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Abstract

Michaelis and Menten introduced to biochemistry the idea of time-scale separation, in which part

of a system is assumed to be operating sufficiently fast compared to the rest that it may be

assumed to have reached a steady state. This allows, in principle, the fast components to be

eliminated, resulting in a simplified description of the system's behaviour. Similar ideas have been

widely used in different areas of biology, including enzyme kinetics, protein allostery, receptor

pharmacology, gene regulation and post-translational modification. However, the methods used

have been independent and ad hoc. Here, we review the use of time-scale separation as a means to

simplify the description of molecular complexity and discuss recent work which sets out a single

framework which unifies these separate calculations. The framework offers new capabilities for

mathematical analysis and helps to do justice to Michaelis and Menten's insights about individual

enzymes in the context of multi-enzyme biological systems.

Time-scale separation in enzyme kinetics

2013 is the 100th anniversary of Leonor Michaelis and Maud Menten's paper which

introduced their famous mathematical formula for the rate of an enzymatic reaction (40; 60).

There are many instructive lessons in this paper (28) but I want to focus here on one

particular aspect of what they did which has ramified through biochemistry, pharmacology,

molecular biology and, now, systems biology. Michaelis and Menten considered the reaction

scheme

(1)

in which free enzyme, E, binds reversibly to a substrate, S, to form an intermediate enzyme-

substrate complex, ES, which then irreversible breaks down to free the enzyme and yield the

product, P. The labels on the reactions are the rate constants, assuming mass-action kinetics.

Michaelis and Menten derived from this scheme their rate formula

(2)
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in which Vmax is the maximal rate of the reaction, Vmax = k3Etot, and KM = (k3 + k2)/k1 is the

Michaelis-Menten constant.

There is something quite odd about the relationship between the reaction scheme in Eq. 1

and the rate formula in Eq. 2. The former involves the free enzyme E and the enzyme-

substrate complex ES but these components have disappeared from the latter. The only

vestige left of the enzyme is its total amount Etot in the expression for the maximal rate. The

total amount does not change over the course of the reaction, so is a conserved quantity, not

a dynamical variable. All other enzyme-related components have been eliminated.

To pull off this sleight-of-hand, Michaelis and Menten used a time-scale separation. They

assumed that, under their in-vitro conditions, in which substrate was in considerable excess

of enzyme, the enzyme-substrate complex would rapidly form and reach a quasi-steady

state, in which d[ES]/dt = 0. We might say, informally, that the enzyme-related components

are assumed to be fast variables, which rapidly reach steady state, while the substrate and

product are slow variables, which adjust to this steady state. (Formally, in biochemical

systems, it is the reactions which are fast or slow, relatively speaking, not the components, a

point to which we will return below.) With a little algebra, which has struck terror into the

hearts of generations of students, the enzyme-related components can be eliminated in

favour of the total amount of enzyme Etot, from which Eq. 2 falls out.

I should make two historical points here. First, this is not quite what Michaelis and Menten

did. They used a different time-scale separation—a rapid equilibrium assumption—and it

was Briggs and Haldane who suggested the more appropriate steady-state assumption that is

now standard (7). Second, they were not quite the first to use time-scale separation, as we

will discuss below, but they were certainly the first in terms of influence.

Enzymologists rapidly took up the method of time-scale separation to analyse more

complicated reaction schemes than that in Eq. 1 and there are now enzyme-rate formulas

which cover a wide-range of enzymological contexts and include the impact of inhibitors

and other kinds of effectors (79). An interesting feature of these formulas is that they are

always rational functions in the slow variables. That is, the right hand side is a ratio in which

the numerator and the denominator are both sums of products (polynomials) in the

concentrations of the slow variables. This may not seem particularly remarkable for the

original Michaelis-Menten formula in Eq. 2 but it is a striking and universal feature of more

complex formulas. The necessary algebraic manipulations, which get very intricate very

quickly, were eventually codified in the King-Altman method (44), to which we will return.

Eliminating variables like ES is, of course, a very good thing because, at the time of

Michaelis and Menten, nobody knew anything about them. They were theoretical entities,

suggested by the experimental data. It is often forgotten that Michaelis and Menten never

characterised the enzyme-substrate complex (for the enzyme invertase which they studied)

and they never measured its rates of assembly and disassembly (k1 and k2 in Eq. 1). The first

person to do so, for the enzyme peroxidase, was Britton Chance, no less that thirty years

after Michaelis and Menten (9). This did not stop enzymologists from enthusiastically using
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such theoretical entities in the intervening years. Biology is actually more theoretical than

physics; biologists just like to pretend otherwise (29).

The Michaelis-Menten formula has been hugely important (40), as this Review Series for

the FEBS Journal confirms. It is perhaps the one quantitative mathematical statement that

any biologist working at the molecular level would be expected to know. Unfortunately, its

very familiarity has bred, not respect, but, rather, ignorance. The elimination of the enzyme-

substrate complex has meant that such complexes have been lost from view, so that enzyme

sequestration is all too readily overlooked (6; 68). The formula is also widely used in the

wrong contexts. In particular, Michaelis and Menten assumed that product formation was

irreversible because they measured initial reaction rates when product was negligible. Yet,

the formula is habitually used in contexts, such as phosphorylation and dephosphorylation

cycles, in which the amount of product could be substantial (25). Michaelis and Menten

would have been horrified. One of the goals of this review is to explain how we can start to

do justice to what Michaelis and Menten taught us a century ago. Before setting out on that,

let us examine some of the other contexts in which time-scale separation has been used.

Other applications of time-scale separation

Allosteric proteins

If we fast forward by fifty years from 1913 to 1963 we come to Jacques Monod, Jean-Pierre

Changeux and François Jacob's famous paper (63) on what Monod would later call

“microscopic cybernetics” (62). Monod, Changeux and Jacob pointed out that for a

biosynthetic pathway to balance supply against demand through feedback inhibition, it was

necessary for enzymes to be regulated by effectors that were chemically different from their

normal substrates or products. They introduced the idea of allostery, in which an effector

binds at a site distinct from the normal catalytic site and triggers or stabilises a

conformational change in the enzyme which then alters its catalytic activity.

The general form of such an allosteric model is that an enzyme, or more generally a protein

like hemoglobin that performs a transport function rather than catalysis, can exist in multiple

conformations, T1, ··· , Tm, and a ligand (or several such) can bind to multiple sites on the

protein. If, for instance, there is a single ligand with k binding sites, then there are 2k

potential patterns of ligand binding, or “microstates”. Not all conformations need be equally

accessible to the ligand but, in principle, there could be a total of m.2k relevant microstates.

There is much internal complexity, with the microstates playing a similar role to the

enzyme-substrate complexes in enzyme kinetics.

To analyse such a system, the time-scale separation is made in which it is assumed that

conformational transitions and ligand binding have reached thermodynamic equilibrium.

Some microstates may have high activity, others low activity and the overall activity of the

protein is taken to be an average over the equilibrium distribution of microstates. For a

transport protein like hemoglobin, an appropriate average is the fractional saturation: the

proportion of sites that are bound by oxygen. Under the equilibrium assumption, the

microstates can be eliminated, which is to say that, in a similar way to the intermediate

complexes in enzyme kinetics, they can be calculated in terms of binding affinities and
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conserved quantities like the total amount of protein. This yields formulas for the average

activity as a function of the ligand concentration. As with enzyme kinetics, the functions are

rational.

Specific allosteric models make specific assumptions within this general setup. In Monod,

Wyman and Changeux's “plausible model”, the protein is assumed to be a multimer that

exists in two quaternary conformations, traditionally called “relaxed” and “tense”, in which

the tertiary structure of the individual monomers does not change (64). The equilibrium is

assumed to exist prior to ligand binding, so that ligand binding is a selective process that

biases the equilibrium towards the relaxed or the tense conformation. In Koshland, Némethy

and Filmer's more general model, tertiary changes to the monomers are permitted and, as

might have been expected from Dan Koshland's previous introduction of the induced-fit

mechanism (46), ligand binding is an instructive process which may induce conformational

changes that did not previously exist (48). Although the MWC model is often treated as the

standard description of allostery, presumably because the algebra is less terrifying than for

the KNF model, the former cannot accommodate negative cooperativity, while the latter can,

as Dan Koshland often pointed out (47).

A variety of other allosteric models have been put forward over the years which generalise

and mix and match the MWC and KNF assumptions (31; 32; 65; 66). In each case,

thermodynamic equilibrium is assumed as a time-scale separation between the fast

microstates and the slow interaction of the protein with its environment but different

methods are used to undertake the elimination of microstates and calculate the rational

functions. In some cases, elementary algebra suffices, while in others, equilibrium statistical

mechanics is called upon, as discussed below. Allostery remains a potent conceptual idea

with wide application across biological disciplines, even if the meaning of the term has

broadened from the rather precise ideas of those who pioneered it.

Gene regulation

Allostery was not, of course, the only breakthrough to which Monod and Jacob contributed.

If Crick and Watson revealed the structure of DNA, with its profound implications for

genetics and heredity, Monod, Jacob and Lwoff, through their studies of the lac operon and

of λ phage, established that genes could be turned on or off in response to environmental

signals (21). They were awarded the Nobel Prize in Physiology or Medicine in 1965 for this

work. Although gene regulation was first revealed in unicellular microbes, it is fundamental

to understanding multicellular development. A hepatocyte and a cardiomyocyte from the

same organism have identical genotypes; their profound phenotypic difference arises from

differential gene expression (16).

Let us fast forward again, by nearly twenty years, from allostery in 1963 to 1982, when Gary

Ackers, Sandy Johnson and Madeleine Shea published their “quantitative model for gene

regulation by λ phage repressor”. The λ repressor, or master regulator protein CI, binds to

the right operator region of λ phage and thereby regulates the mutually exclusive expression

of its own cI gene and the neighbouring cro gene. Expression of the former leads to the

phage behaving as a lysogen, which replicates passively by hitching a ride on the bacterial

DNA, while expression of the latter leads to the lytic state, in which the virus actively
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creates more copies of itself and eventually kills its host. The lysis-lysogeny decision is a

classic cellular decision process (72) from which new insights continue to emerge (54).

Ackers, Johnson and Shea created the first mathematical model for how expression of cI

depended on the concentration of λ repressor. It was known that λ repressor bound in

dimerised form to three specific sites in the operator, giving 23 = 8 potential DNA

microstates. The importance of cooperative interactions between repressor molecules bound

at different sites had been uncovered in in-vitro experiments undertaken by Sandy Johnson

in Mark Ptashne's lab at Harvard (38). The mathematical model was intended to reveal how

that cooperativity contributed to the lysis-lysogeny decision. Ackers, Johnson and Shea

made the very reasonable time-scale separation that repressor binding to DNA had reached

thermodynamic equilibrium. They knew from the experimental studies that certain

microstates repressed cI. They used equilibrium statistical mechanics to calculate the

probability of each microstate in terms of a partition function, thereby eliminating the

microstates and allowing calculation of the probability of repression of cI as a function of λ
repressor concentration. The free energies of repressor binding to DNA and of cooperative

interactions between repressor dimers at different sites, which are required to build up the

partition function, were estimated from Johnson's previous experimental data. Here again,

rational functions emerge from the calculation, albeit with numerical, as opposed to

symbolic, coefficients.

The “thermodynamic formalism” developed in this work has been the starting point for

much subsequent analysis of gene regulation. In later work, Shea and Ackers treated the

RNA polymerase holoenzyme as another component that could bind DNA and thereby

induce mRNA transcription (83). This allowed a more nuanced treatment of how

transcription factor binding could influence gene expression through cooperative

interactions with RNA polymerase. In effect, mRNA transcription is treated as a slow

process which averages over the equilibrium distribution of microstates. The formalism can

accommodate multiple transcription factors each binding at multiple sites, yielding insights

into combinatorial regulation (8) and the evolution of regulatory circuits (81). Rob Phillips

and colleagues elaborated the thermodynamic formalism for the bacterial context in (4; 5).

Gene regulation is quite different in eukaryotes. DNA is no longer naked but is wrapped

around nucleosomes and compacted into chromatin, which may exhibit varying accessibility

to transcription factors (24). Nucleosomes are dynamic entities that can be assembled,

moved and disassembled and the tails of the histone proteins that make up the nucleosome

octamers are festooned with a quite astonishing number of post-translational modifications

(PTMs) (30). It has been suggested that these combinatorial PTMs influence gene

expression through some kind of “code” (37; 67), or perhaps a “language” (3), whose

biochemical basis remains obscure (71). Transcription factors both recruit and are recruited

by accessory proteins and co-regulators, such as the massive Mediator complex and a

variety of components which can reshape the local chromatin environment (39). This

enormously complex machine is a testament to the creative powers of evolution and,

presumably, a necessary adjunct to the huge expansion of gene regulatory complexity that is

found in moving from bacteria to unicellular microbes like yeast to multicellular organisms

such as animals (16).
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Notwithstanding this increased complexity, the thermodynamic formalism has also been

widely influential in studying eukaryotic gene regulation (78; 84). For instance, it has been

used to analyse patterning in the early Drosophila embryo, where it seems that much can be

explained by transcription factor binding (36; 70; 77; 90). It has even been extended to

accommodate nucleosomes by treating them as components that bind to specific DNA

sequences in competition with transcription factors (73).

Despite these successes, there is a fundamental problem with this approach. Eukaryotic

mechanisms, such as nucleosome remodelling or histone PTM, are dissipative. They

necessarily expend energy and may reach a steady state but never a thermodynamic

equilibrium. The significance of dissipative mechanisms in the molecular realm was pointed

out by John Hopfield in a seminal paper (35), in which he showed that certain information

processing tasks (in his case, error reduction in transcription and translation) could not be

undertaken at equilibrium but required dissipative expenditure of energy. It is very plausible

that complex gene regulation in eukaryotes can undertake forms of information processing,

such as precise embryonic patterning, which fundamentally depend on dissipative

mechanisms. The thermodynamic formalism can shed no light on this because it is based on

equilibrium assumptions. We will return to this issue below.

Pharmacology and receptor theory

Michaelis and Menten were not quite the first to use time-scale separation. They were

anticipated in 1909 by an undergraduate student at Trinity College, Cambridge who was

doing a research project with the physiologist John Newport Langley (33). The student was

Archibald Vivian Hill and this was his first published paper, on which he was sole author.

Hill would become one of the founders of biophysics and a winner of the Nobel Prize in

Physiology and Medicine in 1922 for his work on muscle physiology. We also know him for

the widely used and abused Hill function and attendant Hill coefficient that came out of his

work on hemoglobin.

Langley had been one of the first to suggest that the action of drugs on tissues came about

through an interaction of the drug with a specific molecular receptor in the tissue (49; 56).

Hill considered the reversible binding of a drug L to a hypothetical receptor R,

This is just Michaelis and Menten's reaction scheme in Eq. 1 without the catalysis. Hill

made the the time-scale separation that binding had reached equilibrium, while the

downstream effect of ligand binding took place on a slower time scale through the

equilibrium proportion of ligand-bound receptor. A similar but easier process of elimination

to that of Michaelis and Menten allowed the latter proportion to be calculated and the

familiar hyperbolic saturation of downstream effect with ligand concentration provided a

good match to data that Hill acquired for the action of nicotine and of curare on muscle.

Here again, just as with Michaelis and Menten, the mathematical calculation provided

evidence for the existence of a molecular receptor, although, here, it is R and not RL whose

existence is being conjectured. Just as in enzyme kinetics the theoretical idea of a receptor
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proved irresistible to pharmacologists who quickly appreciated that quantitative

measurements and equilibrium binding models were the key to unravelling how drugs acted

(12). It would take nearly seventy years from Langley's suggestion before receptor

molecules were actually shown to exist (29) during which time binding models were

essential conceptual tools (53). Bob Lefkowitz, who was awarded the 2012 Nobel Prize in

Chemistry for his isolation and characterisation of one of the first receptors, the beta-

adrenergic G-protein coupled receptor, points out in his Nobel lecture1 the significance of

the ternary-complex binding model (50) for understanding GPCRs. Similar equilibrium

binding models are basic ingredients in modern quantitative pharmacology (42) and, as

above, rational functions emerge from the elimination that describe receptor activation as a

function of ligand concentration.

As David Colquhoun recounts (14), quantitative pharmacology seems to have occupied a

parallel universe to very similar studies in enzyme kinetics and allosteric proteins, with

surprisingly little cross-fertilisation despite similar underlying ideas. Models with distinct

receptor conformations, strikingly close to the idea of protein allostery, emerged in classic

studies by del Castillo and Katz in 1957 of the acetylcholine receptor (17), and played a key

role in attempts to disentangle the notions of drug affinity and drug efficacy (13). Similar

models, albeit more complicated, have been suggested to explain the “collateral efficacy”

through which distinct ligands for GPCRs elicit distinct subsets of downstream effects (41).

The study of ion channels, which provides some of the most exquisite quantitative data

through patch clamping, has been one context in which the classical Monod-Wyman-

Changeux models of protein allostery and the equilibrium binding models of pharmacology

have coalesced, aided, no doubt, by Jean-Pierre Changeux whose work bridged the two

fields (10; 20).

Post-translational modification

Histones are not the only proteins subject to PTM. Indeed, it is hard to find a cellular protein

which is not post-translationally modified. Not only are there many types of modification,

including phosphorylation, acetylation, ADP-ribosylation, GLcNAcylation, ubiquitination,

sumoylation, etc (88), but there are often many sites on a protein subject to the same

modification. PTM is fundamentally dissipative with forward modification and reverse de-

modification being catalysed by separate enzymes. The free energy for driving such

processes ultimately comes from background cellular processes which maintain the

concentration of donor molecules (such as ATP in the case of phosphorylation) sufficiently

high compared to the concentrations of their hydrolysis products (such as ADP and

inorganic phosphate). PTM provides a way for the structure of a protein to be altered

dynamically in response to changing cellular conditions. It is a mechanism of escape from

the constraint of genetic coding which seems to have been as essential for evolutionary

novelty as the gene regulation discussed above (71).

The potential combinatorial complexity in multisite PTM is staggering. Considering just

phosphorylation, which is merely a binary on/off modification in contrast to the further

1http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2012/lefkowitz-lecture_slides.pdf
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complexity that comes from iterated polypeptide modifications like ubiquitination (71), a

protein with n sites of modification has 2n potential modification states, or “mod-forms”

(71). The serine/arginine repetitive matrix factor Srrm2 has 300 experimentally detected

phosphorylation sites, as reported on Phospho.ELM (18). While this example is perhaps

extreme, it is not unusual for mammalian signalling proteins to have tens of sites of

modification. Clearly, not all mod-forms may be present in any context but this begs the

question of which mod-forms are present. Evidence from a variety of contexts shows that

distinct mod-forms can exert distinct downstream effects, for instance, by offering

alternative recruitment patterns for modification-specific binding domains (71). It is,

therefore, the distribution of mod-forms which determines the overall effect of a modified

protein and this distribution is regulated by the collective actions of the network of forward-

and reverse-modifying enzymes.

We have been developing mathematical approaches to analysing PTM. We followed the

strategy that has been widely employed in the literature since “futile cycles” of

phosphorylation and dephosphorylation were first mathematically analysed by Chock and

Stadtman (82) and by Goldbeter and Koshland (23). We made the time-scale separation that

modification and demodification are fast, while the downstream effects of modification are

slow. In this way, modification and demodification can be assumed to have reached steady

state. The time-scale separation is usually not mentioned explicitly in the literature but is

always implicitly present whenever steady states are considered.

We found, to our surprise, that it was possible to eliminate much of the internal complexity

at steady state (25; 58; 86). For instance, for a substrate S which is subject to modification

by an enzyme E and demodification by an enzyme F on n sites, it was possible to write

down a pair of equations for the free enzyme concentrations, [E] and [F],

(3)

which correspond to the conservation laws for the two enzymes (86). The salient point here

is that these conservation laws can be expressed solely in terms of [E] and [F] (and the total

amount of substrate, Stot, which is hidden away inside Φ1 and Φ2). This is true no matter

what the value of n. The substrate mod-forms and the intermediate complexes arising from

the enzyme mechanisms have all been eliminated. They can be calculated from [E] and [F]

by rational functions, once again. This exponential reduction in complexity allows rigorous

conclusions to be drawn, for systems with any number of sites, that were previously beyond

reach (86).

These calculations were done by ad-hoc algebraic methods and it is fair to say, looking

back, that we did not understand them. In particular, we were very puzzled as to why the

rational functions that emerged had the property of “positivity”: they always gave a positive

result for positive values of [E] and [F] (86, Supplementary Information). Of course, this is

what they should do in order to be realistic. The rational functions in the previous examples

also exhibit positivity. However, the algebraic methods that we used for PTM seemed to

require miraculous cancellations for positivity to emerge. Miracles are a sign of some more
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fundamental principle at work. This first came to light for PTM (85) but its implications

have turned out to be much broader (26), as we discuss below.

Time-scale separation in reality

Michaelis and Menten felt justified in making a time scale separation because under their

experimental conditions, substrate was in excess over enzyme. The enzyme-substrate

complex would be expected to form quickly and then remain fairly steady until much of the

substrate had been consumed. The steady-state assumption seems very reasonable.

It is harder to justify the assumption in some of the other examples discussed above,

especially as we move away from the in-vitro setting. For instance, in gene regulation,

especially in eukaryotes, is it really the case that transcription factor binding to DNA has

reached equilibrium before gene expression begins? Probably not. However, the time-scale

separation assumption has still been extremely useful in offering a way to think about the

system and providing quantitative formulas which can be experimentally tested. Gertz,

Siggia and Cohen used the thermodynamic formalism to analyse libraries of synthetic

promoters with up to five transcription factors in yeast, and found that it explained between

40-60% of the observed variation in gene expression (22). While this is a not a direct test of

equilibrium, it suggests that the assumption is not awful.

As we move from individual enzymes to multi-enzyme systems, the value of time-scale

separation lies more in providing a methodology for simplifying the description of

molecular complexity, even when we might not know that the time scales are well separated.

In other words, it shifts the burden of the argument from the assumptions we make to the

conclusions we draw. In biological contexts where the experimental capabilities are well

developed, such as gene regulation in model organisms like yeast and flies, this strategy has

been very successful (43; 70; 90).

The mathematical justification for time-scale separation as a good approximation relies on

the method of singular perturbation or the use of Tikhonov's Theorem, in which it is

assumed that the separation between fast and slow components increases as a small

parameter goes to zero (27). For simple biochemical systems like the Michaelis-Menten

scheme in Eq. 1, appropriate parameters can be readily identified (75; 80). However,

biochemical systems come to us with reactions which may be relatively fast or slow, not

components; any given component may be influenced by a mix of fast and slow reactions.

Reich and Sel'kov argued by example for the existence of a time-hierarchy of ultrafast, fast

and slow components in core metabolism, to which Tikhonov's Theorem could be applied

(74). More recently, Lee and Othmer, using the more general framework of Chemical

Reaction Network Theory, showed how a time-scale separation on reactions could be

reorganised into one on components, in a form suitable for Tikhonov's Theorem (51). It has

also been a theoretical and experimental concern to know how long it takes for a steady state

to be effectively reached. Easterby was the first to define a transition time to steady state

(19) and later authors have extended this idea to wider classes of networks with more

general boundary conditions, within a predominantly metabolic context; see, for instance,

(55). While of interest in their own right, these issues lie outside the scope of the present
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paper, which is concerned with the process of elimination at steady state, to which we now

turn.

The linear framework

Laplacian dynamics on graphs

The applications of time-scale separation discussed above cover a wide range of biological

areas and differ considerably in their biochemical details. Some are assumed to be at

thermodynamic equilibrium while others are assumed to be at steady state far from

equilibrium. With the exception of the statistical mechanical procedures sometimes used at

equilibrium, the calculations are undertaken by ad-hoc methods among which it is difficult

to see any common ground. Nevertheless, there are tantalising similarities. In each example,

time-scale separation enables some of the internal complexity to be eliminated, with these

internal quantities being explicitly calculated in terms of rate constants and conserved

quantities, and the resulting formulas are invariable rational functions which exhibit

positivity.

These similarities are not an accident. All of the calculations above are instances of a single

mathematical procedure, which we call “the linear framework” (26). This not only unifies

many biological studies that were previously thought to be separate, it also provides a way

to do new kinds of analysis.

The framework starts from a labelled, directed graph G, consisting of vertices 1, ··· , n and

directed edges, , decorated with labels a (Figure 1). The graph should have no self

loops, , and we will take for granted that it is connected, so that it does not consist of

separate pieces between which there are no edges. For the moment, the labels are just

symbols corresponding to positive numbers and having units of time–1.

We can define a dynamics on G as follows: place concentrations of material at the vertices

and consider each edge to be a chemical reaction under mass-action kinetics with the label

as the rate constant. The reaction  will then convert i to j at a rate given by dxj/dt = axi,

where xi is the concentration of material at vertex i. (Such concentrations are implicitly

functions of time and we should write xi(t). We mostly avoid doing so as not to clutter up the

notation. The meaning should be clear from the context.) Since each edge has only one

source vertex, the dynamics is described by a linear equation

(4)

in which x is the column vector of concentrations and  is a n × n matrix called the

Laplacian matrix of G. (The notation A.B signifies the product of matrices A and B, with a

column vector being treated as a n × 1 matrix.)

Concepts similar to the Laplacian were first introduced in Gustav Kirchhoff's studies of

electrical circuits (45). Laplacian matrices have been widely studied in graph theory (59) but

with differing conventions and normalisations. The “laplacian” appellation stems from the

Gunawardena Page 10

FEBS J. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



fact that, with suitable normalisation, they can be seen as discretisations of the Laplace

operator (11).

It may seem implausible that such linear chemistry has anything to do with the nonlinear

biochemical systems considered in the examples above. Nonlinearity is imported into the

framework through the labels. These may be arbitrary rational expressions composed of

actual biochemical rate constants and concentrations of actual biochemical species. The only

constraint is the “uncoupling condition”, which states that any component whose

concentration appears in a label cannot also be a component that is represented by a vertex

in the graph. For instance, if the vertices represent fast components in a time-scale

separation, then the labels could include the concentrations of slow components. Uncoupling

is essential to preserve the linearity of the dynamics.

The key to applying the linear framework is to set up the labels in such a way that the

uncoupling condition is satisfied and the linear Laplacian dynamics given by Eq. 4

reproduces the nonlinear dynamics of the actual biochemistry. Let us see how this works in

enzyme kinetics for the reversible Michaelis-Menten scheme,

(5)

We construct a labelled, directed graph on the fast components, which, in this case, are the

free enzyme E and the intermediate enzyme-substrate complex ES, with the labelled edges

summarising the biochemistry in Eq. 5:

(6)

This graph is strongly connected and the uncoupling condition is satisfied. The Laplacian

dynamics is given by

(7)

and it is easy to see that these linear equations correspond precisely to the nonlinear

equations coming from the reaction scheme in Eq. 5 under mass-action kinetics. You might

say that nonlinearity with simple rate constants has been traded for linearity with

complicated labels.

Laplacian matrices like that in Eq. 7 and Figure 1 have a characteristic structure with the

sum of the entries in each column being zero. This is because of a conservation law. Since

material is neither created nor destroyed but simply moved around the vertices, its total

amount is conserved at all times,

(8)
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It follows that 1.dx/dt = 0 where 1 is the all-ones row vector. Since x is arbitrary, it follows

from Eq. 4 that .

Steady states and elimination

Time-scale separation requires calculation of a steady steady, corresponding to a vector x*

such that dx*/dt = 0. Equivalently, from Eq. 4, . x* = 0, so that x* is in the kernel of

the Laplacian: . The kernel depends in an interesting way on the

structure of G. Recall that a graph is strongly connected if, given any two distinct vertices i

and j, there is a sequence of consecutive edges from i to j all pointing in the same direction.

Since i are j are arbitrary, there must be a corresponding directed sequence from j to i. The

graph in Figure 1 is strongly connected, as are all the examples in Figure 2. It can be shown

that, if G is strongly connected, then the kernel of the Laplacian is one dimensional (85,

Lemma 1) or (61, Proposition 3):

(9)

This result has remarkable implications. We can place any concentrations of matter at the

vertices initially; there are as many degrees of freedom available as there are vertices in the

graph. Once the dynamics gets under way, it eventually reaches a steady state. (This is true

for any graph and any initial condition (61).) In a strongly-connected graph, once a steady-

state has been reached, Eq. 9 tells us that only one generalised degree of freedom is left.

Aside from this, the steady-state is completely determined by the structure of the graph and

is independent of the initial conditions. Eq. 9 is the key to elimination.

To derive formulas for the eliminated quantities, it is necessary to calculate a standard basis

element  from the structure of G. We will see how to do this below and

we will find that ρi is a rational function of the labels. If x* is any steady state of the

dynamics then, because the kernel is one-dimensional, x* = λρ, where λ is some scalar,

which represents the remaining generalised degree of freedom. It follows from the

conservation law in Eq. 8 that λ = xtot/ρtot, where ρtot = ρ1 + ··· + ρn, so that

(10)

In other words, the steady-state value at any vertex can be eliminated in favour of the

expression ρi/ρtot and the conserved quantity xtot. Since ρi is a rational function of the labels,

so too is the fraction ρi/ρtot.

The examples discussed above can all be derived from Eq. 10. In other words, underlying

each example is a labelled, directed graph of the form considered here (Figure 2). This graph

may not be explicitly described in the corresponding papers but it can be constructed. In

each case, the graph is strongly connected and satisfies the uncoupling condition. Eq 10

expresses the eliminated quantities as rational functions of the labels and the conserved total

and this is where the rational functions in the examples all come from.
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Eq. 9 and Eq. 10 are surprisingly powerful. A strongly connected graph can be arbitrarily

complex and have an arbitrary number of vertices; nevertheless, any steady state has only

one degree of freedom. The potential reduction in complexity is unbounded, making the

elimination procedure in Eq. 10 of particular significance in tackling the enormous

combinatorial complexity that we encounter at the molecular level. This is evident in post-

translational modification, where the number of modification states may be astronomical.

Nevertheless, at steady state, the effective algebraic complexity depends only on the number

of enzymes, as in Eq. 3.

The two equations in Eq. 3 are derived from the conservation laws for the forward and the

reverse enzyme in the post-translational modification system. These equations are highly

nonlinear and are an aspect of the “linear” framework that we have glossed over up to now.

The labels in the graph may contain concentrations of components which are not represented

by vertices in the graph. How these labels are dealt with depends on the context. In enzyme

kinetics, the labels contain the concentrations of slow components. Quantities of interest,

like reaction rates, can be calculated from the eliminated components in terms of these slow

components and nothing further is required (see below, for the calculation of a rate formula

in Eq. 15). In ligand binding contexts, such as allosteric proteins or gene regulation, the

ligand is itself a fast component, although not one that is represented by a vertex in the

graph. The equilibrium value for the free ligand concentration can be calculated from the

conservation law for the total amount of ligand. If ligand is in abundance, so that depletion

can be ignored, then [L] ≈ Ltot; if not, the conservation equation must be solved to obtain the

equilibrium value of [L]. In post-translational modification, the labels contain the

concentrations of free enzymes which are also fast components. Here too, the steady-state

values of these are specified by the conservation laws for the enzymes, as in Eq. 3. It is the

nonlinearity of these equations which permits multiple solutions and the existence of

multiple steady states (69; 86).

We see from this that the linear framework is not entirely linear. However, the linearity is

perhaps its most surprising aspect. Linearity is largely invisible in the examples discussed

above. One never thinks, for instance, of Michaelis and Menten's calculation as being linear.

In retrospect, the linearity is crucial. It is what makes elimination of internal complexity

feasible.

Calculating kernels

It remains to calculate a standard basis element . On the face of it, this

should be an exercise in linear algebra. However, this relies on determinants, which are

sums of terms with alternating signs. Miraculously, positive and negative terms somehow

cancel out, leaving only a sum of positive terms. This is the origin of the positivity that was

noted above. This miracle turns out to be a special property of the Laplacian matrix. It is

easier to use two other procedures for calculating ρ, in which the positivity is immediately

manifest without the need for any cancellations.

The simplest way to calculate ρ is when thermodynamic equilibrium can be assumed. In this

case, the graph must have a particular structure which comes from the Principle of Detailed

Balance (DB). This states that if a chemical reaction is at thermodynamic equilibrium then it
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must be reversible and the pair of reversible reactions must be at equilibrium independently

of any other reactions in which the substrates and products are participating. DB was put

forward in the chemical context by Gilbert Lewis to rule out thermodynamically paradoxical

states in chemical reaction networks (52). He made the following charming argument based

on chemical intuition and time-scale separation. He imagined that a reaction within a

network had a catalyst which could increase its rate, and the rate of its reverse reaction, so

much that this reaction was working much faster than others in the network. The reversible

reaction would then be at equilibrium independently of the rest of the network. Not

surprisingly, this argument did not convince the physicists! DB was subsequently shown to

be a consequence of “microscopic reversibility”, or time-reversal symmetry, in the laws of

physics (57) and must be considered as a fundamental physical principle. It imposes

restrictions on the biochemical rate constants, as we will see below, and many remarkable

conclusions have been drawn by failing to enforce it at equilibrium.

If a graph G represents a context in which thermodynamic equilibrium is reached, then each

edge must be reversible. If we consider any pair of reversible edges

(11)

in an equilibrium state , then, according to DB, . The

equilibrium state can then be calculated by choosing a reference vertex, say vertex 1, and

choosing any path of reversible edges from 1 to i,

Applying DB repeatedly to each reversible pair, we find that

(12)

There may, of course, be more than one path of reversible edges from 1 to i. It is a

consequence of DB that, no matter which path is used, we get the same answer for . It is

necessary and sufficient for DB to hold for any equilibrium state that the graph G satisfies

the “cycle condition”: given any cycle of reversible edges, the product of the labels going

clockwise around the cycle must equal the product of the labels going counterclockwise

(26). It is not difficult to see that this implies that the calculation in Eq. 12 is independent of

the chosen path. The cycle condition is a fundamental constraint on the labels and, through

them, on the underlying biochemical rate constants. Examples b, c and e in Figure 2, which

are treated at equilibrium, must satisfy the cycle condition, while a and d, which are

dissipative, would not have to.

If we let μi be the expression given by the product of the terms in brackets in Eq. 12 then

. (Note that μ1 = 1.) Since  is a common factor in each of these expressions, we

can obtain a standard element in  by setting ρi = μi. Here, the positivity is

obvious.
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The thermodynamic formalism is essentially an additive version of this calculation. The

connection between the two methods comes through van't Hoff's law, which says that, for a

reversible reaction like that in Eq. 11 which can reach equilibrium,

(13)

where ΔU is the free energy difference between the two vertices. The quantity μi, which is a

product of terms of the form (a/b) in Eq. 12, corresponds through the exponential in Eq. 13

to a sum of free energies. At equilibrium, the thermodynamic formalism and the linear

framework are equivalent and it is a matter of preference whether one calculates

multiplicatively like a chemist using reactions or additively like a physicist using free

energies (61).

It is another matter if the system does not reach thermodynamic equilibrium but instead

reaches a steady state that is far from equilibrium. There is then no requirement for DB to

hold and we can obtain graphs with irreversible edges. Equilibrium thermodynamics cannot

help us.

When G is strongly connected, a standard basis element  can be

calculated by using the Matrix-Tree Theorem (MTT) (26; 61; 85): ρi is given by taking a

spanning tree rooted at i, multiplying together the labels on its edges and then adding such

expressions over all spanning trees rooted at i (26).

A spanning tree is a subgraph of G which contains every vertex in G (spanning) and which

has no cycles when edge directions are ignored (tree). It is rooted at i if i is the only vertex

with no outgoing edges. A graph is strongly connected if, and only if, every vertex has a

rooted spanning tree (61, Lemma 1). If we let Θi(G) denote the set of spanning trees of G

rooted at i, then in symbols the MTT implies that

(14)

Note that all the terms are positive. The MTT takes care of all the cancellations (61,

Appendix).

For the reversible Michaelis-Menten scheme in Eq. 5, it is easy to see that there is only one

spanning tree at each vertex and that, according to Eq. 14,

Applying the elimination formula in Eq. 10, we find that, for any steady state

,
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Once a steady state has been reached, the rate of the reaction is given by

from which one obtains by substitution the reversible Michaelis-Menten rate formula

(15)

in which Vf = k3xtot, Vr = k2xtot, Kf = (k2 + k3)/k1 and Kr = (k2 + k3)/k4. The fast components,

E and ES, have been eliminated, leaving only the slow components S and P and the rational

function in Eq. 15.

The reversible Michaelis-Menten scheme is sufficiently simple that the steady state can be

calculated without using the MTT but the MTT becomes invaluable as the graph becomes

more complicated. It is, however, more demanding to apply than the equilibrium formula for

ρi = μi given by Eq. 12. At equilibrium, only a single path to i is needed to calculate ρi; away

from equilibrium all spanning trees rooted at i are needed to calculate ρi. The number of

spanning trees increases rapidly as the graph becomes more complicated. Computational

methods for enumerating them are sometimes helpful but the main importance of the MTT

is that it gives a mathematical description of the steady state, which is then accessible to

further analysis.

Theorems of Matrix-Tree type go back to Kirchhoff but the MTT which is relevant to us, for

labelled, directed graphs, is due to Bill Tutte, one of the founders of modern graph theory

(87). It has been independently re-discovered many times. Enzymologists will recognise the

MTT as equivalent to King and Altman's “schematic procedure” (44), which remains the

standard method for calculating enzyme rate formulas. Here, spanning trees are called

“patterns”. Somewhat later, Terrell Hill re-discovered the MTT in his studies of non-

equilibrium molecular systems (34). He called spanning trees “directional diagrams”.

Amusingly, he thanked a correspondent for pointing that he was making a contribution to

the “theory of graphs”. Neither he nor his correspondent seemed aware that the result had

already been proved by one of the founders of that subject nearly twenty years earlier, let

alone that it was also known to enzymologists! The MTT has also been independently re-

discovered in economics, engineering, computer science and theoretical physics (for more

background, see (61)), a testament to its fundamental importance and to the insidious

compartmentalisation of modern science.

There is much to be gained by adopting the neutral language of mathematics, of graphs,

Laplacians and spanning trees, in preference to the specialised language that might be used
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in a particular area of application. A common mathematical structure emerges which cuts

across disciplines and it becomes much easier to transfer knowledge between them and to

avoid re-inventing the wheel.

Looking forward

One of the advantages of doing chemistry, with reactions and graphs, in contrast to physics

with free energies, is that one is not limited to equilibrium. The linear framework is

applicable in contexts like enzyme kinetics or post-translational modification where the

system is far from equilibrium. It can accommodate some of the dissipative mechanisms,

such as nucleosome reorganisation and histone PTM, which arise in eukaryotic gene

regulation, offering a new methodology that goes beyond the thermodynamic formalism.

Sequences were sufficient to describe genomes and an elaborate mathematical and

computational machinery has evolved to exploit them. Perhaps labelled, directed graphs will

provide the appropriate mathematical object with which to describe genomic functionality.

This is work in progress (1).

A more immediate problem leads us back to Michaelis and Menten. As pointed out above,

the irreversible scheme in Eq. 1, is commonly used to study multi-enzyme systems in

circumstances which would have horrified its authors. The dangers of doing this have been

pointed out (6; 68). It is not only dangerous, it is also illegal. If P is appreciably present

(which it was not for Michaelis and Menten), then it must be able to rebind to E, or detailed

balance would be violated once the reaction reaches equilibrium. The usual reason given for

ignoring thermodynamic reality is that the scheme is being used to represent a reaction

which is irreversible under physiological circumstances, such as a kinase or phosphatase

reaction. If so, a better solution would be to use the reaction scheme

(16)

which can be irreversible without being in a state of Original Thermodynamic Sin. There is,

of course, a price to pay for such virtue, which is increased complexity and yet more rate

constants whose values we do not know.

A further issue arises with Eq. 1 because it assumes single-substrate reactions. Yet, kinase

reactions, which are frequently represented by Eq. 1, involve two substrates. It may be

reasonable to ignore ATP as a dynamical variable, if, indeed, its concentration is kept

constant by background cellular processes, but that does not address the order of substrate

binding, which can give rise to additional intermediate complexes. It might be more

appropriate to use a reaction scheme for which the corresponding graph looks something

like that in Figure 2a.

The linear framework provides a systematic approach to this problem, at least for contexts

like post-translational modification. We can consider a limited enzymological grammar,

consisting of the reactions

(17)
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which allows for multiple intermediates, Y1, ··· , YL. This accommodates Eq. 1, Eq. 16 and
the reaction scheme behind Figure 2a and covers most of the enzymology that we would

expect to find for post-translational modification and demodification involving metabolic

modifications (89). The linear framework shows that, no matter how complex the reaction

scheme that is derived from Eq. 17, the steady state behaviour can be summarised in four

aggregated parameters, a “total generalised catalytic efficiency” (tgCE) and a “total

generalised Michaelis-Menten constant” (tgMMC), one each for the reaction substrate S and

one each for the reaction product P. In this way, we can distinguish between a reaction

scheme that is irreversible, such as Eq. 16, in which the tgCE for P is zero (it cannot make

S), but the tgMMC for P is not (it can still bind to E). In contrast, the Michaelis-Menten

scheme in Eq. 1 is strongly irreversible, with both the tgCE and tgMMC for P being zero.

The distinction makes a difference. In one of the pioneering papers on “futile cycles” of

phosphorylation and dephosphorylation, Albert Goldbeter and Dan Koshland showed that a

single-site cycle is capable of unlimited ultrasensitivity as the enzymes become more

saturated by the substrate (23). They assumed that the kinase and phosphatase followed the

standard Michaelis-Menten scheme in Eq. 1. One can show, using the formulation just

described, that, if the forward and reverse enzymes can be expressed in the grammar of Eq.

17 and are both strongly irreversible, then, no matter how complicated they are, unlimited

ultrasensitivity continues to hold (89). However, if the enzymes are weakly irreversible—

irreversible but not strongly so (ie: their tgMMCs for product are non-zero)—then the

ultrasensitivity is always bounded and one can even calculate a bound for it (15).

Strong irreversibility is mathematically convenient because there are only two aggregated

parameters to deal with per reaction, but it introduces an artifact, a singularity, which leads

to infinite behaviour in the high-substrate limit (89). Weak irreversibility provides a more

physiologically realistic and a more nuanced picture, in which the properties of the

individual enzymes become significant. One can apply the mathematics with more

confidence to actual enzymes with complicated enzymology (15).

This brings us to the main reason, I believe, why the original Michaelis-Menten scheme

continues to exert such a hold, despite its limitations being known (6; 68). It allows us to

pretend that all enzymes are the same, so that we can avoid paying attention to them in our

rush to understand the behaviour of multi-enzyme systems (25). This does an injustice to

Michaelis and Menten, which is compounded by our continuing to use their ideas in contexts

which they would have known to be wrong. It is also a disservice to the enzymologists of

the intervening century, who have done so much to disentangle the mechanisms of

individual enzymes (2). And, not least, it is not a good way to educate the next generation. It

may help to have a systematic method to deal with the additional complexity, which the

linear framework now provides, but scientific cultures have a lot of inertia and it may be the

next generation, indeed, who fully integrates enzymology and systems biology.

Time-scale separation may have been a convenient tool for Michaelis and Menten, who

were dealing with a system of just four components, but it assumes much greater

significance for us, as we contemplate molecular networks in which an individual protein

may have thousands of different states of modification. Without some means to rise above
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this complexity, it is going to be extremely difficult to see the wood for the trees. Time-scale

separation offers a way to do this, which may at least provide a starting point for thinking

about a system and developing our intuitions, even if we do not know how well the time

scales are separated in reality.

What the linear framework shows us is that, sometimes, and in the most signifi-cant

examples of time-scale separation, we can undertake the elimination of internal complexity

in a purely mathematical way, which depends only on the structure of the system, its graph.

We can rise above some of the complexity. We can show, for instance, that futile cycles

have certain behaviours, irrespective of the complexity of their enzymes (15; 89). That is a

different kind of assertion to what we normally see in the literature. It is also considerably

more powerful than what can be achieved by numerical simulation, in which all the details

must be precisely specified. We can begin to discern in these developments, perhaps, a

mathematical language through which biological principles can emerge from molecular

complexity. I like to think that Michaelis and Menten would have approved.
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Figure 1.
The linear framework. Left, a labelled directed graph, which is strongly connected. Right,

Laplacian dynamics on this graph, in which the edges are treated as chemical reactions

under mass-action kinetics. The resulting matrix is the Laplacian matrix of the graph.
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Figure 2.
Labelled, directed graphs from different contexts. Labels are omitted for clarity. Black edges

have labels which are biochemical rate constants, while blue edges have labels which are

algebraic expressions that involve concentrations of other components. (a) enzyme kinetics,

in which an enzyme E is irreversible and follows a random-order bi-bi mechanism, as

studied in (89). (b) gene regulation, in which a single transcription factor binds to two sites.

(c) protein allostery, in which a protein exists in two conformations, R and T with ligand

binding at two sites. (d) post-translational modification, in which a substrate S is modified

and unmodified in random order on two sites, as studied in (58). (e) receptor pharmacology,

with the extended ternary-complex model, adapted from (76, Figure 10): R, receptor; R*,

allosteric conformation; H, hormone; G, G-protein.
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