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Abstract

Background—Heart failure survival models are typically constructed using Cox-proportional

hazards regression. Regression modeling suffers from a number of limitations, including bias

introduced by commonly used variable selection methods. We illustrate the value of an intuitive,

robust approach to variable selection, random survival forests (RSF), in a large clinical cohort.

RSF is a potentially powerful extension of Classification and Regression Trees (CART), with

lower variance and bias.

Methods and Results—We studied 2231 adult systolic heart failure patients who underwent

cardiopulmonary stress testing. During a mean follow-up of 5 years, 742 patients died. Thirty-nine

demographic, cardiac and noncardiac co-morbidity, and stress testing variables were analyzed as

potential predictors of all-cause mortality. A RSF of 2000 trees was constructed, with each tree

constructed on a bootstrap sample from the original cohort. The most predictive variables were

defined as those near the tree trunks (averaged over the forest). The RSF identified peak VO2,

serum BUN, and treadmill exercise time as the three most important predictors of survival. The

RSF predicted survival similarly to a conventional Cox-proportional hazards model (out-of-bag C-

index of 0.705 for RSF vs 0.698 for Cox-proportional hazards model).

Conclusions—A random survival forests model in a cohort of heart failure patients performed

as well as a traditional Cox-proportional hazard model, and may serve as a more intuitive

approach for clinicians to identify important risk factors for all-cause mortality.
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Most heart failure survival models are based on multivariable Cox proportional hazard

regression1–6. To prevent overfitting and achieve parsimony, analysts often identify
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statistically significant variables by methods such as stepwise regression or χ2 statistical

score ranking1, 3, 7, 8. These methods yield variable results and have been criticized for

creating bias9. In addition, from the point of view of clinicians, regression modeling and

variable selection appear to occur within a computer’s “black box.”

Statistical methods like classification and regression trees (CART) may be intuitive for

clinicians since they illustrate the importance and relationship of variables with a single

young tree that has few branches10. However, CART suffers from high variance and poor

performance11–13 which leads to instability. Random survival forests (RSF) is a new

statistical method that grows numerous mature trees with many branches.14 RSF reduces

variance and bias by using all variables collected and by automatically assessing for

nonlinear effects and complex interactions. It is a direct extension of the random forest

which has been successfully used in clinical studies15–18 and in some cases shown to

outperform classical statistical methods18, 19

We use random survival forests to illustrate an intuitive and powerful approach for

identifying important risk factors for survival in 2231 systolic heart failure patients who

underwent cardiopulmonary stress testing at the Cleveland Clinic. Variables with relatively

high importance are near the tree trunks20. We also compare the results of random survival

forest to our previously published Cox proportional hazard model for predictive accuracy of

the model and for selection of important risk factors for all-cause mortality21.

Methods

Data Source

The design of this observational prospective study has been previously published21. The

cohort consisted of all adult patients at the Cleveland Clinic with left ventricular ejection

fraction < 40% who underwent cardiopulmonary stress testing between August 1997 to

April 2007 using a modified Naughton protocol, the most common protocol used in our

laboratory for heart transplant evaluation. Patients were excluded if they were under 18

years of age or had no United States Social Security number. Left ventricular ejection

fraction was assessed by echocardiogram, left ventriculography, or ECG-gated SPECT

imaging. If more than one stress test was performed on an individual, only the first stress

test was used in this analysis. Demographic information, height and weight directly

measured, medications, and stress test results were entered into our electronic database at the

time of stress testing.

The results of exercise stress testing were recorded on a MedGraphic cardiopulmonary

system (St. Paul, Minnessota). Heart rate, blood pressure, respiratory rate, oxygen

consumption (VO2), carbon dioxide production, minute ventilation, and tidal volume were

obtained every 30 seconds at rest, during exercise, and during recovery. Exercise stress

testing was symptom limited and total duration of exercise was measured to the nearest

second. Serum laboratory tests within 3 months were included and only the tests closest in

time to the stress test were considered. As we discussed previously21, laboratory tests prior

to October 1999 were systematically missing from our electronic database; therefore, we

used informed imputation to fill in 10% of serum glucose, BUN, creatinine, and sodium and
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15% of hemoglobin values. No other data were missing either systematically or at random,

precluding any need for multiple imputation.22 Glomerular Filtration Rate (GFR) was

estimated using the Cockcroft-Gault equation23. The study was approved by the Institutional

Review Board at the Cleveland Clinic, and informed consent was waived because all data

were collected and recorded as part of routine clinical care.

Study Variables

The following variables were assessed for prognostic value: sex, age, body mass index (kg/

m2), current tobacco usage, insulin treated diabetes, non-insulin treated diabetes, coronary

artery disease, previous myocardial infarction, previous coronary artery bypass graft

surgery, previous percutaneous coronary intervention, implantable cardioverter-defibrillator,

pacemaker, β-blocker, ace inhibitor, angiotensin receptor blocker, potassium sparing

diuretics, antiarrythmics, anticoagulation, aspirin, digoxin, nitrates, vasodilators, loop

diuretics, thiazide diuretics, statins, non-dihydropyridine calcium channel blocker,

dihydropyridine calcium channel blocker, resting heart rate (beats/min), resting systolic

blood pressure (mmHg), left ventricular ejection fraction, peak oxygen consumption (mL•

kg−1• min−1) peak respiratory exchange ratio, treadmill exercise time, serum sodium

(mmol/L), creatinine clearance (mL/min), serum BUN (mg/dL), serum hemoglobin (g/dL),

and serum glucose (mg/dL).

Endpoints

The primary endpoint was all cause death. Mortality data were obtained by linking our

database with the United States Social Security Administration Death Index which we

previously reported to have a sensitivity of 97 %24.

Statistical Analysis

Sex-specific baseline characteristics were reported with continuous variables expressed as

means with SDs, and categorical variables expressed as frequencies.

Random survival analysis was employed using all-cause mortality for the outcome24. Thirty-

nine variables in 2231 patients were used for the analysis. A survival forest of 2000 survival

trees was constructed.

Figure 1 demonstrates how we build a single random tree. We start by choosing a bootstrap

sample of patients from the original cohort. At each branch, a random set of variables are

chosen as candidates to split the branch into two other branches, and the variable

maximizing the log-rank statistic25 using 3 randomly selected split points was used for

splitting. The number of variables assessed at each branch was the square root of the total

number of variables. Branch levels are numbered based on their relative distance from the

tree trunk (i.e. 0, 1, 2) Splitting of branches to create the tree continues as long as possible

until terminal branches have no fewer than 3 deaths.

A random survival forest is generated by creating 2000 trees. The most important variables

are identified as those that most frequently split the branches near the tree trunks. There are

no pre-specified assumptions regarding variables and randomization is introduced into this
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model by both random bootstrap sampling of patients from the original cohort and random

sampling of variables for each tree branch. Importance of a variable is assessed by minimal

depth from the tree trunk14. To illustrate this concept, we show in Figure 2 a random tree

with color coding of “maximal subtrees.” A maximal subtree for a variable v is the largest

subtree whose lowest branch is split using v. The shortest distance from the tree trunk to the

branch level of the closest maximal subtree of v is the minimal depth of v. For example in

Figure 2, exercise time splits the tree trunk and has a minimal depth of zero, while BUN are

the two green subtrees with a minimal depth of 2. The most predictive variables for the

cohort are defined as those whose minimal depth (averaged over the forest) is smaller than

the mean minimal depth determined under the null hypothesis of no effect20

Prediction accuracy for random survival forests was assessed by Harrell’s C-index using

out-of-bag (OOB) data. The out-of-bag (OOB) method involves obtaining bootstrap samples

from the original cohort and using each sample to compute a prediction model. Each

bootstrap sample left out about one-third of the data, which was referred to as the OOB data.

The C-index was calculated using an OOB ensemble constructed with the 2000 OOB

datasets produced by the 2000 bootstrap samples used in deriving the forest. A

nonparsimonious Cox proportional hazards model was constructed as previously described21

and compared to the random survival forest model for predictive accuracy of the model and

for selection of important risk factors for all-cause mortality. Briefly, the proportional

hazards assumption was tested by scaled Schoenfeld residuals and inspection of hazard ratio

plots. Possible nonlinear associations for the Cox proportional hazards model were tested

with restricted cubic splines and possible interactions were also tested. Prediction accuracy

for Cox proportional hazards model was assessed by Harrell’s C-index using out-of-bag

(OOB) data.21

All analyses were performed with SAS version 9.1.3 (SAS Institute Inc, Cary, NC) and R

version 2.6.2 (www.R-project.org). Random survival forests were implemented using the

“RandomSurvivalForest” R-package, freely available through the CRAN distribution system

at http://cran.r-project.org/web/packages/randomSurvivalForest/index.html.

This work was supported in part by the Health Resources and Services Administration

contract 234-2005-370011C, by American Heart Association Scientist Development Grant

0730307N, and by the National Heart, Lung, and Blood InstituteCAN #8324207 and

contract HHSN268200800026C. The content is the responsibility of the authors alone and

does not necessarily reflect the views or policies of the AHA or NHLBI or Department of

Health and Human Services, nor does mention of trade names, commercial products, or

organizations imply endorsement by the U.S. Government.

Results

Our cohort consisted of 2231 patients including 602 (27%) women and 1629 (73%) men.

There were 155 women (26% of female cohort) and 587 (36% of male cohort) men who

died during a mean follow up of 5 years (maximum for survivors, 11 years).
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Table 1 shows the baseline characteristics of the cohort according to sex. Our patients had

advanced disease with low systolic blood pressure, low peak VO2, and low left ventricular

ejection fraction. Most patients received angiotensin converting enzyme inhibitors or

angiotensin receptor blockers, and over 60% received beta-blockers.

Figure 3 shows six randomly chosen trees from the 2000-tree forest. The three most

important variables amongst these trees are color coded blue for treadmill exercise time, red

for peak VO2, and green for serum BUN. These colors appear on almost every tree and are

found near the tree trunks demonstrating their relative importance.

Figure 4 shows all 39 variables and plots their minimal depth. The thick dashed blue

horizontal line separates the 10 predictive variables from the remaining non-predictive

variables. The three variables on the extreme left are peak VO2, serum BUN and treadmill

exercise time, and are easily seen to be the most predictive variables. These variables are

similar to what was found in our previously published Cox-proportional hazard model

analysis but in a different relative order (i.e. peak VO2, treadmill exercise time, and serum

BUN) must reference

Figure 5 displays how the random survival forest model shows interaction between these

three most important variables and 5 year predicted survival. Patients with the highest peak

VO2 and longest treadmill exercise time have the best survival (see first row, last column)

and most had low serum BUN. Survival was worst for patients with the lowest peak VO2

and shortest treadmill time(see last row, first column) and further dependent on small

changes in serum BUN between 20–40 mg/dl. In this group 5 year predicted survival was

about 70% for those with a BUN of 20 mg/dl, but only about 50% for those with BUN of 40

mg/dl. Survival did not change much for those with serum BUN > 40 mg/dl. Amongst those

with the lowest peak VO2 (first column) survival was more dependenton serum BUN than

on treadmill time. For those with shortest exercise time (last row) survival was also very

dependent on serum BUN. It is important to note that these interactions and non-linear

relationships were identified by the forest, and not prespecified by the analyst.

Figure 6 is similar to figure 5 but provides the added dimension of β-blockers. Five year

predicted survival was worse for all groups not taking β-blockers at the time of the

cardiopulmonary stress testing. The greatest differences in survival were among patients

with a serum BUN > 40 mg/dl.

We compared the random survival forest model to a Cox proportional hazard model. Model

discrimination was similar using random survival forest analysis with an out-of-bag C-index

of 0.705 compared to our previously published nonparsimonious Cox-proportional hazard

model with a C-index of 0.69821. Using the 10 most important variables selected by random

survival forest model to create another Cox-proportional hazard model, the C-index for this

simplified Cox-proportional hazard model was comparable to the nonparsimonious Cox-

proportional hazard model which included over 30 variables (C-index 0.699 vs 0.698).
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Discussion

Random survival forest identified peak VO2, serum BUN, and treadmill exercise time as the

top three most important predictors of survival in our cohort of 2231 ambulatory systolic

heart failure patients who underwent cardiopulmonary stress testing at the Cleveland Clinic.

These variables are similar to what was found in our previously published Cox-proportional

hazard model analysis but in a different relative order21 The method used to determine the

most important predictors for RSF is easy for clinicians to understand and visualize because

important predictor variables are located at the tree trunks of the forest which can be color-

coded for easy identification. In addition, RSF predicted survival as well as the conventional

Cox-proportional hazard model (OOB C-index for random survival forest was 0.705

compared to C-index for a nonparsimonious Cox-proportional hazard model of 0.698).

Variable selection by RSF was also used to create a simplified Cox-proportional hazard

model that performed like a nonparsimonious Cox-proportional hazard model constructed

with more than 3 times the number of variables21.

There are four advantages to using random survival forests. 1) RSF is an intuitive method

because important variables to predict survival can be identified by inspecting the tree trunks

and simplified in a figure plotting the minimal depth of a variable from the tree trunk. 2)

RSF does not require analysts to know in advance the relationship (i.e. linear, nonlinear) of a

variable over time or to choose the best equation to transform nonlinear covariates. 3) The

complex interactions between multiple variables can be easily understood with RSF using

figures such as figure 5 and 6. 4) Finally, the overall accuracy of a RSF model is at least

comparable to standard methodologies14

RSF is a new, robust, extension of random forest, a well known and highly used machine

learning method, and has been utilized successfully in several applied settings, including

staging esophageal cancer26, 27 and genomics28. Machine learning involves use of

computers to generate “automatic techniques for learning to make accurate predictions based

on past observations.”29 All variables collected can be used for the survival analysis and the

method for variable selection is intuitive and has been shown to outperform parametric

methods as well as other state of the art machine learning methodologies20. RSF does not

rely on “P” values and analysts do not need to select important variables in advance with

methods like stepwise regression, inspect for residuals or include interactions. Several large

studies (using simulations and real data) have now compared RSF to other methods,

including Cox regression, and these have shown RSF to be consistently better than, or at

least as good as, competing methods14, 18 Since the introduction of random forest to the

machine learning community almost 10 years ago30, there have been efforts to document its

empirical performance. Our results confirm what has generally been found: random forest

produces accurate prediction14, 18. Ours study using a large cohort of consecutive heart

failure patients with very few loss of follow-up showed that RSF was at least as good as Cox

regression with respect to survival prediction. More studies are needed to compare RSF to

Cox regression to further document its performance in clinical settings.

The major limitation of our study is that we have not validated either RSF or our Cox-

proportional hazard model with an external cohort from another advanced heart failure
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center. Although random survival forest does effectively validate the model by creating trees

with a random group of patients and variables, it is still deriving these trees from the original

dataset and performance with an external cohort will need to be assessed. Other limitations

include the fact that more variables could be included and that variables commonly accepted

as predictors of survival like serum B-type natriuretic peptides were not routinely obtained

at our center between 1997 and 2007. Biventricular pacemakers were also not reported

separately during database entry but most were identified in the ICD category since at our

institution biventricular pacemakers were almost always implanted with an ICD. We cannot

account for variables that change with time that may impact on death, and we plan further

work on developing capabilities to analyze time-dependent covariates.. However, the

majority of the limitations described above with the exception of the need to externally

validate are what limit our survival model from possibly being better than other survival

models but do not prevent a fair comparison of random survival forest to a Cox-proportional

hazard model.

In summary, we found in a large single center cohort of severe systolic heart failure patients

that random survival forest identified similar risk factors to predictors all-cause mortality

and that a RSF model performed as well as the traditional Cox-proportional hazard model.

The Random survival forest method holds promise as an intuitive approach for variable

selection and as a way to eliminate the mistrust in the “black box” approach to statistical

analysis.
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What is known

• Classic regression models have serious limitations, including “black box”

methods for determining which variables of most strongly predict outcome

• The technique of “Random Survival Forests” is a robust, computer-based

algorithm that yields unbiased assessments of variable importance

• Random survival forests and related techniques have been primarily used in

fields outside of clinical medicine

What this article adds

• We have shown that random survival forests can be used to select the most

important variables predictive of mortality in patients with severe heart failure.
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Figure 1.
Example of a random tree. A bootstrap sample of patients from the original data set is used

to create a random tree. At the tree top (or root node), a random set of variables are chosen

to be candidates and the most predictive variable for survival among those is identified.

Node levels are numbered based on their relative distance to the top of the tree (i.e. 0, 1, 2)

Splitting of nodes to create the tree continues until terminal nodes have few distinct deaths.
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Figure 2.
Illustration of minimal depth of a variable in a random tree from our 2000-tree forest.

Highlighted are the three top variables: peak VO2 (red), BUN (green) and exercise time

(yellow). Depth of a node is indicated by numbers 0,1, 2, 3–8. The minimal depths are 0,1, 2

for exercise time, peak VO2, and BUN respectively.
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Figure 3.
Illustration of 6 random tree from our 2000-tree forest. The three most important variables

amongst these trees are color coded blue for treadmill exercise time, red for peak VO2, and

green for serum BUN.
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Figure 4.
Minimal depth (variable importance) from random survival forest analysis. Dashed blue line

is threshold for filtering variables: all variables below the line are predictive. The diameter

of each circle in the plot is proportional to the forest-averaged number of maximal subtrees

for that variable.
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Figure 5.
Random survival forest estimated five-year survival as a function of BUN, exercise time,

and peak VO2. Smoothed curves are loess curves of the estimated survival for each

individual

Hsich et al. Page 15

Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2014 April 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6.
Random survival forest estimated five-year survival as a function of BUN, exercise time,

and peak VO2 for patients taking and not taking β-blockers at time of first cardiopulmonary

stress test at the Cleveland Clinic. Blue curves identify those taking β-blockers and red

curves identify those without β-blockers. Smoothed curves are loess curves of the estimated

survival for each individual
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Table I

Sex-Specific Baseline Characteristics

Variables All (N=2231) Females (N=602) Males (N=1629)

Age, (yrs) 54 +/− 11 52 +/− 11 55 +/− 11

Body mass index, (kg/m2) 28 +/− 6 28 +/− 6 29 +/− 5

Current smokers, n (%) 459 (21) 117 (19) 342 (21)

Diabetes:insulin treated, n (%) 215 (10) 53 (9) 162 (10)

Diabetes: not insulin treated, n (%) 350 (16) 92 (15) 258 (16)

Coronary artery disease, n (%) 906 (41) 127 (21) 779 (48)

Previous MI, n (%) 279 (13) 43 (7) 236 (14)

Previous CABG, n (%) 594 (27) 64 (11) 530 (33)

Previous PCI, n (%) 476 (21) 75 (12) 401 (25)

Implantable cardioverter-defibrillator, n (%) 647 (29) 147 (24) 500 (31)

Pacemaker, n (%) 502 (23) 113 (19) 389 (24)

Medication use, n (%)

 β-Blocker 1429 (64) 387 (64) 1042 (64)

 ACE inhibitor 1711 (77) 431 (72) 1280 (79)

 Angiotensin receptor blocker 290 (13) 99 (16) 191 (12)

 Potassium sparing diuretics 649 (29) 203 (34) 446 (27)

 Antiarrythmic 509 (23) 90 (15) 419 (26)

 Anticoagulation 899 (40) 210 (35) 689 (42)

 Aspirin 1038 (47) 230 (38) 808 (50)

 Digoxin 1570 (70) 424 (70) 1146 (70)

 Nitrates 739 (33) 153 (25) 586 (36)

 Vasodilators 136 (6) 27 (4) 109 (7)

 Loop diuretics 1880 (84) 498 (83) 1382 (85)

 Thiazide diuretics 279 (13) 77 (13) 202 (12)

 Statin 850 (38) 172 (29) 678 (42)

 Calcium channel blocker: not dihydropyridine 16 (1) 4 (1) 12 (1)

 Calcium channel blocker: dihydropyridine 99 (4) 15 (2) 84 (5)

Resting heart rate, (beats/min) 76 +/− 14 78 +/− 14 76 +/− 14

Resting systolic blood pressure, (mm Hg) 111 +/− 18 110 +/− 18 111 +/− 18

Left ventricular ejection fraction, (%) 20 +/− 7 21 +/− 7 20 +/− 7

Peak oxygen consumption, (ml/kg/min) 16 +/− 5 16 +/− 4 17 +/− 5

Peak respiratory exchange ratio 1.08 +/− 0.12 1.05 +/− 0.13 1.09 +/− 0.11

Treadmill exercise time (sec) 503 +/− 221 476 +/− 204 513 +/− 226

Serum sodium (mmol/L) 139 +/− 3 140+/− 3 139 +/− 3

Creatinine clearance (mg/min) 91+/− 43 85 +/− 44 93+/− 43

Serum BUN (mg/dL) 25 +/− 13 23 +/− 12 26+/− 13

Serum hemoglobin (g/dL) 14 +/− 1 13 +/− 1 14 +/− 1

Serum glucose (mg/dL) 109 +/− 43 105+/− 40 111 +/− 43

Treadmill Exercise Time =maximal interval for Phase 2 (seconds) +/− Std dev (seconds)
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