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Abstract

As the size of livestock farms in The Netherlands is on the increase for economic reasons, an important question is how
disease introduction risks and risks of onward transmission scale with farm size (i.e. with the number of animals on the farm).
Here we use the epidemic data of the 1997–1998 epidemic of Classical Swine Fever (CSF) Virus in The Netherlands to
address this question for CSF risks. This dataset is one of the most powerful ones statistically as in this epidemic a total of
428 pig farms where infected, with the majority of farm sizes ranging between 27 and 1750 pigs, including piglets. We have
extended the earlier models for the transmission risk as a function of between-farm distance, by adding two factors. These
factors describe the effect of farm size on the susceptibility of a ‘receiving’ farm and on the infectivity of a ‘sending’ farm (or
‘source’ farm), respectively. Using the best-fitting model, we show that the size of a farm has a significant influence on both
farm-level susceptibility and infectivity for CSF. Although larger farms are both more susceptible to CSF and, when infected,
more infectious to other farms than smaller farms, the increase is less than linear. The higher the farm size, the smaller the
effect of increments of farm size on the susceptibility and infectivity of a farm. Because of changes in the Dutch pig farming
characteristics, a straightforward extrapolation of the observed farm size dependencies from 1997/1998 to present times
would not be justified. However, based on our results one may expect that also for the current pig farming characteristics in
The Netherlands, farm susceptibility and infectivity depend non-linearly on farm size, with some saturation effect for
relatively large farm sizes.
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Introduction

During the last two decades the mean size of pig herds has

increased in many European countries, including The Nether-

lands. In 1997 around 14.5 million pigs were present in The

Netherlands, housed in 21,500 farms, leading to an average

number of 674 pigs (including piglets) per farm [1]. In 2000 the

population size had declined to around 13.1 million pigs,

distributed over about 14.500 farms, and in 2010 this was around

12.3 million pigs on about 7.000 farms [2]. So the average farm

size increased from 903 pigs in 2000 to 1743 in 2010, and the

number of pig farms decreased from 14,500 to 7,000, thus

increasing the average between-farm distance. There is a public

debate about the desirability of large farms, concerning animal

welfare and disease aspects. For this discussion about the

advantages and disadvantages of large farms, it is important to

know the consequences of a large farm size for the risk of

epidemics of contagious animal diseases.

In 1997–1998 an epidemic of classical swine fever (CSF)

occurred in The Netherlands. During the entire epidemic, 428 pig

farms were infected (out of a total of 21,500 farms in The

Netherlands) and 1286 farms were culled preemptively [1,3–5]. In

this epidemic, even after movement restrictions and enhanced

biosecurity measures were implemented (as a response to the

detection of the first outbreak farm), the between-farm CSF

transmission continued for considerable time. This continuing

transmission must have been at least in part due to indirect

contacts still occurring between farms [6]. Previous analysis of the

between-farm transmission of CSF in this epidemic has illustrated

that for a major part of the infected farms, no contact to a

previously infected farm was traced [6,7]. This implies that the full

observed between-farm transmission cannot be described by a

model of known indirect contacts. In order to still quantitatively

describe the (full) between-farm transmission we therefore model

all transmission routes together by one distance-dependent

phenomenological probability function [7,8]. This so-called

transmission kernel describes the probability of transmission of

CSF as a function of the distance between ‘receiving’ and ‘source’

farm, either per day or accumulated over the infectious period of

the ‘source’ farm. The first estimate of the transmission kernel, in

this case restricted to the transmission risks of untraced contacts,
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was given by Stegeman et al. [6] assuming a piecewise constant

function with a maximum transmission distance of 2 km. An

estimation of a smooth parameterized transmission kernel, now

applying to all possible contacts together and extending beyond

2 km, was reported in the paper by Backer et al. [9]. According to

both kernels, the probability of a susceptible farm to get infected

by a ‘source’ farm decreased with increasing distance to that

‘source’ farm. In both studies the transmission kernel is formulated

independently of farm size (number of pigs per farm). In the

present study we extend the earlier model (kernel) for the

transmission risk as a function of between-farm distance, by

adding two factors. These factors describe the farm-size depen-

dence of, respectively, the susceptibility of an ‘infection-receiving’

farm (exposed farm) and the infectivity of an infected or ‘source’

farm. The Dutch classical swine fever (CSF) dataset is one of the

most powerful ones statistically to study these farm-size depen-

dencies, the drawback being that it applies to the situation of 15

years ago so that outcomes of the analysis cannot be straightfor-

wardly extrapolated to current times.

Methods

Data selection
As is explained in the ‘Data analysis’ section below, our analysis

requires the following pieces of information: the geographical

locations of all pig farms at the time of the epidemic, the number

of animals on each farm, the day of infection and day of culling of

each detected outbreak farm, and the day of culling of each

preemptively culled farm.

Pig farms. The locations of all pig farms in The Netherlands

at the time of the epidemic and the number of pigs per farm (or

more precisely, the maximum number of pigs allowed at that

particular location by the production license of the farm) were

obtained using a database from the Dutch Animal Health Service

(AHS). For a description of this database, see Jalvingh et al. [10].

When a farm had pigs on more than one location (this occurred

for only 0.1% of farms), we assumed that the number of pigs was

divided equally over the different locations; each location was

taken into account as a separate unit in the analysis. When one

location was shared by more than one farm (i.e. farm license), it

was considered as one single farm with a number of pigs given by

the sum of the numbers of pigs in the farms (licenses) sharing the

location. For breeding farms the number of pigs in the database

did not include piglets. To obtain the total number of animals per

farm the number of piglets was estimated and added to the

number of sows. The number of piglets was obtained by

multiplying the number of sows by 4.4, based on the fact that

on average at any moment during the production cycle a sow has

approximately 4.4 piglets [11].

For four outbreak farms the production license data indicated

that the license did not allow pig production on that location, i.e.

the farm license data suggested these were ‘‘empty farms’’; in these

cases we used the number of pigs noted in the outbreak inspection

report to avoid inconsistencies in our analysis. All non-outbreak

empty farms were removed from the dataset. After these

corrections, the dataset contained 23,131 pig farms, with farm

size ranging from 1 to 21,740 animals, with median 400 and mean

N– = 657.3. The size of the outbreak farms ranged between 1 and

21,740, with median 1296.5 and mean N– = 1516.4. Thus, larger

farms are overrepresented in the set of outbreak farms. For more

basic characteristics of the data base, see Table 1. During the first

phase of the 1997–1998 epidemic an artificial insemination (AI)

station became infected, and for 21 subsequent outbreak farms the

CSF infection by means of artificial insemination (AI) was

regarded as a possible transmission route [12]. In order to take

into account the AI station as infection source in our analysis, we

added the location of the infected AI station to the location data

and assigned a fictitious ‘effective’ farm size of 3225 animals to this

location. This number was calculated based on assuming that farm

infectivity scales linearly proportionally with farm size. The

rationale for this choice is to avoid that the AI station would

introduce any bias in the data towards other than the simplest

possible (namely linear) size dependence. The calculation of the

effective farm size went as follows: we multiply the average farm

size in the outbreak area (1038 animals) with the ratio between the

observed number of secondary farm infections caused by the AI

station (21) and the observed average number of secondary farm

infections caused by one infectious farm during the first phase of

the outbreak (this is given by the between-farm R0 which was 6.76

as estimated by Stegeman et al. [7]). For a precise definition of the

‘outbreak area’ we refer to ‘Computational method’.

Infection moment. For the day of infection of each infected

farm, we used the estimates obtained by Stegeman et al. [7]. We

assumed that an infected farm becomes infectious 7 days after

infection, and that the infectious period ends on the day of culling

of the farm.

Pre-emptive culling of pig farms. We had no access to data

on the location coordinates and culling dates of individual farms

that were preemptively culled. We therefore approximately

reconstructed these data from available information on preventive

ring culling measures, which started on 20 April 1997, as follows.

All farms within a 1 km radius of a detected outbreak farm were

assumed to have been preemptively culled either 4days after

detection and culling of the corresponding outbreak farm or on 20

April, whichever date was the latest. The 4-day delay is the median

delay of preemptive culling according to Elbers et al. [4].

Data analysis
The goal of our analysis is to determine both the distance-

dependence and the farm-size dependence of the between-farm

transmission risk of CSF during the Dutch 1997/1998 epidemic.

We will do this by describing the transmission hazard between an

infected pig farm and a susceptible pig farm in terms of the

distance between the two farms and the sizes of both farms using a

transmission kernel, and then use maximum-likelihood estimation

to determine the parameters of this kernel. For the farm-size

dependence we will use a set of six different candidate

Table 1. Data characteristics of the pig population in the
Netherland during the 1997/1998 CSF outbreak.

All
farms

All infected
farms

Farms
in OA Infected farms in OA

# 23131 428 5396 406

N
– 657.3 1516.4 1038.3 1515.7

min 1 1 1 1

Q1 160 848 360 848

Median 400 1296.5 806.9 1285.2

Q3 901 1800 1375 1800

max 21740 21740 21740 21740

# is number of farms, �NN is the average farm size; the farm-size distribution is
characterized by five quantities: min is the minimum farm size observed in the
dataset, Q1 the lower quartile, Q3 the upper quartile, and max the maximum
farm size observed. OA is the Outbreak Area (see Figure 1).
doi:10.1371/journal.pone.0095278.t001

Effect of Farm Size on Spread of Classical Swine Fever
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parameterizations in order to describe a broad range of possible

dependencies on farm size (including farm-size independence).

This allows us to identify a best-fitting size dependence param-

eterization using Akaike’ Information Criterion (AIC) [13]. For the

distance-dependence we use a parameterization that presumes a

risk that declines with distance in accordance with previous

findings [6,9].

Transmission kernel. We quantify the transmission be-

tween an infected pig farm of size NI and a susceptible farm of

sizeNS by means of the following statistical model:

lc r,NS,NIð Þ~ l0

1z
r

r0

� �a f c NS,NIð Þ: ð1Þ

Here lc is the ‘transmission kernel’ defined as the between-farm

transmission probability per unit of time as a function of r, Ns and

Ni, where r is the between-farm distance. Here l0 is the

transmission probability per unit of time at distance zero, r0 is

the distance for which the rate is half l0, a is the power which

Figure 1. Map with the Outbreak Area (OA, black circle) in The Netherlands. This includes the infected farms (red dots) and the high-risk
areas (blue). The high-risk areas for transmission of CSF (blue) were calculated using the basic kernel (without farm-size dependence), using the
method of Boender et al. [8,20].
doi:10.1371/journal.pone.0095278.g001
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determines the slope at which the transmission rate decreases as a

function of distance, and f c describes how the transmission

probability is influenced by farm size: f cis depending on the

number of animals on the susceptible farm NSand on the number

of animals on the infectious farmNI . Different candidate kernel

parameterizations have been considered in this study, where c

stands for the candidate number:

f c NS,NIð Þ

~

1 for c~0

NSNI

�NN2

� �cM

for c~1

NS

�NN

� �cS NI

�NN

� �cI

for c~2

1zaM
NS

�NN
{1

� �
NI

�NN
{1

� �� �
for c~3

1zaI

NI

�NN
{1

� �� �
1zaS

NS

�NN
{1

� �� �
for c~4

1{exp {
NI

d �NN

� �� �
1{exp {

NS

d �NN

� �� �
for c~5

1{exp {
NI

dI
�NN

� �� �
1{exp {

NS

dS
�NN

� �� �
for c~6

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

,
ð2Þ

in which the exponents cM , cS and cI , the coefficients aM , aS

and aI , and the scaling parameters d, dI and dS are parameters to

be estimated, and �NN is the mean farm size. Together these

candidate parameterizations describe a broad range of possible

dependencies on farm size. l0, i.e. the kernel for c = 0 is the farm-

size independent kernel as used by Boender et al. [14]. The

parameterizations c = 1 and c = 2 assume a power-law dependence

on farm size, with c = 1 using the same exponent cM for both farm

susceptibility and infectivity and with c = 2 accommodating the

possibility of estimating different exponents for susceptibility and

infectivity. The parameterization c = 3 assumes that the difference

from the mean farm-size value of the kernel is a product of linear

dependencies on NI and on NS . c = 4 assumes a linear

dependence of both susceptibility and infectivity on farm size.

The last two candidates (c = 5 and c = 6) are equivalent to the

kernel parameterization used by Chis Ster et al. [15] in an analysis

of between-farm transmission during the 2001 foot-and-mouth

disease epidemic in Great Britain. Candidate c = 5 has only one

scaling parameter d, and c = 6 has different scaling parameters dS

and dI for respectively farm susceptibility and infectivity. The

farm-size dependencies in c = 5 and c = 6 have a maximum

(‘ceiling’) of 1, and for small sizes they reduce in good

approximation to a linear dependence, as a first-order Taylor

expansion in
N

dN
shows:

1{ exp {
N

dN

� �
&

N

dN
:

From this result we see that for low farm sizes the product dN can

be interpreted as an inverse proportionality constant relating farm

susceptibility/infectivity to farm size. We note that the form of Eq.

(1) for the transmission kernel falls in the general class of ‘gravity

models’ as discussed e.g. in [16,17].

Parameter estimation method. Parameter estimates are

obtained using maximum-likelihood estimation. The likelihood is

Figure 2. Estimated transmission kernels lc and their confi-
dence bounds. The basic kernel parameterization is given by c = 0 in
Equation (1) and (2) without farm-size dependence (dashed blue line)
and the best-fit kernel c = 5 (solid red line), where NS is set equal to the
average size of the farms in the OA (1038.3) and NI to the average size
of the infected farms in the OA (1515.7), with their confidence bounds
(thinner lines).
doi:10.1371/journal.pone.0095278.g002

Table 2. The AIC values (Akaike’ Information Criterion, see [13]) for the candidate kernel parameterizations for the OA dataset.

Optimal spatial parameter values Optimal farm-size parameter values

c l0 (day21) a r0(km) k AIC

0 0.0027 2.12 0.46 3 6489.66

1 0.0024 2.08 0.43 cM ~0:28 4 6452.66

2 0.0024 2.1 0.45 cs~0:20; c1~0:29 5 6454.60

3 0.0026 2.09 0.44 aM~0:09 4 6483.48

4 0.0024 2.10 0.44 as~0:05 ; a1~0:19 5 6471.24

5 0.0040 2.10 0.46 d~0:53 4 6451.24

6 0.0042 2.10 0.45 ds~0:54; d1~0:54 5 6453.24

A lower AIC value corresponds to a better fit to the data. For explanation of the parameters, see Equation (1) and (2). k is the total degrees of freedom.
doi:10.1371/journal.pone.0095278.t002
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given by the following expression:

L~ P
k[Ls

pesc,k tendð Þ P
l[Ld

pesc,l tcul,lð Þ P
m[Li

pesc,m tinf,mð Þpinf,m tinf,mð Þ: ð3Þ

The quantity pesc,i tð Þis the probability that farm i is escaping from

infection (by any of the infectious farms) up to time t and the

quantity pinf,i tð Þ is the probability that farm i is infected by any of

the infectious farms at time t. Here the total number of farms is

subdivided in three sets: Li is the set of all farms that are infected

by the disease during the epidemic, Ld is the set of all preemptively

culled farms, and Ls is the set of all farms remaining susceptible.

Any farm i from the set Li escapes from infection until it is infected

at time tinf,i, any farm i from the set Ld escapes until it is culled at

time tcul,i, and any farm i from the set Ls escapes until the end time

tend of the experiment. The escape probability pesc,i tð Þis given by

pesc,i tð Þ~ P
t{1

s~1
P

j[Li
exp {lc rij ,Ni,Nj

� �
inf,j(s)

� 	
: ð4Þ

Here lc rij ,Ni,Nj

� �
inf,j(t) is the probability per day that an

infectious farm j infects a susceptible farm i at time t, where rij is

the distance between farms i and j, Ni and Nj are the number of

animals on farms i and j respectively and inf,i(t)denotes the

indicator function which is 1 when farm j is infectious at time t,

and 0 otherwise. The infection probability pinf,i tð Þ is given by

pinf,i tð Þ~1{ P
j[Li

exp {lc rij ,Ni,Nj

� �
inf,j(t)

� 	
: ð5Þ

For a complete dataset, which contains the geographical location

coordinates of all pig farms in The Netherlands, the number of

animals on each farm during the epidemic, the estimated day of

infection of each outbreak farm, and the culling day of each

infected farm and preemptively culled farm, we can calculate the

likelihood and thus estimate the parameters l0, r0, a and the k-3

parameters determining fc, with k the total degrees of freedom.

Computational method. Numerical optimization of the

likelihood across all 7 candidate parameterizations fc proved

prohibitively time consuming when using the full dataset with all

pig farms in The Netherlands. We therefore reduced the

computational burden by approximating the full likelihood by

one in which only the farms within the circular ‘outbreak area’

(OA) in The Netherlands are included. All farms outside the OA

are assumed to escape infection, and these escapes are taken into

account in the likelihood in an approximate fashion. The radius of

the OA (31.9 km) was determined such that the OA contained at

least 95% of all outbreak farms, and the coordinates of its center

were calculated by taking the mean over all x-coordinates and over

all y-coordinates of all outbreak farms. The characteristics of the

OA are presented in Table 1 and the OA is visualized in Figure 1.

The contribution to the likelihood of the escape from infection of

all farms outside the OA was approximated by modeling the

region of The Netherlands outside the OA area as half a ring (with

an outer radius of 200 km and inner radius of 31.9 km) with a

uniform pig farm density DOut~0:145farms/km2 such that the

total number of farms matches the number of pig farms in The

Netherlands outside the OA. This contribution then takes the form

Figure 4. Comparison of the best-fit model prediction to the
observed epidemic in 1997/1998. Number of newly infected farms
per 28-day period: as derived directly from the 1997/1998 CSF epidemic
data (bars) and as predicted by the fitted c = 5 model for the between-
farm transmission risk (line with symbols). Here time t = 0 corresponds
to 24 December 1996.
doi:10.1371/journal.pone.0095278.g004

Table 3. AIC values (Akaike’s Information Criterion, see [13])
and parameter estimations for candidate kernel
parameterizations for the full dataset.

c l0 (day21) a r0(km) cM or d AIC

0 0.0036 (0.0025–
0.0053)

2.27 (2.15–2.40) 0.55 (0.42–0.73) 6801.94

1 0.002 (0.0014–
0.003)

2.18 (2.08–2.32) 0.51 (0.39–0.69) 0.54
(0.46–0.64)

6681.14

5 0.0104 (0.0060–
0.0195)

2.18 (2.06–2.32) 0.53 (0.38–0.72) 1.76
(1.21–2.66)

6665.84

The calculations were performed for the basic kernel without farm-size
dependence (c = 0) and the two best-fitting candidates c = 1 and c = 5. A lower
AIC value corresponds to a better fit to the data. For explanation of the
parameters, see Equation (1) and (2).
doi:10.1371/journal.pone.0095278.t003

Figure 3. The relative susceptibility or infectivity of a farm as a
function of its size, according to the best-fit parameterization
c = 5 (maximum susceptibility or infectivity equals 1). Full line:
point estimate (d = 1.76), short-dashed line: lower bound (d = 1.21),
long-dashed line: upper bound (d = 2.66).
doi:10.1371/journal.pone.0095278.g003
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pesc,non{OA~exp {DOutPinf p

ð200

31:9

lc r, �NNOA
I , �NNOut

S

� �
rdr

0
@

1
A: ð6Þ

Here, Pinf is the sum of the infectious-period lengths of all

outbreak farms, �NNOA
I is the average farm size of infectious farms

inside the OA (which is 799.1), while �NNOut
S is the average farm size

of susceptible farms outside the OA (which is 345.5).

Using this approximation, we compared the Maximum

Likelihood for all candidate kernel parameterizations presented

in Equation (1) and (2) using Akaike’s Information Criterion (AIC)

[13]. For the kernels with the lowest AIC (i.e. kernels with the best

fit), the maximum-likelihood estimation was then also carried out

with the full dataset taking into account the individual locations of

all pig farms in The Netherlands. In the approximated dataset

analysis we are mainly interested in comparing AICs, and we

therefore only calculate parameter point estimates and no

confidence bounds. In the maximum-likelihood estimation of the

best-fit models using the full dataset we also calculate parameter

confidence bounds.

Results

In Table 1 the farm-size characteristics of the Dutch pig

population during the 1997/1998 CSF epidemic is shown for

infectious and susceptible farms in both the OA and The

Netherlands at large. The likelihood is maximized for the OA

for each of the 7 candidate parameterizations presented in

Equation (1) and (2). The performances of the different candidates

are given in Table 2. According to this table, candidate c = 5 has

the lowest AIC and thus the best fit and therefore gives the best

description of the OA data. In particular, we find that assuming

farm-size independence (c = 0) leads to a comparatively poor fit.

The best description c = 5, with the estimated parameter values of

Table 2, confirms that between-farm transmission decreases with

increasing between-farm distance (see Figure 2). Furthermore,

between-farm transmission is found to be increased both by a

higher number of animals on the susceptible farm and by a higher

number of animals on the infectious farm. This increase is non-

linear: it is proportional to farm size for relatively low sizes, and for

higher sizes it levels off until reaching a ceiling at about 3500

animals per farm (for derivation see below). We note that the fit of

c = 1 is not significantly different from that of c = 5, as the

difference between the two AIC’s is smaller than 2 (DAIC,2.0)

[18]. The shape of the c = 1 model curve, with the estimated

parameter values of Table 2, is very similar to that of c = 5 as

described above.

Candidates c = 2 and c = 6 are extensions of c = 1 and c = 5,

respectively. Splitting of the mean parameter (in candidates 1 and

5) into separate parameters for the susceptible and for the

infectious farms (in candidates 2 and 6) does not lead to a

significantly better fit with clearly distinct parameter values for

both types of farms. Therefore, candidates c = 2 and c = 6 can be

disregarded. The candidates c = 3 and c = 4 yield significantly

worse fits (DAIC.2.0) than c = 1 and c = 5 and are therefore also

disregarded from now on.

For the best candidate parameterizations (c = 1 and c = 5) we

now perform maximum-likelihood parameter estimation using the

full dataset. In Table 3 the results are presented and compared

with the full-data maximum-likelihood estimation result for the

basic kernel without farm-size dependence, i.e. c = 0. For the total

dataset, parameterization c = 5 gives a significantly better fit than

c = 1 (DAIC.2.0). For this reason, we continue with c = 5 and

compare it with c = 0. In Figure 2 both kernels are depicted as a

function of the between-farm distance. Here NS is set equal to that

of the farms in the OA (1038.3) and NI to that of the infected

farms in the OA (1515.7), according to Table 1. Furthermore, the

estimated values for l0, r0, a and d, with their 95%-confidence

intervals, are used. According to Equation (1) and (2) l5 has a

ceiling for large farm sizes. In Figure 3 the farm-size dependence

of the farm susceptibility or infectivity for parameterization c = 5,

i.e. 1{exp {
N

d �NN

� �� �
, is plotted for the point estimate, the

lower bound and the upper bound of d. For the estimated value

d = 1.76, this expression is reaching the 95% level of its ceiling for

a farm size of about 3500. In Figure 4 we compare the observed

monthly number of new outbreak farms to the c = 5 model

prediction.

Discussion

The goal of our analysis was to determine both the distance-

dependence and the farm-size dependence of the between-farm

transmission risk of CSF during the Dutch 1997/1998 epidemic.

We did this by describing the transmission hazard between an

infected farm and a susceptible farm in terms of the distance

between the two farms and the sizes of both farms, using 7

candidate transmission kernel parameterizations (see Equation 2),

and then used maximum-likelihood estimation to determine the

parameters of these parameterizations.

An important conclusion of our analysis is that the number of

pigs on the farms influences the between-farm transmission risk:

the larger the farms, the higher the transmission risk. Our analysis

further confirms that between-farm distance has an important

influence on transmission risk, as was already concluded in

previous work: the longer the distance, the lower the transmission

risk [6,19]. The best fitting model c = 5 implies that a larger farm

size increases both the susceptibility of the ‘receiving’ farm and the

infectivity of the ‘source’ farm, without making a difference

between the strength of these two effects (one and the same

parameter d in Equation 2 for both effects). When using a

parameterization that does distinguish between the farm-size

dependence of susceptibility and that of infectivity (c = 6), no

significant difference between the parameter values was found. We

note that the distance-dependence within the basic kernel (c = 0)

and the best kernel (c = 5) are statistically indistinguishable, so the

decrease of between-farm transmission with increasing between-

farm distance is the same, i.e. it is not affected by the inclusion of

farm-size dependence in the analysis.

We showed that the size of a farm has a significant influence on

both farm-level susceptibility and infectivity for CSF (see Figure 3).

Although larger farms are both more susceptible to CSF and,

when infected, more infectious to other farms than smaller farms,

for each of these effects the increase is weaker than proportional to

farm size. The effect of farm size becomes less noticeable for larger

farm sizes, there is a ‘saturation effect’, i.e. susceptibility and

infectivity become almost size-independent. However, we note

that the slope of the farm-size dependence for large farm sizes is

subject to high statistical uncertainty, because of the limited

number of large (.4000 pigs per farm) farms in the Dutch CSF

database. For the infectivity of the ‘source’ farms the saturation

effect can be explained as follows. As the detection is becoming

highly likely once the number of animals with clinical signs exceeds

a certain value, the number of infectious animals at the moment of

detection of the farm (and subsequent cull) is expected to become

independent of farm size for farm sizes above a certain value.

Assuming that the (maximum) relative infectivity of farms is
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determined by the number of infectious animals (at the moment of

detection) on the farms, this would explain the saturation effect.

An implication of this explanation that is important for

extrapolation purposes is that the farm-size dependence estimated

here will remain unaffected when the mean farm size �NNchanges;

more precisely, the implication is that the product d �NNwill remain

unaffected by changes in �NN.

Since 1997 there has been a continuous trend in the Dutch pig

farm structure towards a lower number of farms and a higher

average farm size (with the total number of pigs in the country

remaining similar). The net effect on the between-farm transmis-

sion risks during a CSF epidemic (in the presence of movement

restrictions) is not straightforward. We can use the distance and

farm-size dependencies estimated here to derive some insight into

the effect of these changes on the between-farm CSF transmission

risks. Based on assuming unchanged d �NN, we used kernel c = 5 and

the dataset of the Dutch pig farm structure in 1997 and in 2011 to

calculate the predicted change in the local between-farm CSF

transmission risk across The Netherlands if also the other kernel

parameters (l0,a and r0) would remain unchanged. The local

transmission risk is measured by the local reproduction ratio

between farms [8,14], and its change describes the net effect

resulting from a lower farm density together with the increases in

mean farm susceptibility and infectivity. The result of this net

effect calculation indicates that the local CSF transmission risk

pattern remains approximately the same in 2011 as it was in 1997:

both the mean local transmission risk and the proportion of farms

situated in high-risk areas remain approximately the same. For a

visualisation of the high-risk areas in 1997 see Figure 1. As the

analysis in this paper used the data from the 1997/1998 CSF

epidemic, the estimated transmission kernel corresponds to the

frequencies of the (indirect) contacts between pig farms during the

epidemic as well as by the bio-security prevailing at pig farms at

that time. Since then, there have been significant changes in pig

farming in The Netherlands, and it is very well possible that the

changes in pig farming may have also led to improved farm-level

biosecurity. In addition, the management of indirect between-farm

contact risks during an epidemic could at present times be realized

more effectively than in 1997/1998. These changes may in

principle affect the (parameters of the) transmission kernel, and

our extrapolation should therefore be considered as indicative.

The indication that the transmission risks remain roughly equal if

contact frequencies and biosecurity were unchanged between 1997

and 2011 implies that if the ‘larger but fewer’ farms in reality come

with substantial improvements of biosecurity and/or lowering of

the frequency of indirect contacts between farms during an

epidemic control phase as compared to 1997/1998, the net result

would be a lowering of transmission risks.

An interesting question is to which extent our results for the

farm-size dependence can be generalized to other pathogens in

pigs and/or other livestock species. One issue of importance here

is the possible difference between farm-size dependencies of

transmission of epidemic versus endemic pathogens (cf. pig

influenza). Concerning farm infectivity: as explained above the

saturating tendency is likely to be related to properties of the

process of detection (and subsequent culling) in the epidemic case.

In the case of endemic pathogens, most often the detection is not

followed by culling but by other control measures, and thus the

farm-size dependency may be different for that reason. Another

observation is that the types of between-farm contacts are different

in the endemic case. For the exotic/epidemic case of CSF studied

here, transport bans exclude or at least limit direct transmission

(infected animals moving between farms). In contrast, direct

transmission may play an important role in between-farm

transmission of endemic pathogens, possibly influencing the

farm-size dependence of the farm susceptibility and infectivity.
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