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Abstract

The moss Physcomitrella patens is an ideal model plant to study plant developmental processes. To better understand
the mechanism of protoplast regeneration, a phosphoproteome analysis was performed. Protoplasts were prepared
from protonemata. By 4 d of protoplast regeneration, the first cell divisions had ensued. Through a highly selective
titanium dioxide (TiO,)-based phosphopeptide enrichment method and mass spectrometric technology, more than
300 phosphoproteins were identified as protoplast regeneration responsive. Of these, 108 phosphoproteins were
present on day 4 but not in fresh protoplasts or those cultured for 2 d. These proteins are catalogued here. They were
involved in cell-wall metabolism, transcription, signal transduction, cell growth/division, and cell structure. These pro-
tein functions are related to cell morphogenesis, organogenesis, and development adjustment. This study presents a
comprehensive analysis of phosphoproteome involved in protoplast regeneration and indicates that the mechanism
of plant protoplast regeneration is similar to that of postembryonic development.

Key words: LC-MS/MS, Physcomitrella patens, phosphoproteome, postembryonic development, protoplast regeneration, TiO,

enrichment.

Introduction

Plant leaf mesophyll cells can be separated from their original
tissue by cell-wall-degrading enzymes generating a large popu-
lation of protoplasts that can then become totipotent and hence
regenerate whole plants (Zhao ez al., 2001). Becoming totipotent
involves changes in DNA methylation pattern and increased
transcription and reorganization of specific chromosomal sub-
domains (Zhao et al., 2001; Avivi et al., 2004), changes that are
similar to those during embryo development, implying a similar
mechanism. Protoplasts are also used to observe cellular pro-
cesses and activities, such as cell-wall synthesis, cell cycle, and
differentiation during regeneration, and hormone responses in
various plant species (Sheen, 2001). These cellular processes
might be similar to plant postembryonic development.

In plants, postembryonic development is organized by
meristems, which both self-renew and produce daugh-
ter cells that differentiate and give rise to different organ
structures. Mechanisms mediating postembryonic develop-
ment have been mainly studied in seed plants. It has been
established that the cell wall is responsible for organ shape
and that the cytoskeleton plays an important role in cell
division and expansion. Additionally, cell-cycle regulation
is essential for development. Some cell-cycle regulators,
such as cyclins and cyclin-dependent kinases, are particu-
larly numerous in plants, reflecting the remarkable abil-
ity of plants to modulate their development (Inze and De
Veylder, 2006).
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Organogenesis is a postembryonic process that occurs
in a continuous manner throughout the entire lifespan.
During organogenesis, organ identity genes play a key
role. In the course of shoot propagation, a number of
regulators have been identified, including KNOTTEDI,
SHOOT MERISTEMLESS (STM), KNOTTED-like from
Arabidopsis thaliana 2 (KNAT2), and CUP-SHAPED
COTYLEDON 1 and 2 (CUCI and CUC2) (Vollbrecht
etal,1991; Long et al., 1996; Pautot et al., 2001; Cary et al.,
2002; Gordon et al., 2007). In contrast, for root formation,
certain other proteins appear to play dominant roles, includ-
ing the PINFORMED (PIN) family, transport inhibitor
responsel (TIR1), and the Aux/IAA family of transcription
factors (Geldner et al., 2001; Rogg et al., 2001; Friml et al.,
2002a, b). During organogenesis, DNA methylation, histone
methylation and acetylation are important for the enor-
mous variation in cell-type-specific and stage-specific gene
expression (Fransz and de Jong, 2002). However, much less is
known the molecular mechanism of protoplast regeneration.

The moss Physcomitrella patens has been established as a
model system for the study of plant development (Cove et al.,
1997; Sakakibara et al., 2003). As with all plants, the form of
the moss plant is determined by the pattern of growth and
division. Protoplast cultures provide an ideal system for the
study of development because following protoplast forma-
tion intact plants are produced at high frequency and rapidly.
In protoplasts formed from seed plants, the process of regen-
eration has been associated with numerous events, including
dedifferentiation and the loss of photoautotrophic metabo-
lism (Fleck et al., 1980; Vernet et al., 1982; Criqui et al., 1992;
Nagata et al., 1994), cell-wall synthesis (Meyer and Abel,
1975), and activation of the cell-cycle machinery (Galbraith
et al., 1981, 1983). The cell cycle is regulated by key devel-
opmental regulators, which are themselves phosphoregulated
(Joubes et al., 2000).

Protein phosphorylation is among the most important
post-translational modifications in cells. It underlies many
regulatory functions, such as cell-cycle control, receptor-
mediated signal transduction, differentiation, and metabo-
lism. For these regulatory functions, eukaryotic cells rely
extensively on phosphorylating the hydroxyl group of the
side chains of serine, threonine, and tyrosine (Hunter, 1995;
Schlessinger, 2000).

Here, phosphoproteomics has been used to increase under-
standing of the machinery of protoplast regeneration in
P, patens. The work examined the global changes in the phos-
phoproteome following protoplast development using tita-
nium dioxide (TiO,) phosphopeptide enrichment strategies
coupled with LC-MS/MS. The study reveals the integration
of protoplast regeneration mechanisms in P. patens.

Materials and methods

Plant material and harvesting

P. patens (Hedwig) ecotype ‘Gransden 2004’ was grown in BCDA
medium as described (Khandelwal ez al, 2010). Protonemata
were cultured at 25 °C under a 16/8 light/dark cycle. To produce

protoplasts, 7-d-old protonemata were treated for 1h with 0.5%
driselase dissolved in 8% mannitol. After filtration and washing,
the protoplasts are regenerated on liquid BCDA medium with
8% mannitol under the same culture conditions. Protoplast isola-
tion was repeated three times. For analysis of the next experiment,
freshly prepared protoplasts and those cultured for 2 and 4 d were
harvested.

Fluorescence-activated cell sorter analysis

For fluorescence-activated cell sorter (FACS) analysis, nuclei were
stained with 2.86 uM 2-(4-amidinophenyl)-6-indolecarbamidine
dihydrochloride (DAPI) and analysed on a two-laser FACStar Plus
platform (Becton Dickinson, Mountain View, CA, USA). An argon
ion laser tuned to 488nm was used in the laser experiment and a
detector with a 530 band pass filter was used for fluorescein isothio-
cyanate. Software compensation was applied to the collected data
using CELLQUEST software (Becton Dickinson).

Protein extraction

Frozen plant material was suspended in 2ml extraction buffer con-
taining 250 mM sucrose, 20mM Tris-HCI (pH 7.5), 10mM EDTA,
I mM 1,4-dithiothreitol (DTT), and inhibitor cocktail for proteases
(Sigma) and phosphatases (Sigma). Cell debris was removed by cen-
trifugation at 8000 g for 10min at 4 °C. Supernatants were trans-
ferred to clean tubes and centrifuged at 120 000 g for 1h at 4 °C.
The final supernatants were used for soluble protein extraction, as
described previously (Wang ez al., 2009). The pellets (membrane-
associated proteins) were re-precipitated with acetone overnight at
—20 °C. The precipitated membrane proteins were rinsed three times
with ice-cold acetone containing 13mM DTT and subsequently
lyophilized. Finally, both protein pellets were resuspended sepa-
rately by adding 8 M urea, 4% CHAPS, 65mM DTT, and 40 mM
Tris (pH 7.5). The protein concentration was determined according
to Peterson (1977) using BSA as a standard. The supernatants were
stored in aliquots at —80 °C or directly digested with trypsin.

Tryptic digestion and phosphopeptide purification

The tryptic digestion was processed as described previously (Dai
et al., 2005). In brief, 500 pg of each protein sample (100 pl vol-
ume) were reduced with 20mM DTT at 37 °C for 2.5h and alkylated
with 100mM iodoacetamide for 40 min at room temperature in the
dark. After that, the protein mixtures were spun and exchanged into
100mM ammonium bicarbonate buffer (pH 8.5), and then incu-
bated at 37 °C for 16h with trypsin at an enzyme/substrate ratio
of 1:50 (w/w) to produce a proteolytic digest. Finally, the digested
peptide mixture was lyophilized and then diluted in a loading buffer
containing 1 M glycolic acid in 65% acetonitrile (ACN) and 2% trif-
luoroacetic acid (TFA).

Phosphopeptide purification was performed using TiO, microcol-
umns (320 pmx50 mm, Column Technology, Freemont, CA, USA;
Thingholm and Larsen, 2009). The microcolumns were rinsed with
100 pl loading buffer and the samples (200 pl) were subsequently
loaded by applying air pressure. After loading the sample onto the
microcolumn, the columns were subsequently washed with 100 pl
loading buffer, 100 pl washing buffer I (65% ACN and 0.5% TFA),
and 100 pl washing buffer IT (65% ACN and 0.1% TFA). The bound
peptides were eluted with 100 pl elution buffer (300 mM ammonium
water and 50% ACN). The elution was acidified by adding 5 pl 100%
formic acid prior to the desalting step.

Nano-LC/MS/MS analysis

Peptide separation was performed on a surveyor liquid chromatogra-
phy system (Thermo Finnigan, San Jose, CA, USA), consisting of a
degasser, MS pump, and autosampler and equipped with a C18 trap
column (RP, 320 pm*20 mm, Column Technology) and an analytical



C18 column (RP, 75 pmx150mm, Column Technology). After sam-
ple loading, the column was washed for 30 min with 98% mobile phase
A (0.1% formic acid in water) to flush off remaining salt. Peptides
were eluted using a linear gradient of increasing mobile phase B (0.1%
formic acid in ACN) from 2 to 35% in 120min. A linear ion trap/
Orbitrap hybrid mass spectrometer (Thermo Fisher, San Jose, CA,
USA) equipped with a NSI nanospray source was used for the MS/MS
experiment. Spray voltage applying to the Nano needle was 1.85kV
and ion transfer capillary temperature was 160 °C. Normalized colli-
sion energy for collision-induced dissociation was 35%. The number
of ions stored in the ion trap was regulated by the automatic gain
control. The instrument method consisted of one full MS scan from
400 to 2000 m/z followed by data-dependent MS/MS scan of the 10
most-intense ions from the MS spectrum with the following dynamic
exclusion settings: repeat count of 2, repeat duration 30 s, exclusion
duration 1.5min. The resolution of the Orbitrap mass analyser was
set at 100 000 (m/Am 50% at m/z 400) for the precursor ion scans.

Protein assignment

The strategy for identifying phosphorylated proteins in P. patens was
as follows. The MS/MS spectra files from each LC run were centroided
and merged to a single file using the TurboSEQUEST program in the
BioWorks 3.2 software suite (Thermo Electron), and then the MS/
MS spectra were searched against the NCBI A. thaliana and P, patens
combined protein database (including normal and reversed) with car-
bamidomethylcysteine as a fixed modification. Oxidized methionine
and phosphorylation (serine, threonine, and tyrosine) were searched
as variable modifications. The searches were performed with tryptic
specificity allowing one missed cleavage and the precursor ion m/z tol-
erances of 50 ppm and fragment ion m/z tolerances of *1 Da. Cysteine
residues were searched as a fixed modification by 57.02146 Da because
of carboxyamidomethylation. Oxidation was set as a variable modi-
fication on methionine (15.99492 Da). Dynamic modifications were
permitted to allow for the detection of phosphorylated serine, threo-
nine, and tyrosine residues (+79.96633). The phosphoric acid neutral
loss peaks of serine and threonine was about —18.01056 Da.

To provide high-confidence phosphopeptide sequence assign-
ments, an accepted SEQUEST result had to have a AC, score of at
least 0.1 (regardless of charge state). Peptides with a +1 charge state
were accepted if they were fully digested and had a cross correlation
(Xcorr) of at least 1.9. Peptides with a +2 charge state were accepted if
they had a Xcorr >2.2. Peptides with a +3 charge state were accepted
if they had a Xcorr 23.3. All output results were filtered and combined
together using BuildSummary software to delete the redundant data
(Tabb et al., 2002). All identified proteins (Whether phosphorylated or
not) were calculated separately and filtered by precursor ion tolerance
m/z of 10 ppm and 1.0% false-positive rate (Elias and Gygi, 2007).
The false-positive rate (FPR) was calculated as: FPR = 2[N,.,/(N,., +
Nioo)], where N, is the number of hits to the ‘reverse’ peptide and Ny,
is the number of hits to the ‘forward’ peptide. The proteins were clas-
sified to a protein group if the same peptides were assigned to multi-
ple proteins after false peptides were filtered. A further manual check
removed phosphopeptides with unclear MS/MS spectra.

For phosphorylation site identification, first a stricter peptide
identification criteria (FPR<0.01) was set. Second, a modified site
was considered to be unique only when the corresponding modified
peptides had a AC, >0.1 because a AC, >0.1 is significant for dis-
criminating the first (top) candidate peptide from the second candi-
date peptide (Deng et al., 2010). In addition, this work checked the
phosphoric acid neutral loss peaks for phosphorylation site identifi-
cation (Ballif ez al., 2004).

Analysis of gene expression by real-time
reverse-transcription PCR

Total RNA was extracted using a RNeasy Plant Mini Kit (Qiagen,
Hilden, Germany). After extraction, RNA samples were treated
with DNase (Ambion, USA). First-strand cDNA was synthesized
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from total RNA using a iScript cDNA Synthesis Kit (Bio-Rad,
Hercules, CA, USA) according to the manufacturer’s instructions.
The P, patens actin3 cDNA gene was used as a standard to normal-
ize the content of cDNA. Real-time reverse-transcription PCR was
performed using gene-specific primers for phosphoproteins in the P.
patens protein database and phosphoproteins in the 4. thaliana pro-
tein database that had genes homologous to those in the P. patens
database (Supplementary Tables S1 and S2, respectively, available
at JXB online) on a Rotor Gene 3000 Real-Time Thermal Cycler
(Corbet Research, Australia). SYBR Premix Ex Taq (Perfect Real
Time) kit and reverse-transcription PCR reagents (Takara Bio) were
used for quantification of differentially expressed gene sequences.

Results
Protoplast cell-cycle phase

To identify the phase of the cell cycle for cells in P. patens pro-
tonemata, the DNA content of protonemata cell nuclei was
measured with FACS. The standard phase of cell cycle was
determined using nuclei from A. thaliana leaves. The nuclei
from A. thaliana had three peaks and two peaks from P. patens,
and the second peak in A. thaliana has approximately the same
relative fluorescence value as that of P, patens protonemata in
the first peak (Fig. 1A and B). The A. thaliana genome size is
125Mb and the leaves are diploid. The P, patens protonemata
are haploid and its genome size is 490 Mb. The nuclei in the
second peak of A. thaliana leaves are in G2 phase (4C, 500 Mbj;
Fig. 1B). So, it was speculated that the nuclei from P patens
protonemata were in G1 phase (1C, 490 Mb; Fig. 1A).

To investigate how P. patens protoplasts regenerate, 7-d-old
protonemata were used to establish an efficient and reproduc-
ible ‘protoplast system’. FACS analysis showed that most pro-
tonemal nuclei (92%) had a DNA content corresponding to
G1 phase and a small peak (8%) was present at a S/G2 level
(Fig. 2A), whereas nearly 100% of the nuclei from freshly har-
vested protoplasts had a G1 level of DNA (Fig. 2B). This is
consistent with previous report. Tobacco leaves were treated
with cell-wall-degrading enzymes to produce a large popula-
tion of protoplasts, which had a DNA content corresponding
to G1 phase (Zhao et al., 2001). Fresh protoplasts appeared
round and green. By 2 d of regeneration, the new polar axes
were established and protoplasts with a S/G2 level of DNA
were present (constituting about 8% of the population;
Fig. 2C). By 4 d, asymmetric cell divisions were common and
protoplasts with a S/G2 DNA content constituted about 13%
of the population (Fig. 2D). Subsequently, the cultures were
transferred to a regeneration medium (BCDA medium) for
formation of protonemata.

Phosphopeptide enrichment and LC-MS/MS
identification

To analyse the P. patens phosphoproteome, this work used
a TiO, phosphopeptide enrichment strategy in combina-
tion with LC-MS/MS for identification. The resulting data
were analysed using the TurboSEQUEST program in the
BioWorks 3.2 software suite. From the three treatments
altogether, more than 2000 phosphoproteins were identified
(data not shown). This work focused on phosphoproteins in
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Fig. 1. Identification of cell-cycle phases. Nuclei were prepared from
Physcomitrella patens protonemata (A) and Arabiposis thaliana leaves
(B) or a mixture of nuclei from both species (C), stained with DAPI, and
subjected to FACS analysis.

protoplasts regenerated for 4 d. There were more than 300
of these expressed in protoplasts regenerated for 4 d which
were not present in fresh protoplasts or those regenerated for
2 d. Of this group of unique phosphoproteins, 108 of them
were functional annotation proteins and others are predicted

proteins. These 108 phosphoproteins were chosen for further
analysis (Table 1).

Phosphorylation site identification

Protein phosphorylation in eukaryotes predominantly occurs
on serine and threonine residues, whereas phosphorylation on
tyrosine residues is less abundant. As expected, the serine and
threonine phosphorylation sites were predominant among
the phosphoproteins associated with the protoplasts regener-
ated for 4 d (Table 1). Tyrosine phosphorylation accounted
for nearly 12.5% of all phosphorylation events, a proportion
that is nearly identical to that reported previously for pro-
tonemata (13%) of P. patens (Heintz et al., 2006). In contrast,
for A. thaliana, phosphorylation on tyrosine residues was
reported to constitute only 4.3% of protein phosphorylation
events (Sugiyama et al., 2008), and for animal cells (2-3%)
and yeast (<1%), tyrosine phosphorylation is even less (de la
Fuente van Bentem and Hirt, 2009). Evidently, the moss has
a high ratio of tyrosine phosphorylation compared to other
eukaryotes but the reason for this remains to be determined.
Additionally, this work found tyrosine phosphorylation in
multiple phosphorylated peptides, results that are similar to
those for A. thaliana (Sugiyama et al., 2008).

Predicted localization and categorization of
phosphoproteins

The 108 phosphoproteins identified from the 4-d culture were
categorized by cellular location, based on annotation within
the NCBI database, and by function, based on the EU A. thali-
ana genome project (Bevan et al., 1998). The majority of the
proteins were predicted to be located in membrane, nucleus,
and chloroplast (Table | and Fig. 3). As for putative function,
proteins could be sorted into 10 categories (Table 1 and Fig. 4),
with more than half of the proteins being involved in transcrip-
tion, signal transduction, growth/division, and structure.

Phosphoproteins involved in cell-wall metabolism and
cytoskeleton structure

Among the collection of identified phosphoproteins were
several involved in cell-wall metabolism, arguably one of the
characteristic metabolic processes of protoplast regenera-
tion. This work identified a xyloglucan endotransglucosylase/
hydrolase (XTHs, C1) and a copper-binding oxidoreductase
related to A. thaliana SKUS (C2), proteins that have been
previously implicated in cell-wall-loosening and expansion
(Campbell and Braam, 1999; Sedbrook et al., 2002). This
work also identified structural cell-wall proteins, including a
proline-rich family protein (C83) and a glycine-rich protein
(C84) although the NCBI database does not assign either to
a cell-wall location.

The identified phosphoproteins included several that
are cytoskeletal. These include two members of the kinesin
superfamily (C79, C86), a formin-like protein (C80), and a
myosin heavy chain (C81). Kinesins are microtubule-based
motors, formin is involved in the organization of the actin



G1_SIG2
160-{A - Protonemata
| :
= 100 +4 '
8 '
3 ! :
z g '
o4 i
r G-
L
0 ':zéo:'4bo'eéo'obo 1000
DAPI fluorescence
] )
) )
) '
b
150-B q : Fresh protoplasts
]
= 100 i
3 :
z d
50 1 [
H
L
o ¥ L lk‘? l‘ 1 L} b L] 1 L] L
0 :200 : 400 600 800 1000
DAPI fluorescence
) )
' )
o
I
2075 - Protoplasts 2 d
)
5 :
b3 g '
g
§ 100 5 E
- h '
I
21 1 e
:\ '
0~ R T B e
0 :200 : 400 600 800 1000
DAPI fluorescence
’
o
e ) y Protoplasts 4 d
)
i :
- g '
J
§ 100 . E
=z h '
i
ot ol
| .
4] Y : T

{ SR IR | b PR
200 400 600 800 1000

DAPI fluorescence

o

Protoplast regeneration in Physcomitrella patens | 2097

Fig. 2. Protoplast regeneration and the cell cycle. (A) Protonemata. (B) Protoplasts. (C) Protoplasts after regeneration for 2 d. (D) Protoplasts after
regeneration for 4 d. Nuclei were isolated from Physcomitrella patens protonemata or protoplasts at the indicated times, stained with DAPI, and
subjected to FACS analysis. Bright-field images show representative cells. Bars, 20 um.

cytoskeleton, and myosin is a motor protein that drives actin-
dependent motility.

Phosphoproteins involved in signal transduction

At 4 d after protoplast formation, 14 proteins were catego-
rized within the signal transduction group. Among these

proteins, four are heterodimeric serine/threonine protein
kinases. These kinases comprise a catalytic subunit, termed
cyclin-dependent kinase (CDK, C46, C47), an activating
subunit (CDK-activating kinase, CAK, C49), and a cyclin
(C48). In addition, two proteins are putatively involved in sig-
nalling to the cytoskeleton. One of them is a putative homo-
logue of TAO-1 (C50), a protein that, regulates microtubule
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complex (1) Mitochondrion (4) cpyorqpiast (15)
Cytoplasm (2) Cell wall (3)

Fig. 3. Annotated subcellular localization of phosphoproteins, showing
the percentage of the 108 phosphoproteins that were specific to 4 d

of regeneration in each category. Numbers in parentheses indicate the
number of phosphoproteins in each subcellular localization. Localization
was based on the NCBI database.

Protein synthesis (4) Unknown (3)

Defense (6)
Protein destination
and storage (7)

Metabolism (21)

Cell structure
(10)

Cell growth/,
division (8)

Transcription (24)
Transport (11)

Signal transduction (14)

Fig. 4. Annotated functional categorization of phosphoproteins, showing
the percentage of the 108 phosphoproteins that were specific to 4 d

of regeneration in each category. Numbers in parentheses indicate the
number of phosphoproteins in each functional category. Function was
based on the EU Arabiposis thaliana genome project.

dynamics and checkpoint signalling during mitotic progres-
sion (Draviam et al., 2007), and the other is annotated as a
small GTPase of the Arf6/ArfB family (C51), which is well
known to regulate actin cytoskeletal organization in animals
and fungi (Myers and Casanova, 2008), although apparently
not studied in plants.

Phosphoproteins associated with transcription

Among the 108 phosphoproteins, 24 of them were associ-
ated with transcription. Interestingly, the putative function
of many of these transcription factors developmental. These
identified transcription factors include putative homologues
of the following proteins: A. thaliana DE-ETIOLATEDI
(C22), a COPIl-interacting protein (C23), a histone-lysine
N-methyltransferase (C24), a pafl complex subunit (C25),
a bromodomain-containing protein (C27), KNOTTED OF
ATHALIANA2 (KNAT?2) (C28), a 4. thaliana pumillio fam-
ily member (C29), a squamosa promoter binding protein-like
14 (SPL, C31), a type I MADS-domain protein (C30), two
AGAMOUS-LIKE (AGL) proteins (C32, C33), ABORTED

MICROSPORES (C34), and three SNF2 family proteins
(C35, C36, C37).

Phosphoproteins involved in growth and division

There are eight phosphoproteins involved in growth and
division. These proteins include a putative condensin com-
plex component SMC3 (C72), a Kelch repeat-containing
protein (C72), a putative homologue of POSTMEIOTIC
SEGREGATION 1 (C73), POLA3 (C74), a putative homo-
logue of an anther-specific proline-rich protein (C75), a puta-
tive homologue of no pollen germination related 2 (C76),
a protein related to embryo-abundant proteins (C77), and
SMALL AUXIN UPREGULATED68 (C78).

Quantitative real-time PCR analysis of phosphoproteins

To correlate protein level with the corresponding mRNA
level, this work performed quantitative real-time PCR to ana-
lyse the mRNA expression of 24 genes of the 108 proteins
specifically phosphorylated on day 4 (Fig. 5). Expression of
all of the tested genes was increased at 2 d but fell at 4 d, in
many cases falling substantially below the level of the fresh
protoplasts. This result indicates that the transcriptional
response precedes the protein phosphorylation, a result that
is consistent with cellular signal transduction.

Discussion

Two major processes that are involved in plant development
are morphogenesis and organogenesis. Morphogenesis is
the formation of shapes and structures, and this depends on
aspects of cell behaviour such as cell-wall synthesis, cell divi-
sion, and elongation. Organogenesis is the specification of
organ identity. Plants are characterized by having continu-
ous postembryonic development, where both meristematic
maintenance and growth are coupled with organogenesis and
reproduction (Bowman and Eshed, 2000; Gutierrez, 2005).
This study shows that the mechanism of protoplast regenera-
tion is similar to that of postembryonic development.

Cell morphogenesis in the process of protoplast
regeneration

Protoplast regeneration is accomplished by cell-wall synthe-
sis, cytoskeleton construction, and regulation of the cell cycle.
The primary cell wall consists of three coextensive polymer
networks: the cellulose—xyloglucan framework, pectin, and
structural protein. During protoplast regeneration, xyloglu-
can endotransglucosylase/hydrolase (XTH, C1), SKUS5 (C2),
proline-rich family protein (C83), and glycine-rich protein
(C84) are examples of phosphorylated proteins that have
plausible roles in primary cell-wall synthesis. In addition,
squamosa promoter binding protein-like 14 (C31) is involved
in cell-wall regeneration from protoplasts (Yang et al., 2008).

Microtubules and actin filaments are essential components
of the machinery required for nuclear division and cytokinesis.
Cytokinesis in plant cells is achieved through the construction
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Fig. 5. Real-time quantitative PCR, showing mRNA changed patterns of
selected proteins searched for Physcomitrella patens protein database
(A) and of the Physcomitrella patens homologous genes of the selected
proteins searched in Arabiposis thaliana protein database (B). Message
level is expressed as log, of the ratio of the expression level at day 2 (or
day 4) to day 0. All expression levels were measured relative to P patens
actin3 cDNA gene. Values are mean+SD of three replicate experiments.

of a new cell wall between daughter nuclei after mitosis. This
process is directed by the phragmoplast, a cytoskeletal struc-
ture that is made up in part by parallel microtubules and actin
filaments. This work identified several phosphorylated proteins
that are implicated in regulating the cytoskeleton, including
TAO-1 (C49), a Arf6/ArfB family small GTPase (C50), two
kinesins (C79, C86), and a Kelch repeat-containing protein
(C72) that has been reported to influence cell shape through
the actin cytoskeleton (Adams ez al., 2000), and a formin-like
protein (C80) and myosin heavy chain (C81) that have been
implicated in tip growth in moss (Vidali and Bezanilla, 2012).
It indicates that that these cytoskeletal proteins are involved in
cell division during protoplast regeneration.

Additionally, this work found several cell-cycle-regulating
proteins to be phosphorylated specifically at day 4, including
two cyclin-dependent kinase catalytic subunits (CDK, C46,
C47), a CDK-activating kinase (C49), and a cyclin (C48). The
catalytic subunits do not act alone: their ability to trigger cell-
cycle events depends completely on associated cyclin subu-
nits. The timing of activation of the CDK is be controlled by
the timing of expression of a particular cyclin subunit, which

Protoplast regeneration in Physcomitrella patens | 2103

also contributes to substrate specificity (Harper and Adams,
2001), and by phosphorylation. CDK-activating kinase is
such an enzyme that phosphorylates CDKs to activate them
(Umeda et al., 2005). These versatile enzymes form the core
of the cell-division cycle. Given that more than 90% of the
protoplasts divide in the days after protoplast formation, it
is not surprising to see evidence of protein phosphorylation
among cell-cycle regulators.

Development adjustment in response to protoplast
regeneration

In this study, there were several phosphoproteins associ-
ated with development and closely related to protoplast
regeneration. DET1 (C22) and COP1 control the transcrip-
tion of multiple genes involved in photomorphogenesis by
regulating chromatin conformation (Lau and Deng, 2012).
COPl-interacting protein-related (C23) together with COP1
mediates gene expression during photomorphogenesis.
Histone-lysine N-methyltransferase (ATX1, C24) is a chro-
matin modifier that trimethylates lysine 4 of histone H3 of
associated nucleosomes. Histone H3 methylation affects
DNA methylation and chromatin structure in ways that are
consequential for development (Tamaru and Selker, 2001;
Jackson et al., 2002). Pumilio (C29) is a founder member of
an evolutionarily conserved family of RNA-binding proteins
that play an important role in embryo development, differen-
tiation, and asymmetric division (Spassov and Jurecic, 2002).

Surprisingly, this study identified a number of transcription
factors that are well known from studies of flowering in seed
plants. FLOWERING LOCUS C (FLC) isa MADS-box tran-
scriptional regulator controlling flowering time (Michaels and
Amasino, 1999). FLC transcription is controlled in part by the
PAF1 complex (C25), which mediates histone methylation of
FLC chromatin (Yu and Michaels, 2010). AGAMOUS-LIKE
(AGL, C32, C33) is also a MADS-box protein required for the
normal development of the internal two whorls of the flower
(Mizukami et al., 1996). The specific function of these flower-
ing genes in P. patens should be further studied.

Plant organs are formed continuously during development
from meristems. ATX1 (C24) is required for the expression
of homeotic genes involved in flower organogenesis (Alvarez-
Venegas et al., 2003). Within the meristem, the family of KNOX
(KNOTTED homeobox) genes plays a crucial role in regulat-
ing organogenesis of meristematic cells (Reiser ez al., 2000). In
A. thaliana, KNAT2 (KNOTTED-like from A. thaliana 2; C28)
homeobox gene is expressed in the vegetative apical meristem.
It is also active during flower development and plays a role in
carpel development (Pautot ez al., 2001). In P. patens, KNOX2
acts to prevent the haploid-specific body plan from developing
in the diploid plant body (Sakakibara et al., 2013).

Several proteins related to chromosome stability and DNA
repair were also identified. The SNF2 family of proteins (C35,
C36, C37) plays roles in processes such as transcriptional reg-
ulation, maintenance of chromosome stability during mitosis,
and various aspects of repairing DNA damage (Eisen et al.,
1995). The condensing-complex component SMC3 (C71) is
the core component of the tetrameric complex cohesin, which
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Fig. 6. Cell responses corresponding to phosphoproteins identified during protoplast regeneration in Physcomitrella patens.

is required for the establishment of sister chromatid cohesion
during S phase, maintenance of cohesion, and segregation of
chromosomes in mitosis. PMS1 (C73) is a protein involved in
the mismatch repair process after DNA replication (Nicolaides
et al., 1994). These findings suggest that these proteins play a
role in protecting cell stability during protoplast regeneration.

In conclusion, this study is, as far as is known, the first
reported assessment of the phosphoproteome during of pro-
toplast regeneration. A comprehensive analysis of the phos-
phoproteome involved in protoplast regeneration is presented
(Fig. 6). This study indicates that there are similar mechanisms
for plant protoplast regeneration and postembryonic develop-
ment. Further studies of how these proteins direct the specific
processes will provide deeper insight into plant protoplast
regeneration.
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