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Abstract

Identifying the downstream effects of disease-associated single nucleotide polymorphisms (SNPs)

is challenging: the causal gene is often unknown or it is unclear how the SNP affects the causal

gene, making it difficult to design experiments that reveal functional consequences. To help

overcome this problem, we performed the largest expression quantitative trait locus (eQTL) meta-

analysis so far reported in non-transformed peripheral blood samples of 5,311 individuals, with

replication in 2,775 individuals. We identified and replicated trans-eQTLs for 233 SNPs

(reflecting 103 independent loci) that were previously associated with complex traits at genome-

wide significance. Although we did not study specific patient cohorts, we identified trait-

associated SNPs that affect multiple trans-genes that are known to be markedly altered in patients:

for example, systemic lupus erythematosus (SLE) SNP rs49170141 altered C1QB and five type 1

interferon response genes, both hallmarks of SLE2-4. Subsequent ChIP-seq data analysis on these

trans-genes implicated transcription factor IKZF1 as the causal gene at this locus, with

DeepSAGE RNA-sequencing revealing that rs4917014 strongly alters 3’ UTR levels of IKZF1.

Variants associated with cholesterol metabolism and type 1 diabetes showed similar phenomena,

indicating that large-scale eQTL mapping provides insight into the downstream effects of many

trait-associated variants.

Genome-wide association studies (GWAS) have identified thousands of variants that are

associated with complex traits and diseases. However, because most variants and their

proxies are non-coding, it is generally difficult to identify the causal genes. Recently, several

eQTL-mapping studies5-8 have now shown that the majority of disease-predisposing

variants actually affect gene expression levels of nearby genes (i.e. cis-eQTLs). A few

recent studies have also identified trans-eQTLs5,9-13, revealing the downstream

consequences of some variants. However, the total number of reported trans-eQTLs is fairly

low, mainly due to the severe burden of multiple testing. To improve statistical power, we

performed an eQTL meta-analysis in 5,311 peripheral blood samples, from seven studies
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using Illumina gene expression arrays (EGCUT14, InCHIANTI15, Rotterdam Study16,

Fehrmann5, HVH17-19, SHIP-TREND20, and DILGOM21) and replication analysis in

another 2,775 samples. We aimed to ascertain to what extent SNPs affect genes in cis and

trans and whether eQTL mapping in peripheral blood could reveal important downstream

pathways that may be putative drivers of disease processes.

Our genome-wide analysis identified cis-eQTLs for 44% of all tested genes (6,418 genes at

probe-level false discovery rate (FDR) < 0.05 and 4,690 genes with more stringent

Bonferroni multiple testing correction, Table 1, Supplementary Table 1, Supplementary

Figures 1-3). Our trans-eQTL analysis focused on 4,542 SNPs that have been implicated in

complex disease or traits (derived from the “Catalog of Published GWAS”). In the discovery

dataset, we detected trans-eQTLs at FDR < 0.05 for 1,513 significant trans-eQTLs that

include 346 unique SNPs (8% of all tested SNPs, Table 1, Supplementary Table 2,

Supplementary Figure 4 and 5). These SNPs affect the expression of 430 different genes (a

more stringent Bonferroni correction revealed 643 significant trans-eQTLs, including 200

unique SNPs and 223 different genes).

We used stringent procedures for trans-eQTL detection (Supplementary methods), and

various benchmarks to ensure reliability: for 26 trans-eQTL genes the eQTL SNP affected

multiple probes within these genes (Supplementary Table 3), always with consistent allelic

directions, suggesting that our probe filtering procedure was effective in preventing false-

positive trans-eQTLs. We observed uniform directionality for 90% of the tested trans-

eQTLs across all studies within our discovery meta-analysis (Supplementary Figure 5). We

did not find evidence that the eQTLs were driven by differences in age or blood cell-counts

between individuals (Supplementary Results and Supplementary Table 4, Supplementary

Figure 6). However, we cannot exclude this possibility entirely because FACS analyses on

individual cell-types had not been conducted.

To ensure reproducibility of the trans-eQTLs of our current meta-analysis, we performed

various analyses. We replicated previously reported blood trans-eQTLs5 (Supplementary

Table 5, Supplementary Results and Supplementary Figure 7) and replicated trans-eQTLs

from our discovery meta-analysis in two independent studies of peripheral blood gene

expression (52% in KORA F422, N = 740 samples and 79% in BSGS23, N = 862 samples,

FDR < 0.05, Supplementary Figure 8). Irrespective of significance, 91% and 93% of all

1,513 significant trans-eQTL SNP-probe combinations showed consistent allelic direction in

these replication cohorts as compared to the discovery analysis. A meta-analysis of these

two replication studies improved replication rates: 89% of the 1,513 trans-eQTLs were

significantly replicated (FDR < 0.05), 99.7% of which showed a consistent allelic direction.

Irrespective of significance, 97% of the trans-eQTLs showed a consistent allelic direction in

this replication meta-analysis (Supplementary Figure 8). We found that some trans-eQTLs

could also be detected in three cell-type-specific datasets (283 monocyte samples9, 282 B-

cell samples9 and 608 HapMap lymphoblastoid cell-line (LCL) samples24; Supplementary

Figures 9 and 10). Despite the different tissue of these three studies, we were still able to

significantly replicate 7%, 4% and 2% of the trans-eQTLs (FDR < 0.05), respectively. As

95% of the trans-eQTL SNPs explained less than 3% of the total expression variance
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(Supplementary Figure 11), we lack statistical power to replicate most trans-eQTLs in these

smaller replication cohorts.

We subsequently confined further analyses to 2,082 different SNPs that have been found

associated with complex traits at genome-wide significant levels (‘trait-associated SNPs’,

reported P < 5 × 10-8, out of 4,542 unique SNPs that we tested). These 2,082 SNPs showed a

significantly higher number of transeQTL effects as compared to the 2,460 tested SNPs with

reported disease associations at lower significance levels (P = 8 × 10-22, Supplementary

methods and results, Supplementary Figure 12): 254 of these 2,082 SNPs show a trans-

eQTL effect in the discovery analysis (reflecting 1,340 SNP-probe combinations, of which

we significantly replicated 1,201 SNP-probe combinations, reflecting 233 different SNPs

and 103 independent loci in blood). For 671 out of these 1,340 trans-eQTLs (50%) the trait-

associated SNP was either the strongest trans-eQTL SNP within the locus (or in strong LD

with the strongest trans-eQTL SNP) or unlinked to the strongest trans-eQTL SNP

(Supplementary results and Supplementary Table 6). We observed that the 2,082 trait-

associated SNPs were six times more likely to cause trans-eQTL effects than randomly

selected SNPs (matched for distance to gene and allele frequency, P = 5.6 × 10-49,

Supplementary methods and results, Supplementary Figure 13). SNPs, associated with

(auto)immune or hematological traits were twice as likely to cause trans-eQTLs, as

compared to other trait-associated SNPs (P = 5 × 10-25, Supplementary methods and

results). We observed that trait-associated SNPs that also cause trans-eQTLs more often

affect the expression levels of nearby transcription factors in cis, as compared to trait-

associated SNPs that do not affect genes in trans (Fisher's exact P = 0.032; Supplementary

results), suggesting that some of the trans-eQTLs arise due to altered cis gene expression

levels of nearby transcription factors.

We also examined genomic SNP properties of the trans-eQTLs: these SNPs (and their

perfect proxies based on data from the 1000 Genomes Project25,26) are significantly

enriched (Fisher's exact P < 0.05) for mapping within miRNA binding sites (Figure 1A).

They map to regions showing strong enrichment (fold-change > 2.5) of histone enhancer

signals in K562 (myeloid) and GM12878 (lymphoid) cell-lines (Figure 1B), when compared

to six non-blood cell-lines. This myeloid and lymphoid enhancer enrichment supports the

validity of our blood-derived trans-eQTLs. These enrichment results suggest tissue

specificity, which is supported by our inability to replicate a strong trans-eQTL that was

previously identified in adipose tissue for SNP rs473170213 that is associated with both type

2 diabetes and lipid levels.

These trans-eQTLs can provide insight into the pathogenesis of disease. Although RNA

microarray studies have revealed dysregulated pathways for many complex diseases, it is

often unclear what comes first: whether the associated SNPs first cause defects in the

pathways whose dysregulation ultimately leads to disease, or whether the SNPs first cause

disease that then perturbs these pathways. One example is SLE, an auto-immune disease

resulting in inflammation and tissue damage. It is known that SLE patients show markedly

increased type 1 interferon (IFN-α) levels, increased expression of IFN-α response

genes4,27,28 and decreased complement C1q expression. We observed that four common

SLE associated variants do indeed affect IFN-α response genes in cis (IRF5, IRF7, TAP2
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and PSMB9;Supplementary Table 1). However, as most SLE-associated SNPs do not map

near complement or IFN-α response genes, we assessed whether these SNPs might affect

complement or IFN-α response genes in trans. This was the case for rs4917014, for which

the SLE risk allele (rs4917014*T, showing genome-wide significance in Asian populations

and nominal significance in European populations1,24) not only increased expression of five

different IFN-α response genes (HERC5, IFI6, IFIT1, MX1 and TNFRSF21; Figure 2), but

also decreased expression of three different probes in CLEC10A. In addition, we observed a

nominal significant association of rs4917014*T with decreased expression of C1QB (P = 5.2

x 10-6, FDR 0.28), a subunit of the first component of complement C1q, which has an

established protective role in lupus. The complete deletion of C1q practically assures the

development of SLE29,30. CLEC10A and CLEC4C belong to the C-type lectin family, which

also includes mannose-binding lectins (MBL). While, to our knowledge, CLEC10A and

CLEC4C have not been studied in the context of SLE, the role of MBL is similar to C1q and

is a risk factor for the development of autoimmunity in both humans and mice3. The

rs4917014 trans-eQTLs were well replicated in the peripheral blood and monocyte

replication datasets and reinforce the role of altered IFN-α mediated pathway, C-type lectin

and C1q gene expression in SLE. In addition, people who do not have SLE, but who carry

the rs497014*T risk allele already show these pathway alterations, which indicates these

affected pathways are not solely a consequence of SLE, but could well precede SLE onset.

We next investigated the underlying mechanisms of the effects exerted by rs4917014.

IKZF1 is the only gene residing within the rs4917014 locus. Being a transcription factor

(Ikaros family zinc finger 1), cis-regulatory effects of rs4917014 on IKZF1, that would

translate in altered IKZF1 protein levels, could provide a working mechanism for the

detected trans-eQTLs. However, since our meta-analysis initially did not show a cis-eQTL

on the Illumina probe for IKZF1 that is located near the 5’ untranslated region (UTR) of

IKZF1, we investigated the 3’-UTR by using DeepSAGE next-generation RNA-sequencing

data of 94 peripheral blood samples. The variant rs4917014*T strongly increased the 3’-

UTR expression levels of IKZF1 (Spearman correlation = 0.45, P = 6.29 x 10-6, Zhernakova

et al, submitted). We then used ChIP-seq data from the ENCODE-project31 and observed

significantly increased IKZF1 protein binding to the genomic DNA locations where the

upregulated trans-eQTL genes map (Wilcoxon P-value = 0.046), compared to IKZF1

binding to all other genic DNA. We also observed increased IKZF1 binding to the other

SLE cis-genes outside of the IKZF1 locus (Wilcoxon P-value = 4.3 × 10-4), thereby

confirming the importance of IKZF1 in SLE. IKZF1 is important for other phenotypes as

well: another, unlinked intronic variant within IKZF1, rs12718597, is associated with mean

corpuscular volume (MCV) 32 and affects the 5’ end of IKZF1 in cis. As IKZF1 knock-out

mice show abnormal erythropoiesis33, this suggests a causal role for IKZF1 in MCV as well.

However, although rs12718597*A increases expression of 31 trans-genes and decreases

expression of another 19 trans-genes, none of the SLE trans-genes overlap the MCV trans-

genes. The latter are mainly involved in hemoglobin metabolism and do not show an

increased IKZF1-binding signal, Wilcoxon P = 0.35. In summary, these results indicate that

IKZF1 has multiple functions and that different SNPs near IKZF1 elicit function-specific

effects.
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We identified other trans-eQTLs showing similar phenomena: we observed that rs174546

(located in the 3’-UTR of FADS1, and associated with metabolic syndrome34, LDL and total

cholesterol levels35,36) affects C11orf10, FADS1 and FADS2 in cis and LDLR in trans.

LDLR encodes the LDL receptor and contains common variants that are also associated with

lipid levels36 (Figure 3). LDLR gene expression levelscorrelated negatively (P < 3.0 × 10-4)

with total, HDL and LDL cholesterol levels in the tested cohorts (Rotterdam Study and

EGCUT, Supplementary Table 7), indicating that peripheral blood is a useful tissue for

gaining downstream insight into the effects of lipid SNPs.

For 21 different complex traits, we found that at least two unlinked variants that are

associated with these diseases, affected exactly the same gene in trans. When taking an

equally sized, but permuted list of trans-eQTLs we would on average find only one complex

trait where two unlinked SNPs affected the same gene in trans (Figure 4, Supplementary

Table 8, Online methods). Although most of these traits are hematological (e.g. mean

platelet volume or serum iron levels) we also observed this convergence for blood pressure,

celiac disease, multiple sclerosis, and type 1 diabetes (T1D). rs3184504 (located in an exon

of SH2B3) and its near-perfect proxy rs653178 (located in an intronic region of ATXN2 on

chromosome 12) are associated with several auto-immune diseases including T1D37,38, T1D

auto-antibodies37,38, celiac disease8,39, hyperthyroidism40, vitiligo41, rheumatoid arthritis39

and other complex traits such as blood pressure42,43, chronic kidney disease44, and

eosinophil counts45.

We observed a cis-eQTL on SH2B3 (FDR < 0.05) and fourteen trans-eQTL genes (FDR <

0.05, Figure 5), all highly expressed in neutrophils. Since these trans-eQTLs could

potentially appear due to the known effect of rs3184504 on differences in cell-count

proportions45, we correlated trans-gene expression levels with cell counts in two cohorts

(the Rotterdam Study and EGCUT) but did not observe significant correlations

(Supplementary Table 6). These fourteen trans-eQTLs describe different biological

functions: T1D disease risk allele rs3184504*T decreases expression levels of nine genes,

most of which are involved in toll-like receptor signaling46 (C12orf75, FOS, IDS, IL8,

LOC338758, NALP12, PPP1R15A, S100A10 and TAGAP) and increases expression of five

genes involved in interferon-γ response (GBP2, GBP4, STAT1, UBE2L6 and UPP1). We

observed that another T1D risk allele, rs4788084*C37,38 on chromosome 16, increases

expression of GBP4 and STAT1 as well (Figure 5), revealing how different T1D risk alleles

converge: they both cause an increase of interferon-γ response gene expression.

In summary, our eQTL meta-analysis revealed and replicated downstream effects for 233

trait-associated SNPs. We have highlighted only a few here and shown that trans-eQTL

mapping in blood for lipid and immune-mediated disease variants yields downstream insight

which is biologically meaningful. Our results on IKZF1 show that the two unlinked SLE and

MCV variants near this gene give strikingly different yet biologically meaningful trans-

regulatory effects. Future, larger-scale trans-eQTL analysis in blood will likely uncover

many more of these regulatory relationships.
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Online methods

Study populations

We performed a whole-genome eQTL meta-analysis of 5,311 samples from peripheral

blood, divided over a total of nine datasets from seven cohorts, including EGCUT14 (N =

891), InCHIANTI15 (N = 611), Rotterdam Study16 (N = 762), Fehrmann5 (N = 1,240 on the

Illumina HT12v3 platform and N = 229 on the Illumina H8v2 platform), HVH17-19 (N = 43

on the Illumina HT12v3 platform and N = 63 on the Illumina HT12v4 platform) SHIP-

TREND20 (N = 963), and DILGOM21 (N = 509). Gene expression data for each dataset was

obtained using either PAXGene (Becton Dickinson) or Tempus tubes (Life Technologies),

followed by hybridization to Illumina whole-genome Expression BeadChips (HT12v3,

HT12v4 or H8v2 arrays). The gene expression platforms were harmonized by matching

probe sequences across the different platforms. Mappings for these sequences were obtained

by mapping the sequences against the human genome build 36 (Ensembl build 54, Hg18)

using BLAT, BWA and SOAPv2 sequence alignment programs. Highly stringent alignment

criteria were used to ensure that probes map unequivocally to one single genomic position.

Genotype data was acquired using different genotyping platforms, and harmonized by

imputation, using the HapMap247 Central European population as a reference. Each dataset

was individually checked for sample mix-ups using MixupMapper48. For a full description

of the individual datasets, results of the sample mix-up analysis, specifics on the gene

expression platforms and probe mapping procedure and filtering, see Supplementary

methods.

Gene expression normalization

Gene expression data was quantile-normalized to the median distribution, and subsequently

log2 transformed. The probe and sample means were centered to zero. Gene expression data

was then corrected for possible population structure by removal of four multi-dimensional

scaling components using linear regression. We reasoned earlier that normalized gene-

expression data still contains large amounts of non-genetic variation5. After population

stratification correction, principal component analysis (PCA) was therefore performed on

the sample correlation matrix. We performed a separate QTL analysis for each principal

component (PC), to ascertain whether genetic variants could be detected that affect the PC.

If we found an effect on the PC, we did not correct the expression data for these

components, to ensure we would not unintentionally remove genetic effects from the

expression data. Significance of these associations was established by controlling the false

discovery rate (FDR), testing each association against a null-distribution created by

repeating the analysis 100 times (permuting the sample labels for each iteration49). PCs that

did not show significance at the FDR threshold of 0.0 were removed from the gene

expression data by linear regression. In all but two very small datasets, the first 40 PCs were

removed (excluding those components per cohort that showed a QTL effect). We observed

that the removal of these 40 components revealed the highest number of eQTLs in each

dataset. Although PC correction may remove some eQTL effects, we observed that the

majority (95% when removing 35 PCs and 90% when removing 40 PCs) of trans-eQTL

effects was independent of the number of PCs removed (Supplementary Figure 14).
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eQTL mapping

After normalization of the data, we performed both cis- and trans-eQTL mapping. eQTLs

were deemed cis-eQTLs, when the distance between the SNP chromosomal position and the

probe midpoint was less than 250 kilobases (kb), while eQTLs with a distance greater than

five megabases (mb) were defined as trans-eQTLs. Only SNPs with a minor allele-

frequency (MAF) > 0.05 and a Hardy-Weinberg equilibrium p-value > 0.001 were included

in the analyses. Since most cohorts had generated the gene expression data using the

HT12v3 platform, we chose to only include probes that were present on this platform. We

only tested SNP-probe pairs when the SNP passed quality control in at least three cohorts.

Furthermore, in order to reduce issues with respect to computational time and multiple

testing, we confined our transeQTL analysis to those SNPs present in the “Catalog of

Published GWAS” (http://www.genome.gov/gwastudies/, accessed July 16th, 2011). We

reasoned that for genes with strong cis-eQTL effects, the cis-eQTL effect may obscure the

detectability of trans-eQTL. Therefore, we used linear regression to remove cis-eQTL

effects prior to trans-eQTL mapping and observed a 12% increase in the number of detected

trans-eQTLs (Supplementary Figure 15). For each cohort, eQTLs were mapped using a

Spearman's rank correlation on the imputed genotype dosage values. We used a weighted Z-

method for subsequent meta-analysis50. To get a realistic null-distribution, we permuted the

sample identifiers labels of the expression data and repeated this analysis ten times

(Supplementary Figure 16). In each permutation the sample labels were permuted. We then

corrected for multiple testing by controlling the FDR at 0.05, by testing each p-value in the

real data against a null-distribution created from the permuted datasets49 (see Supplementary

methods). It has been suggested that false-positive eQTL effects can arise due to

polymorphisms in the probe sequences51,52. Therefore, we tested whether a significant cis-

eQTL SNP was in LD (r2 > 0.2) with any SNP in the cis-probe sequence, using the Western

European subpopulations of the 1000 genomes project25 (2011-05-21 release, 286

individuals, excluding Finnish individuals) as a reference. If we observed this to be the case

the respective cis-eQTLs were removed. Furthermore, for each trans-eQTL we investigated

whether portions of the probe sequence could map in the vicinity of the trans-eQTL SNP

(which in fact would imply a cis-eQTL, rather than a trans-eQTL effect). Therefore, we

tried to map the trans-eQTL probe sequences, using very permissive settings, within a 5 Mb

window of the trans-eQTL SNP. SNP-probe combinations where the probe mapped with at

least 15 bp within the 5 Mb window, were deemed false-positive and removed from further

analysis. After this filtering we recalculated the FDR for both the cis- and trans-eQTL

results.

Trans-eQTL replication

Replication of the trans-eQTL results was carried out in five independent datasets from four

cohorts, including data obtained from lymphoblastoid cell lines (HapMap3, N = 60424), B-

cells and monocytes (Oxford9, N = 282 and N = 283, respectively), and whole peripheral

blood (KORA F422, N = 740, and BSGS23, N = 862). All the cohorts applied the same

methodology as used in the discovery phase to normalize the gene expression data, check for

sample mix-ups and perform trans-eQTL mapping, including 10 permutations in order to

establish the FDR threshold at 0.05. Finally, we performed a sample-size weighted Z-score
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meta-analysis on the two peripheral blood replication cohorts (KORA and BSGS). Further

details on these datasets can be found in the Supplementary methods.

Enhancer enrichment and functional annotation

To determine whether the significant trans-eQTL SNPs were enriched for functional regions

on the genome, we annotated the trans-eQTL SNPs using SNPInfo53, SNPNexus54,55, and

HaploReg56, which integrate multiple data sources (such as ENCODE project data31,

Ensembl57, and several micro-RNA databases). We limited these analyses to those trans-

eQTL SNPs that were previously shown to be associated with complex traits at genome-

wide significance levels (‘trait associated SNPs’, reported P < 5 × 10-8). These SNPs were

subsequently pruned (using PLINK's --clump command, using an r2 < 0.2). We used the

permuted trans-eQTL data to get realistic null-distributions for each of these tools: we

selected equally sized sets of unlinked SNPs (r2 < 0.2 in the Western-European

subpopulations of the 1000 genomes project25, 2011-05-21 release, 286 individuals,

excluding Finnish individuals) that showed the highest significance in the permuted data,

ensuring that only trait-associated SNPs are included in the null-distribution, as it is known

that trait-associated SNPs in general already have different functional properties than

randomly selected SNPs58 (e.g. trait-associated SNPs typically map in closer proximity to

genes than random SNPs). We also ensured that none of the SNPs in the null-distribution

were affecting genes in trans, or were linked to those SNPs (r2 < 0.2 in 1000 genomes). We

then identified perfect proxies (r2 = 1.0 in 1000 genomes). For SNPInfo and SNPNexus, we

calculated the enrichment for each functional category using a Fisher's exact test. We

determined the enhancer enrichment in nine different cell-types using HaploReg, where we

averaged the enhancer enrichment over the ten permutations.

Convergence analysis

We determined which unlinked trait-associated SNPs show eQTL effects on exactly the

same gene: per trait, we analyzed the SNPs that are known to be associated with this trait

and assessed whether any unlinked SNP pair (r2 < 0.2, distance between SNPs > 5Mb)

showed a cis- and/or trans-eQTL effect on exactly the same gene, as previously described5.

To determine whether the number of traits for which we observed this phenomenon was

higher than expected by chance, we re-ran this analysis 20 times, each time using a different

set of permuted trans-eQTLs, equal in size to the non-permuted set of trans-eQTLs.

SLE IKZF1 ENCODE ChIP-seq Analysis

We used IKZF1 ChIP-seq signal data obtained from the ENCODE-project31 (IKZF1 ChIP-

seq data acquired and processed by UCSC, ENCODE March 2012 Freeze). For every human

gene we determined the average signal (corrected for gene size), corrected for GC-content

bias, and performed a Wilcoxon Mann-Whitney test to see whether the upregulated genes

(MX1, TNFRSF21, IFIT1/LIPA, HERC5, CLEC4C, IFI6) showed a higher ChIP-seq signal

compared to all other human genes.
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Data availability

We have made a browser available for all significant trans-eQTL and cis-eQTL at http://

www.genenetwork.nl/bloodeqtlbrowser. This browser also provides all trans-eQTLs that we

detected at a somewhat less stringent false discovery rate of 0.5, to enable more in-depth

post-hoc analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Trans-eQTL SNPs are enriched for functional elements
We investigated whether the trans-eQTL SNPs are enriched for certain functional elements.

We used the online tools SNPInfo, SNPNexus, and HaploReg that rely upon data from,

amongst others, the ENCODE project. (a) We observed that trans-eQTL SNPs are enriched

for mapping within miRNA binding sites (b) trans-eQTL SNPs show strong enrichment (as

annotated using HaploReg) for enhancer regions that are present in K562 (myeloid) and

GM12878 (lymphoid) cell-lines (error bars represent one standard deviation).
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Figure 2. Independent trans-eQTL effects emanating from the IKZF1 locus
Systemic lupus erythematosus SNP rs4917014 and unlinked mean corpuscular volume SNP

rs4917014 both affect expression of IKZF1 in cis. rs12718597 affects 50 trans-genes

(mostly involved in hemoglobin metabolism) while rs4917014 affects eight different genes

in trans: the rs4917014*T risk allele increases expression of genes involved in type I

interferon response. At a somewhat lower significance threshold of FDR 0.28 rs4917014*T

decreases complement C1QB expression. Both processes are hallmark features of SLE.
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Figure 3. Cholesterol SNP rs174546 affects LDLR in trans
The rs174546*T allele is known to be associated with a decrease in serum LDL cholesterol

and triglycerides levels. It increases the expression levels of three genes in cis, but also

increases gene expression levels of LDLR that encodes the LDL receptor.
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Figure 4. For 21 complex traits, pairs of unlinked trait-associated SNPs affect the same
downstream genes
We observed that for 21 different traits, there were pairs of unlinked SNPs that have

previously been reported to be associated with these traits and which also affect exactly the

same downstream genes in trans, whereas this is rarely observed when using an equally

sized, but permuted list of trans-eQTLs.
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Figure 5. Two unlinked type-1 diabetes risk alleles both increase STAT1 and GBP4 expression
rs3184504*T, a risk allele for type 1 diabetes (chromosome 12), affects the expression of

SH2B3 in cis, but also affects the expression levels of fourteen unique genes in trans,

including two interferon-γ response genes GBP4 and STAT1. Another unlinked type-1

diabetes risk allele (rs4788084*C on chromosome 16) also increases expression levels of

these two interferon-γ response genes, indicating that an elevated interferon-γ response is

important in type 1 diabetes.
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Table 1

Results of the cis- and trans-eQTL mapping analyses.

Summary statistics Cis-eQTLs Trans-eQTLs

Number of SNPs tested that pass QC 1,962,237 4,542 (of which 2,082 are associated with complex traits at genome-wide
significance, P < 5 × 10−8)

Number of probes tested that pass QC 29,891 34,061

Number of genes tested 14,542 16,332

Number of probes not mapping to genes 9,260 18,018

Number of statistical tests performed 11,172,453 153,134,630

Significance thresholds Cis-eQTLs Trans-eQTLs

Meta-analysis z-score Meta-analysis p-value Meta-analysis z-score Meta-analysis p-value

FDR < 0.05 significance 3.824 1.31 × 10−4 5.022 5.12 × 10−7

Bonferroni significance 5.867 4.5 × 10−9 6.287 3.3 × 10−10

cis-eQTL analysis FDR < 0.05 significance Bonferroni significance

Number of significant unique SNP-Probe pairs 664,097 395,543

Number of significant unique eQTL SNPs 397,310 266,036

Number of significant unique eQTL probes 8,228 5,738

Number of significant unique eQTL genes 6,418 4,690

Number of significant unique eQTL probes not mapping to genes 636 326

trans-eQTL analysis FDR < 0.05 significance Bonferroni significance

Number of significant unique SNP-Probe pairs 1,513 643

Number of significant unique eQTL SNPs 346 200

Number of significant unique eQTL probes 494 240

Number of significant unique eQTL genes 430 223

Number of significant unique eQTL probes not mapping to genes 35 13

Nat Genet. Author manuscript; available in PMC 2014 April 18.


