrate an absence of hyperphosphorylated tau

immunoreactivity in the dentate gyrus (Panel A) and the CA3 region (Panel C) of lean

control rats. Conversely, hyperphosphorylated tau immunoreactivity is significantly

increased in the dentate gyrus (Panel B, arrow heads) and the CA3 region (Panel D, arrow

heads) of fatty Zucker diabetic rats. This AD-like pathology may contribute to the

development of behavioral deficits observed in this experimental model of type 2 diabetes.
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Fig. 2.
Potential mechanistic mediators of diabetes-induced brain aging. The complex

pathophysiological features of diabetes may include decreases in insulin activity, impaired

glucose homeostasis, dysregulation of hypothalamic–pituitary–adrenal (HPA) axis function,

and hyperleptinemia, among others. The consequences of these pathophysiologies in the

hippocampus include dendritic atrophy, changes in synapse formation, electrophysiological

deficits, as well as the appearance of Alzheimer’s disease-like histopathology, such as

hyperphosphorylated tau. Additional pathological consequences that contribute to cognitive

decline in diabetic subjects may include changes in oxidative stress status and the

development of insulin and/or leptin resistance in the hippocampus. These factors, in

combination with other pathological features such as microvascular complications and

mediators such as the pro-inflammatory cytokines, act in an additive or synergistic fashion

to accelerate brain aging in diabetic subjects, thereby increasing patient vulnerability for the

development of age-related disorders such as mild cognitive impairment and AD. See text

for details.
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