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Abstract

Continuing advances in nucleotide sequencing technology are inspiring a suite of genomic approaches in studies of natural
populations. Researchers are faced with data management and analytical scales that are increasing by orders of magnitude.
With such dramatic advances comes a need to understand biases and error rates, which can be propagated and magnified
in large-scale data acquisition and processing. Here we assess genomic sampling biases and the effects of various
population-level data filtering strategies in a genotyping-by-sequencing (GBS) protocol. We focus on data from two species
of Populus, because this genus has a relatively small genome and is emerging as a target for population genomic studies.
We estimate the proportions and patterns of genomic sampling by examining the Populus trichocarpa genome (Nisqually-
1), and demonstrate a pronounced bias towards coding regions when using the methylation-sensitive ApeKI restriction
enzyme in this species. Using population-level data from a closely related species (P. tremuloides), we also investigate
various approaches for filtering GBS data to retain high-depth, informative SNPs that can be used for population genetic
analyses. We find a data filter that includes the designation of ambiguous alleles resulted in metrics of population structure
and Hardy-Weinberg equilibrium that were most consistent with previous studies of the same populations based on other
genetic markers. Analyses of the filtered data (27,910 SNPs) also resulted in patterns of heterozygosity and population
structure similar to a previous study using microsatellites. Our application demonstrates that technically and analytically
simple approaches can readily be developed for population genomics of natural populations.
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Introduction

Genetic studies of natural populations have traditionally relied

on low numbers of loci to make inferences about evolutionary and

demographic processes at various temporal and spatial scales.

However, recent advances in sequencing chemistry, sequencing

platforms, data storage, and computational processing are

enabling the efficient collection of data from thousands to

hundreds of thousands of loci from multiple individuals [1]. The

ability to sample genomes densely at the population level is leading

to a rapid radiation of analytical and bioinformatic approaches for

population genomics. These approaches will greatly increase our

understanding of evolutionary, demographic, and adaptive mech-

anisms operating in populations, and how these processes vary

across the entire genome. The scales of these datasets and analyses

present new challenges, including various types of chemical and

technical biases, sequencing errors, and genotyping errors, all of

which can be inadvertently propagated and magnified through

data handling pipelines. The characterization and appropriate

treatment of these biases and error sources is a critical aspect of

these emerging approaches to population genomics.

One of the most exciting developments in population genomics

is the development of various reduced-representation protocols,

collectively referred to as Genotyping-by-Sequencing (GBS),

which allow sequencing of a subset of the genome through

selective amplification of restriction fragments [2–6]. The individ-

ual-specific oligonucleotide barcoding of these sequence libraries

allows high-level multiplexing followed by bioinformatic recovery

of individual identities. GBS protocols are being actively modified

to optimize library and fragment sizes [7–10], and open-source

software is becoming available for genotyping using GBS data

(Universal Network Enabled Analysis Kit: UNEAK) [11–13].

However, the empirical effects of various library preparation and

filtering techniques associated with GBS have only been explored

in a very limited number of systems [7,14–18]. As GBS protocols

develop into mainstream tools for population-level analyses, such

empirical studies of inherent errors and biases are increasingly

important. In this study, we explore the effects of library

preparation using methylation-sensitive restriction enzymes fol-
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lowing Elshire et al. [10], and assess the impacts of various data

filtering techniques on locus numbers, genotype assignment and

population metrics.

One potentially problematic issue with GBS analyses is the large

proportion of repetitive elements in complex plant and animal

genomes. Sequences from repetitive regions can consume

sequencing capacity without increasing information content in

population analyses. The GBS approach described by Elshire et al.

[10] was developed to minimize the selection of repetitive genomic

regions by using a methylation-sensitive restriction enzyme

(ApeKI). The Elshire et al. [10] technique has been used

successfully in a variety of genetic mapping, population structure,

and genomic selection studies in model and non-model plant

species [7,10,12]. However, the empirical bias toward non-

repetitive genomic sites has not been demonstrated in species

other than a few grasses [19]. Because methylation patterns may

vary among taxa, resulting in different patterns of bias, we sought

to describe the patterns of genome sampling using ApeKI in a

eudicot. We performed this analysis using tissue from the Populus

trichocarpa clone ‘Nisqually-1’; the individual clone used to assemble

the first complete annotated genome in a forest tree (genome size

485 million bp) [20]. Specifically, we sought to determine: a)

whether the use of ApeKI following the Elshire et al. [10] protocol

resulted in a bias toward coding regions relative to in silico digests

(which would be agnostic to methylation), and b) whether

sampling across genomic regions was relatively even. Using

several biological replicates of the Nisqually-1 clone, we also

sought to describe c) the frequency with which particular genome

sites are sampled across replicates, and d) the relationship between

sequencing depth and genome sampling intensity.

Another issue with GBS analyses is accounting for variation in

coverage depth and sequence read quality in individual genotyp-

ing and population allele frequency estimation [16,21–24]. Two

general approaches are emerging for the handling of GBS data.

One approach is to use all the data regardless of quality and then

to use Bayesian probabilities based on sequence quality and depth

throughout the analytical pipeline [24–26]. In this method, a fixed

genotype is not strictly assigned to an individual, but their

probabilities are considered throughout any downstream analyses.

An alternative is to filter out data of low quality and loci of low

read depth before performing population genetic analyses. This

approach has the advantage of being less computationally

intensive since genotypes are assigned, and the data substantially

reduced early in the analytical pipeline. Here we assess how

filtering loci using this second approach affects both genotype

assignment and population structure metrics. We explored three

different filtering strategies based on specific thresholds for minor

allele frequencies and read depth. We compare the behavior of

these filters with respect to the number of loci retained, estimates

of individual and population-level heterozygosity, Hardy-Wein-

berg equilibrium, and measures of population subdivision.

To assess the impact of various data filtering strategies, we chose

trembling aspen (Populus tremuloides) because of its close relationship

to P. trichocarpa [27] and its remarkably broad longitudinal and

latitudinal distribution [28]. The distribution of this species across

many different ecological gradients makes it an excellent candidate

for future population genomic studies of adaptation and climate

change effects. Populus tremuloides consists of two major genetic

clusters: one in Canada and the northern U.S. (N cluster) and

another in the western U.S. (SW cluster) [29]. This allows us to

assess the effectiveness of GBS to detect population differentiation

at multiple scales. The samples used in this study come from 6

populations representing both major clusters, and the output from

various filtering strategies were compared with the output from

previous microsatellite analysis of the same populations [29].

Materials and Methods

Sample acquisition and library preparation
Plant material and genomic DNA isolation. For assess-

ment of gene sampling in GBS, we obtained leaf material from a

clone of Nisqually-1, the P. trichocarpa genotype used for genome

sequencing as part of the Populus genome project [20]. For

population studies, we sampled P. tremuloides genets from each of 6

populations, including four from the N cluster: FLFL (Flin Flon,

Manitoba, Canada, n = 16), HSPQ (Havre-St.-Pierre, Quebec,

Canada, n = 20), MI (Ontonagon County, Michigan, USA,

n = 20), SFQ (Saint-Felicien, Quebec, Canada, n = 20), and two

populations from the SW cluster: KFO (Klamath Falls, Oregon,

USA, n = 12), and WWA (Kittitas County, Washington, USA,

n = 19) [29]. Dried leaf tissue was ground in a Tissuelyser II

(Qiagen Inc., Valencia, CA) with tungsten carbide beads. DNA

extraction was performed using a Qiagen DNeasy Plant kit

(Qiagen Inc., Valencia, CA). The final DNA product was eluted

twice from each column into 60 mL and 30 mL of AE buffer,

respectively. The genomic DNA was quantified using a Qubit

fluorometer (Invitrogen, Carlsbad, CA).

Library preparation and high-throughput

sequencing. For both P. trichocarpa (Nisqually-1) and P.

tremuloides samples, genomic libraries were prepared following

Elshire et al. [10] with the methylation-sensitive restriction enzyme

ApeKI and custom adapters and barcodes. For P. trichocarpa, 16

uniquely barcoded GBS genomic libraries (replicates) were

constructed using the same DNA extraction. For P. tremuloides,

uniquely barcoded ApeKI libraries consisted of 152 samples

representing 107 individuals. Forty-five of the samples were

replicates: 18 individuals run in duplicate, and three individuals

run in triplicate, all from common DNA extractions. Illumina

high-throughput sequencing was performed at the Vanderbilt

University Medical Center, on an Illumina HiSeq 2000 using

100 bp single-end indexing runs. The samples were sequenced

across two Illumina lanes. Base calling was performed in Casava

v1.8 (Illumina, San Diego, CA).

Read sorting. For both the Nisqually-1 and P. tremuloides

samples, index (barcode) deconvolution was done using a custom

Perl script to sort each of the GBS barcoded samples into separate

fastq files. The individual raw read files (fastq) were imported into

CLC Genomics Workbench (v4.9; CLC Bio, Cambridge, MA)

and further processed for quality and length (trimmed using

quality scores with a limit set to 0.05; discarded reads less than

30 bp). The enzyme recognition sequence was removed from the

59 end of each raw sequence read after quality trimming.

Assessment of coding regions sampled in reference
genome

Each of the 16 Nisqually-1 replicated libraries, consisting of

single-end trimmed reads, was individually aligned to the P.

trichocarpa v2 assembly (,403 Mb arranged in 19 chromosomes,

assembled into 2518 scaffolds; Phytozome v8.0) using CLC

Genomics Workbench (v4.9; CLC Bio, Cambridge, MA). The

maximum gap and mismatch count were set to 2, and insertion

and deletion costs were set to 3, with a minimum contig length of

200 bp. Length fraction and similarity parameters were set to 0.6

and 0.8, respectively. We used the above assembly to determine

whether each GBS read was or was not within an annotated gene

on the P. trichocarpa genome.

Population Genomics for Populus
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To determine whether observed GBS loci occurred randomly

across the ApeKI sites known to occur in each of the genomic

scaffolds, we conducted a chi-square test comparing the number of

observed vs. expected GBS loci. We calculated the expected

number of GBS loci in each scaffold by multiplying the total in

silico number of ApeKI-containing genes (40,666) by the overall

proportion of these genes that was sampled by GBS (34,750 or

85%). Only scaffolds containing more than five ApeK1 sites (83 of a

total of 998 ApeKI-containing scaffolds) were used in this analysis.

To explore the effect of increasing read depth on genome

coverage, we sequentially added individual P. trichocarpa (Nisqually-

1) replicates, and counted the accumulating total number of sites

sampled. We randomly ordered the replicates and averaged the

effect over 1000 permutations. We acknowledge that accumulating

replicates in this fashion is not technically equivalent to reducing

the level of multiplexing in a single run, given that different

sequencing runs have different error profiles. Our goal here was to

estimate the effect of multiplexing level using a proxy.

Assessment of data filtering strategies in P. tremuloides
UNEAK pipeline. For P. tremuloides samples, single nucleotide

polymorphism (SNP) genotypes were assigned using the UNEAK

(Universal Network Enabled Analysis Kit) filter [12] with default

settings. This pipeline was designed for taxa for which no reference

genome is available, which is currently the case for P. tremuloides.

Using Illumina sequence reads, the network filter in UNEAK

trimmed reads to 64 bp to minimize the effects of sequencing

error, and enabled efficient storage of data in bit format. Identical

reads are then collated as haplotypes (referred to as tags by Lu)

[12]. Haplotype pairs differing by a single nucleotide were retained

as SNPs. Any SNP with a read depth .127 was removed, to

eliminate loci that have multiple genomic copies. Those SNPs with

a minor allele frequency ,0.05 were removed to minimize the

impact of sequencing errors [12].
Post-UNEAK pipeline. Prior to the application of alternative

filtering strategies, we applied two functions that removed all SNPs

(rows) and then samples (columns) containing 90% or more ‘N’

values (indicating that neither allele is designated). These Ns

represent individuals where the allele cannot be called from the

sequence reads. This is either because no read is available at this

site (for this individual) or the sequence quality is too low to call.

Because we are attempting to retrieve SNPS for population genetic

analysis, we apply this early filter to remove loci and individuals

that contain very low levels of information prior to further filtering.

We used custom Python scripts (available at https://github.

com/schimar/gbs) to read the UNEAK output files and to apply

three different filters (Fig. 1). The Threshold Filter (TF) discards all

SNPs having a total read depth of less than four (default threshold

value). Using the TF, SNPs with 4–7 (and .7) identical reads are

scored as a homozygote. A potential problem with this approach is

that a heterozygote call would require four reads of each allele, but

a homozygote call requires only four reads. I.e. to be ‘fair’ we

should require 264 = 8 reads to call a homozygote. Our

Ambiguity Filter (AF) handles this by assigning an unknown (‘?’)

to the second allele in cases where the read depth is 4–7. Thus, a

total of 8 reads containing an ‘A’ at a SNP locus would be assigned

a homozygous genotype ‘AA’, whereas a total of 4–7 reads

containing ‘A’s would be assigned a genotype ‘A?’. The Minor

Allele Frequency Filter (MAFF) assigns homo- or heterozygous

genotypes based on the allele frequency of the minor allele, with a

threshold of 0.45. Therefore, the MAFF does not discard alleles

from genotypes based solely on low read depths. After filtering, we

repeated the exclusion of SNPs with 90% or more ‘N’ values. At

this point, we have a matrix of individuals x SNP genotypes. From

this we counted the total number of cells that were homozygous,

heterozygous, and ambiguous.

Genotype Mismatch rates. For each filtering strategy, we

assessed the frequency of allelic mismatches across replicated

samples. Thus, if a genotype is ‘GA’ in one replicate and ‘GG’ in

the other this counts as one difference (a single mismatch), whereas

‘GG’ versus ‘AA’ is two differences (a double mismatch).

Ambiguous alleles (coded as ‘?’) and unknown (‘N’) alleles were

not included as mismatches. We report mismatch rates as the

proportion of alleles differing among all alleles in the matrix (i.e., 2

x the number of SNPs). We anticipated that low read depths would

contribute to mismatches by increasing allelic dropout and by

Figure 1. Graphical representation of our three filtering schemes, with examples of how some genotypes are interpreted. Orange
boxes denote alleles that are filtered (converted to ‘N’) and pink denotes alleles that are converted to ambiguous (‘?’).
doi:10.1371/journal.pone.0095292.g001
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increasing error rates in base calling. To test this hypothesis we

compared read depths between replicated pairs in which one

sample was a heterozygote and the other was a homozygote (i.e.

allelic dropout) and assessed the read depth difference between

each pair using a Wilcoxon signed rank test. Further, we tested the

read depth difference between mismatched homozygous samples

and matched homozygous samples, using a Mann-Whitney test.

Filtering effects on population parameters. For popula-

tion analyses, we represented each replicated individual once,

choosing the individual with the greatest overall read depth. For

the unfiltered data, as well as those from all 3 filters, we used the

Python HWE exact test [30] to calculate HWE probabilities for

each SNP and population. For each filter, locus-specific HWE

probabilities were pooled across populations, and results summa-

rized as violin plots. One of the six populations (KFO) was

excluded from this analysis because of low sample numbers for

estimating p(HWE).

Using the output from each filter, we calculated FST values

among populations, along with mean observed heterozygosity (Ho)

and estimated heterozygosity (Hs) for each population, averaged

across populations, using the R packages adegenet [31,32] and

hierfstat [33]. Ambiguous alleles were treated as missing data in

these analyses. In previous population genetic studies of aspen,

pronounced subdivision was detected between northern (including

FLFL, HSPQ, MI and SFQ) and western populations (including

KFO and WWA) using microsatellite markers [29]. To test

whether this same pattern was evident in the GBS data, we

explored relative patterns of FST in SNPs and msat loci from the

same populations.

Results

SNP data for this project are publicly available, in hapmap

format, from the Dryad repository: http://dx.doi.org/10.5061/

dryad.2cs4g.

Assessment of coding regions sampled by GBS using
ApeKI

We used the P. trichocarpa genome to study the genomic patterns

and distribution of regions captured by the GBS technique. There

are 462,987 ApeKI in silico restriction sites in the P. trichocarpa

(Nisqually-1) genome. Of those, 212,376 (45.9%) are within

annotated gene boundaries. By contrast, in our 16 GBS replicates

of P. trichocarpa, sequence reads were recovered from a mean of

125,022 ApeKI sites (loci) per replicate (27% of in silico restriction

sites) (s.e. 6,363), of which 87,202 (69.8%) (s.e. 4,289) were within

annotated genes. Thus, our use of ApeKI consistently captured loci

within annotated genes more frequently than one would expect by

chance alone (P,,0.005 according to a simple contingency test).

Pooling results from all 16 replicates, we found that 84% of all

annotated genes in the P. trichocarpa genome were represented in

the GBS library. The number of annotated genes within genomic

regions (scaffolds) sampled by GBS was not significantly different

from a random subset of the genes present (P = 0.61), indicating

that GBS sampled these regions evenly.

Across the 16 P. trichocarpa replicates, we detected 334,158 loci.

On average, 26% of these loci were detected in only one of the 16

replicates, and 9.6% were detected in all 16 replicates. The

cumulative distribution of locus numbers over replicates (Fig. 2)

indicated that although at 16 replicates we are approaching an

asymptote, the graph is not yet leveled. Thus, although we can

detect more loci by reducing the level of multiplexing, the returns

are diminishing.

Assessment of SNP filters in P. tremuloides populations
From the 152 barcoded samples in our study, we obtained a

total of 23 billion bp of sequence from 289 million reads, for an

average of 1.9 million sequence reads per sample. After removal of

SNPs with a minor allele frequency ,0.05, we had 160,183 SNPs

for further analysis. The mean number of reads per individual was

45,149 (s.e. 850), and the mean number of reads retained by

UNEAK per sample was 220,872 (s.e. 6674). After removing

samples and SNPs with more than 90% ‘N’, the dataset consisted

of 108,530 SNPs representing 101 individuals (FLFL: 16; HSPQ:

20; KFO: 6; MI: 20; SFQ: 20; WWA: 19) and 39 replicates. This

dataset was subjected to the three different filters (TF, AF, MAFF).

The MAFF dataset retained all 140 samples and 74,159 SNPs,

whereas TF and AF datasets each retained 140 samples and

27,910 SNPs. The total numbers of ‘NN’ (unassigned) genotypes

for each filter was 35628 (no filter and MAFF) and 11,929 (AF and

TF).

The proportions of homozygous and heterozygous genotypes at

each SNP are shown for each filter in Fig. 3. Prior to application of

our filters, 26% of the SNP/individual combinations were assigned

a genotype, of which of 9% were heterozygous and 91% were

homozygous SNPs. The proportion of heterozygous genotypes was

reduced by all filters (to 6.9% for both TF and AF and 2% for

MAFF). This result indicates that all three filters are removing

alleles contributing to observed heterozygosity.

Mismatches across replicated samples at each SNP were

calculated for each filtered data set (Fig.4). In the unfiltered

dataset, the mismatch rate was 1.8%, TF was 1.95%, AF was

1.65%, and MAFF was 1.97%. Mismatch rates did not differ

greatly across populations (data not shown), but there was variance

across replicate pairs compared, with mismatches ranging from

0.04% in the AF to 6.3% in the unfiltered data. Overall, it

appeared that filtering, especially the AF, reduced the mismatch

rates. Mismatches in each category are shown in Fig 3. With

unfiltered data, in mismatched pairs involving allelic dropout in

one sample, the homozygote had the lowest read depth in 79.1%

of cases. The average read depth in these mismatches was 4.15 for

the homozygote and 7.40 for the heterozygote (p,,0.001). In

mismatched pairs involving two homozygotes, the average read

depth (pooling across all replicates) was 1.21, while the average

read depth for matched homozygote replicates was 2.70

(p,,0.001).

The distribution of population- and SNP-specific HWE

probabilities, averaged across populations, is presented for each

filtering approach (Fig. 5). The differences among the filters were

similar across all populations (data not shown). In all cases,

including no filtering, there was a bimodal distribution of HWE

probability values. The MAFF had the lowest percentage of HWE

probabilities .0.05 (57%), whereas AF had the highest (95%).

This increase using the AF was due to a reduction in SNPs with

observed heterozygote deficiencies relative to HWE expectations

(Table 1).

The patterns of population differentiation were not dramatically

impacted by the choice of filter sets. In all cases, the average

pairwise FST value between pairs of populations was greater

between previously described genetic groups (N and SW clusters)

than within each of these groups. These patterns were consistent

with results from the same populations using 8 nuclear microsat-

ellite loci. A ten-fold difference in pairwise FST values between vs.

within major groups was noted with microsatellite data, the

unfiltered, the AF, and MAFF data (Table 1).
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Discussion

The genus Populus is rapidly becoming a model study system for

the examination of several aspects of forest tree biology [34] and

adaptation to climate change [35–38]. One of the benefits of

working with Populus is that the genus includes P. trichocarpa, which

was the first tree species to have its genome sequenced and

assembled [20]. This annotated genome provides a wealth of

resources for further study in the genus [39]. Populus tremuloides

(aspen), for example, has the broadest geographic range of any

North American tree species [40] and has tremendous ecological,

economic, and aesthetic value, particularly in the western portion

of its range [41]. Thus, P. tremuloides lends itself to studies of local

adaptation and evolutionary history, tractable by GBS.

Here we explored two aspects of using GBS in Populus species:

the bias toward coding regions when using GBS with a

methylation-sensitive restriction enzyme (in P. trichocarpa), and

the effect of various data filtering strategies on population data (in

P. tremuloides).

Assessment of coding regions sampled by GBS using
ApeKI

When we examined our data relative to the fully sequenced P.

trichocarpa genome (Nisqually-1), we found that ApeKI increases

sampling of annotated genes relative to that expected by chance

alone. Previous studies have shown that ApeKI preferentially cuts

at nonmethylated sites [42], which in most eukaryotic genomes are

more likely to be coding regions [43]. This bias occurs even

though not all methylation occurs in noncoding regions and the

methylation preferences of the enzyme are not strict. The Populus

genome is relatively small (410 Mb) [20] so a relatively large

proportion of the genome is coding. Therefore, we would expect

that in a larger genome the selection for coding regions might be

even more pronounced. Thus, for researchers interested in

population genomics specifically of coding regions (such as

selection or association studies), ApeKI seems to be an ideal

choice. Concomitantly, if questions require information about all

genomic regions, irrespective of coding status, then a different

endonuclease should be used.

The distribution of GBS loci (regardless of the presence of SNPs)

of the P. trichocarpa genome assembly suggests that the regions

captured by the GBS technique are randomly distributed across

the scaffolds, although the large size of many of the scaffolds may

obscure some within-scaffold clustering. Thus, we have good

reason to believe that SNP loci captured by GBS (using ApeKI)

provide a representative sample of the genome.

Of the approximately 410 Mb in the P. trichocarpa genome

assembly [20], about 11% of the genome would be sampled if all

ApeKI sites were captured by GBS. This value is 8% when pooling

all 16 of our P. trichocarpa replicates, and 3% for any one replicate.

These percentages would drop correspondingly for larger

genomes, and they can be modified by controlling read depth

via the level of multiplexing.

Assessment of data filtering strategies in P. tremuloides
populations

Filtering of P. tremuloides SNP data. In any research

project that entails a sampling of variables, it is ideal to retain those

variables that are informative for the questions at hand. In the case

of population genetics based on allele frequency estimates,

informative loci are those for which genotypes can be assigned

most accurately. Thus, our goal in filtering was to retain as many

of those SNP loci as possible. In our GBS study of P. tremuloides, the

method of filtering had a large effect on some downstream

Figure 2. Effect of the number replicates on the number of unique regions (loci) captured by GBS in P. trichocarpa. We performed 1000
permutations, each with a random order of adding the 16 replicates.
doi:10.1371/journal.pone.0095292.g002
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analyses, particularly those influenced by homozygosity. Deter-

mining which filters are retaining useful data and which filters are

generating artifacts can be difficult. Fortunately, we have

independent data for P. tremuloides indicating that populations are

generally in HWE [29,44–46], as would be expected for a wind-

pollinated tree species. Unfiltered SNPs resulted in the inclusion of

many that were not in HWE, most of which were deficient in

heterozygotes. A simple threshold filter (TF) did not improve this

situation appreciably, nor did a filter that evaluated SNPs based on

the allele ratios (MAFF). The AF appeared to retain more SNPs in

HWE, suggesting that this filter may result in the most accurate

estimate of heterozygosity. The AF filter assigns ambiguous alleles

depending on the read depth of the second allele. Therefore, we

speculate that this filter results in more accurate genotyping of the

SNPs retained. Determining whether this filter is generally optimal

will require more data from more species. Also critical is that, in

general, a more refined filter may result in a higher proportion of

useful SNPs, but it will usually result in overall fewer loci, a trade-

off that needs to be addressed specifically in each study.

Combining multiple filtering steps should also be explored as a

means of obtaining more accurate estimates of genotype.

Effect of filtering strategies on population

parameters. Populations of P. tremuloides tended to show only

low levels of differentiation (Table 1). However, using GBS, we

detected two genetically distinct clusters of aspen populations; the

same clusters that have been detected using microsatellite data

[29]. Pairwise FST values using different marker types and different

loci are difficult to compare directly, since they can be influenced

by locus-specific polymorphism [47]. However, we suspect that

with the MAFF and TF filters, as well as with unfiltered data,

many more SNPs were retained in which read depths were too low

to detect another allele, thereby overestimating homozygosity. The

values of both observed and expected heterozygosity using

microsatellites exceeded values from all other filter types, a result

expected due to high allelic richness.

Assessment of genotyping error. Errors and biases are not

new to genotyping. Prior to genotyping based on reduced

representation libraries, scoring errors [49] and errors associated

with Sanger sequencing and PCR were recognized [48,50],

although routine assessment of error rates has not become

common [15,51–53]. Given that next generation sequencing

(NGS) does not entail manual scoring of genotypes, which can

suffer from subjectivity [49], using automated clustering and

filtering schemes allows more objectivity, both in how we choose

the markers for genotyping and in actually genotyping them.

However, automated genotyping, clustering, and filtering tech-

niques can also result in systematic biases and a high frequency of

errors, particularly errors related to coverage depth, as demon-

strated here.

Because we did not know the true genotype for each SNP for

each individual, we assessed genotyping error indirectly by

comparing replicated samples, and reporting mismatch rates.

Overall, the AF had the lowest mismatch rates, consistent with its

behavior in population genetic analyses. The source of mismatches

is unknown, but our analyses suggest that higher mismatch rates

among replicates are associated with low read depth. We expect

that low read depth would cause allelic dropout in heterozygotes

and increased base-calling error in both homozygotes and

Figure 3. Pooled distribution of genotypes for unfiltered and filtered SNP data for P. tremuloides.
doi:10.1371/journal.pone.0095292.g003
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Figure 4. Numbers of matches, single mismatches (e.g., AA versus AT), double mismatches (e.g., AA versus TT) and ambiguous
differences between replicates for unfiltered and filtered SNP data. Comparisons that include (‘NN’) genotypes are not included here.
doi:10.1371/journal.pone.0095292.g004

Figure 5. Violin plot for pooled results of Hardy-Weinberg exact testing for each SNP per population. Tests for all populations have
been pooled for each filter (x-axis) and probability-values of the exact test (y-axis). The proportions of tests with probabilities above 0.05 (horizontal
line) are shown for all 4 filters. White dots show the median, bottom and top of the boxes show lower and upper quartiles, respectively, and ‘‘fins’’
illustrate the density of observations across the entire range of probability values. Note that the numbers of tests differ for each filter (see text).
doi:10.1371/journal.pone.0095292.g005
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heterozygotes. Determining the factors that contribute to mis-

matches can help researcher to minimize error rates, although

methods to assess errors in NGS studies are not consistent [48],

which can make it difficult to compare among studies. Reducing

error rates is particularly critical for some types of studies, e.g.

those that involve assessment of parentage, individual identity, or

locus-specific effects. Thus, understanding the effect of different

data filters (of any type) on error rates is an important component

of working with NGS data.
Tradeoffs between depth and coverage. For a taxon with

no reference genome, any exploration into population genomics

requires a complex assessment of how to multiplex samples

optimally. The strategy chosen will ultimately affect how many

SNPs can be used. But the amount of data can also be controlled

by the use (or lack) of filtering systems. In general, we expect that

filters that are more stringent will retain fewer usable SNPs, as we

noted in our results (Fig. 3). Buerkle and Gompert [24] advocate

using the maximum number of SNPs (no strict filtering), retaining

those even with minimal coverage: as low as 1 read per SNP per

individual. This approach is particularly appropriate for studies

that examine the variance in population parameters (such as FST

outlier analyses) across SNPs, where maximizing loci is critical.

However, for basic questions of population structure, filtering to

retain informative data might be a more efficient strategy. Thus,

depending on the organism and study question, it may well be

worth assessing the optimal level of multiplexing for GBS, to

control read depth and number of SNPs. Note that even for the

small Populus genome, it appears that we sampled a small

proportion of available SNPs with our level of multiplexing.

Additional SNPs could be sampled if we reduced the level of

multiplexing. However, the approach to an asymptote (Fig. 2)

suggests diminishing returns. More importantly, the level of

multiplexing we used for P. tremuloides was still sufficient to detect

over 100,000 polymorphic SNPs. Even in the P. trichocarpa

replicates, where only 9.6% of the loci were found among all

replicates, these amounted to 32,080 loci, which would certainly

be sufficient for population-level analyses of gene flow patterns,

even with moderately low levels of polymorphism. To increase the

overall read depth and level of overlap across samples further, it

would be necessary to reduce the level of genome sampling. This

can be achieved through various approaches including size

selection of genome fragments [14].

Conclusions

Several versions of NGS applications are becoming available for

the study of population genomics, along with a variety of

approaches to analyzing the resulting large-scale data. As these

new techniques emerge, assessment of the impacts of various

methods for sample processing, reduction and selection of genome

representation, and compiling sequence data into population-scale

genotypic data are becoming an important developmental phase

[54,55]. Here we apply a technically simple NGS approach (GBS)

to samples from natural populations, present an assessment of how

the genome of a related species is sampled with this technique, and

explore an analytical framework that provides simple genotype

data that are ready for traditional population genetic analyses. We

demonstrate that the use of the restriction enzyme ApeKI results in

a bias for coding regions, even in a species that is not closely

related to the species in which the method was first developed (e.g.

Zea mays) [10]. This finding confirms the utility of GBS for

analyzing differences in coding regions at the population level (e.g.

for association studies). Our analysis of replicates provides insights

about the trade-off between multiplexing depth and genome

coverage. We also present several different data filtering

approaches and show that the choice of approach can have a

pronounced effect on error rates and on population parameters

such as allele frequencies and HWE. We encourage researchers

who are shifting to NGS population approaches to explore

genotyping error rates and allele frequency distributions to

understand better the potential biases that accompany various

data filtering methods.
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