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Abstract

Mitochondrial permeability transition pore (mPTP) plays a central role in alterations of

mitochondrial structure and function leading to neuronal injury relevant to aging and

neurodegenerative diseases including Alzheimer’s disease (AD). mPTP putatively consists of the

voltage-dependent anion channel (VDAC) and the adenine nucleotide translocator (ANT).

Cyclophilin D (CypD) and reactive oxygen species (ROS) increase intra-cellular calcium and

enhance the formation of mPTP that leads to neuronal cell death in AD. CypD-dependent mPTP

can play a crucial role in ischemia/reperfusion injury. The interaction of amyloid beta peptide (Aβ)

with CypD potentiates mitochondrial and neuronal perturbation. This interaction triggers the

formation of mPTP, resulting in decreased mitochondrial membrane potential, impaired

mitochondrial respiration function, increased oxidative stress, release of cytochrome c, and

impaired axonal mitochondrial transport. Thus, the CypD-dependent mPTP is directly linked to

the cellular and synaptic perturbations observed in the pathogenesis of AD. Designing small

molecules to block this interaction would lessen the effects of Aβ neurotoxicity. This review

summarizes the recent progress on mPTP and its potential therapeutic target for neurodegenerative

diseases including AD.

Keywords

Amyloid β; Alzheimer’s disease; Cyclophilin D; Mitochondrial permeability transition pore;
Neurodegeneration

1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disease, predominantly affecting

the elderly, for which only symptomatic treatments are currently available. There are two

pathological features of AD: abnormal accumulations of amyloid beta peptide (Aβ) and

phosphorylation of tau protein in the brain. Mitochondrial and synaptic dysfunction is an
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early pathological feature of AD brain [1–6]. Recent studies have highlighted the relation

between mitochondrial Aβ accumulation and synaptic mitochondrial dysfunction. Known

Aβ-related mitochondrial dysfunctions [7–9] include: excessive reactive oxygen species

(ROS) production [10–13]; disrupted calcium homeostasis [14]; disturbance and distribution

of mitochondrial dynamics, inducing mitochondrial DNA/RNA mutations [15], enhancing

vulnerability to other toxicities, modifying the membranes, and reducing oxidative

phosphorylation (Figure 1). These observations should provide a better understanding of the

relationship between mitochondria and AD pathogenesis.

Progressive accumulation of mitochondrial Aβ in AD brain and in AD mouse models has

been shown to induce mitochondrial malfunction [4, 16–19]. Cyclophilin D (CypD), a

peptidyl-prolyl isomerase F, resides in the mitochondrial matrix and associates with the

inner mitochondrial membrane during the mitochondrial membrane permeability transition

[20]. CypD plays a central role in opening the mitochondrial membrane permeability

transition pore (mPTP) that leads to cell death. The level of CypD was significantly elevated

in neurons in AD-affected regions. Using surface Plasmon resonance with recombinant

human CypD protein, Aβ binds to CypD during an in vitro protein-protein interaction.

Indeed, this Aβ-CypD complex was found in Aβ-rich mitochondria from AD brain and

transgenic AD mice [17, 21]. CypD deficiency (lacking Aβ binding partner) prevented Aβ-

mediated mitochondrial and synaptic dysfunction [17, 21]. Although the precise role of Aβ

in mitochondria is not yet defined, recent reports indicate that interaction of mitochondrial

Aβ with mitochondrial proteins, Aβ binding alcohol dehydrogenase (ABAD) and CypD,

exacerbates mitochondrial and neuronal stress in transgenic AD mouse models [16–18, 21].

Factors like the perturbation of intracellular calcium regulation, the release of pro-apoptotic

factors, regulation in mitochondrial morphology, and ROS generation are often associated

with mPTP formation. Increasing calcium concentration has been shown to increase ROS

generation, decrease ATP production, and induce the release of apotogenic factors followed

by swelling of the mitochondria [22–25]. In the absence of CypD, keystone molecules

comprising the mPTP, and involved in Aβ-mediated mitochondrial, neuronal, and synaptic

dysfunction are lessened [17, 21]. This knowledge has proven crucial to our understanding

of Aβ toxicity and the pathogenesis of AD. Binding appropriate inhibitors to CypD even in

the presence of Ca2+ leads to neuronal protection.

This review focuses on the molecular and cellular abnormalities that occur in the AD brain

and discusses how these abnormalities result in synaptic dysfunction and cell death.

Currently available therapeutic strategies for AD are highlighted, particularly those for

mPTP prevention.

2. Mitochondria and mitochondrial permeability transition pore (mPTP)

Mitochondria are membranous enclosed organelles found in all eukaryotic cells; they play a

vital role in cellular bioenergetics, thermogenesis, heme biosynthesis, lipid catabolism,

calcium homeostasis, and other metabolic activities. Furthermore, mitochondria are

exclusively poised to play an essential role in neuronal cell survival or death after central

nervous system (CNS) injury because they are regulators of both energy metabolism and
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apoptotic pathways [26–28]. Therefore, structurally and functionally intact mitochondria are

crucial for healthy cells. A mitochondrion contains outer and inner membranes composed of

phospholipid bilayers and proteins. The two membranes, however, have different properties.

The outer membrane is freely permeable to small molecules, such as ions and sugars, while

the inner membrane does not contain porins and is highly impermeable to all molecules [29,

30]. Transporters, present in the inner mitochondrial membrane (IMM), allow the entry of

specific substrates into the mitochondrial matrix. Hence, it provides mitochondrial matrix

homeostasis by preventing the free exchange of substances between the matrix and cytosol.

Two major transporters present in the IMM play an important role in calcium homeostasis

[31–33]. Calcium ATPase helps in the uptake of calcium into mitochondria, whereas sodium

calcium exchanger helps in the release of calcium into the cytosol from mitochondria. Under

the conditions of calcium or phosphate overload and intracellular oxidative stress,

mitochondria efflux calcium through mPTP by a transporter-independent process and

thereby activates the apoptotic pathway as the mitochondria lose their calcium handling

ability.

2.1. mPTP as a therapeutic target

The mitochondrial permeability transition is defined as the sudden increase in the

permeability of the IMM to solutes with a molecular mass of less than 1,500 Da, which

results in the loss of membrane potential (Δψ), mitochondrial swelling, and rupture of the

outer mitochondrial membrane (OMM) [32, 34]. The molecular composition of the mPTP

remains a puzzle in spite of extensive interest and thorough studies carried out over the last

decades. The mitochondrial permeability transition is thought to occur after the opening of a

mega channel that is known as the mPTP. Three major proteins are proposed to comprise the

mPTP : the voltage-dependent anion channel (VDAC) present in the outer membrane, the

adenine nucleotide translocator (ANT) located in the inner membrane, CypD found in the

matrix, and other molecules [35, 36]. Under normal conditions, CypD resides in the

mitochondrial matrix and the mPTP remains closed.

In the presence of factors acting as permeability transition inducers, CypD becomes

associated with the IMM. This results in the formation of an ANT channel in the IMM,

which in turn increases inner membrane permeability and opens the mPTP [36]. The

channel, formed by VDAC in the OMM together with ANT, comprises a tunnel-like

structure crossing the mitochondrial membranes, thus connects the mitochondrial matrix

with the cytosol. [37, 38]. Studies in animal models have shown that CypD inhibitor

Cyclosporine A (CsA), or its non-immunosuppressive analog N-methyl-Val-4-CsA, inhibits

mPTP formation by blocking the interaction of CyPD with the ANT, and as a result the

conformational change of ANT is blocked [39–42]. Bongkrekic acid and atractyloside, are

two other modulators of the ANT and mPTP, which inhibit and induce the induction of the

mPTP respectively [43–45].

However, the exact structure of the mPTP remains controversial. It is hypothesized that

ANT from the IMM, VDAC from the OMM, the CsAbinding protein CypD from the matrix,

and several other proteins come together to form the pore [24, 46–48]. In the recent

investigation, genetic knockout studies challenge the validity of this model by showing that
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the mPTP still occurs in mitochondria that are deficient in ANT, VDAC and even CypD,

although some properties of the mPTP are altered [49–52]. Additionally, a recent study

suggests that phosphate carrier (PiC) in IMM is a potential constituent of the mPTP [53].

Leung and colleagues demonstrated that PiC could form a pore either by itself or in

association with ANT, suggesting that PiC but not ANT is the necessary component of the

mPTP. Also, the study shows that high concentrations of calcium alone can trigger PiC.

Interestingly, CypD binding is also sufficient, but not necessarily an initiating step for PiC

associated pore opening. These data may provide an explanation for the failure of VDAC or

ANT ablation to prevent mPTP formation, whereas in CypD deficient mitochondria, mPTP

induction requires greater calcium levels and is not completely blocked by CsA treatment.

2.2. Consequences of mPTP formation

The consequence of mPTP pore opening is that all small electrolytes equilibrate across the

IMM, including cofactors and ions. This will not only lead to the disruption of metabolic

gradients between the mitochondria and cytosol, including the release of accumulated

calcium, but will also lead to osmotic swelling of mitochondria. The IMM no longer

maintains a barrier to protons which leads to dissipation of the proton motive force. The

resultant uncoupling of oxidative phosphorylation prevents mitochondria from generating

ATP, leading to ATP depletion and increased generation of ROS. Mitochondrial swelling

may rupture the OMM by releasing cytochrome c. In turn, cytochrome c initiates cellular

apoptosis by activating pro-apoptotic factors. It can therefore be concluded that massive

formation of mPTP under pathological conditions causes severe mitochondrial injury and

cell death. Potential mPTP blockers include: the immune suppressant Cyclosporin A (CsA)

[17, 54]; Sanglifehrin A (SfA) [55]; ADP [56]; a non-immunosuppressant derivative of CsA,

N-methyl-Val-4-cyclosporin A (MeValCsA)[57] a non-immunosuppressive agent, NIM811,

2-aminoethoxydiphenyl borate (2-APB) [58]; and bongkrekic acid. Available evidence

indicates that CypD is the most important initiating molecule for the mPTP, and that mPTP

formation results in mitochondrial dysfunction, irreversible cell damage, and cell death.

2.3. Significance of mPTP in normal and disease states

AD [17], Parkinson’s disease (PD) [59, 60], amyotrophic lateral sclerosis (ALS) [61, 62],

and Huntington’s disease (HD) [63] are the most common human adult-onset

neurodegenerative diseases. In AD, involvement of the mPTP is evidenced by alterations in

enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial

binding of Aβ and amyloid precursor protein (APP). Similarly, in PD, mutations in putative

mitochondrial proteins have been identified and mitochondrial DNA mutations have been

found in neurons in the substantia nigra. Moreover, changes in ALS occur in mitochondrial

respiratory chain enzymes and mitochondrial cell death proteins. In our published studies

[17], we demonstrated that mitochondria isolated from the hippocampus and temporal lobe

of AD patients showed elevated CypD levels. Increased CypD expression is predominantly

localized in neurons in these specific areas of AD patients [17]. Given the positive

correlation of CypD expression to mPTP opening [17, 24, 62, 64], neurons with increased

expression of CypD in AD-affected brain regions would be more susceptible to mPTP

formation and the resultant consequences. Likewise, up-regulation of CypD expression in

cortical mitochondria was seen in AD mice overexpressing APP and Aβ (APP mice). As
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expected, cortical mitochondria from APP mice demonstrate increased CypD translocation

to the IMM and decreased mitochondrial calcium buffering capacity, suggesting that

mitochondria enriched for Aβ environment are susceptible to mPTP formation, which is

consistent with increased CypD expression [17, 21].

3. Role of the CypD-dependent mPTP in ischemia

CypD and calcium are well known for their role in the formation of the mPTP,

mitochondrial permeability, and neuronal cell death by activation of apoptosis. However, the

role of CypD in hypoxia-induced ischemic brain injury is not well understood. CypD-

deficient mouse studies revealed that CypD-dependent mPTP opening plays a crucial role in

ischemia/reperfusion injury affecting the heart [24, 65] and brain [66], suggesting that the

CypD-dependent mPTP is involved in ischemia/reperfusion-induced cell death. Hence,

CypD and other components of the mPTP are important targets for preventing cell damage.

Ischemia/reperfusion injury is a very complex phenomenon, which involves several death

mechanisms. Hence, ischemia/reperfusion injury can be improved by inhibiting apoptosis

with caspase inhibitors [67–69], inhibiting necrosis with Nec1 [70], or blocking the Ask1

pathway [71]. In vitro cell culture model systems revealed that death mechanisms involve

caspases, a Nec1 target, and Ask1. The Cyp D-dependent mPTP does not seem to overlap

with each other. Different death mechanisms might operate in a sequential or parallel

manner in the same cell. Inhibition of one mechanism might have a protective effect.

Alternatively, different death mechanisms might act on different cells during ischemia/

reperfusion injury and the dying cells might trigger the death process in other cells. It is also

possible that different cell death mechanisms are activated by different ischemic conditions.

For further studies of ischemia/reperfusion injury, mice that lack certain cell death

mechanisms, such as CypD-deficient mice and Bax/Bak-deficient mice, would be useful

tools. The CypD-dependent mPTP might also be involved in other diseases. Mitochondria

isolated from the livers of neuromuscular disorder of mnd2 mutant mice ith mutation of the

omi gene are more susceptible to the mPTP [72]. MND2 mice succumb to motor neuron

disease [73], which might be caused by mPTP formation occurring at a lower threshold in

neuronal mitochondria. Thus, future studies may unveil a role of the CypD-dependent mPTP

in the pathogenesis of various diseases.

4.1. Role of the CypD-dependent mPTP in Aβ-mediated toxicity and oxidative stress

Significant evidence from recent studies shows that Aβ impairs mPTP function [5, 16, 18,

74, 75] by disrupting mitochondrial membrane potential, and increasing ROS generation,

mitochondrial swelling, and cytochrome c release. We have demonstrated that CypD-

deficient neurons are resistant to Aβ-impaired mitochondrial neuronal function. In fact,

CypD-deficient transgenic mAPP mice overexpressing Aβ show significant improvement in

mitochondrial and synaptic function as well as enhanced learning and memory compared to

single mAPP mice [17, 21]. Potential mechanisms underlying mitochondrial perturbation in

the presence of Aβ are triggering mPTP opening through enhancing CypD translocation to

the inner membrane, thereby increasing mitochondrial ROS production and decreasing

mitochondrial calcium buffering capacity. These data indicate that mPTP formation is

augmented in the presence of Aβ.
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Of note, Aβ can increase intracellular calcium and free radical levels, indirectly effecting

mPTP [76]. As a result, this process in turn affects cellular damage primarily through

induction of free radical generation and calcium dysregulation, leading to neuronal injury

[77, 78]. The mPTP is strongly induced by calcium and free radicals and, contrarily, mPTP

formation further aggravates oxidative stress and calcium perturbation. Hence, Aβ-mediated

perturbation of neuronal calcium metabolism and ROS generation are possible mechanisms

underlying Aβ-induced mPTP formation [77, 79], contributing to mitochondrial and

neuronal degeneration. Furthermore, oxidative and other cellular stresses are strong inducers

of CypD translocation to the IMM [24], and this translocation is a key factor that triggers

mPTP opening and formation of Aβ-CypD complexes. Using surface Plasmon resonance

with recombinant human CypD protein, Aβ binds to CypD during an in vitro protein-protein

interaction. Indeed, this Aβ-CypD complex was found in Aβ-rich mitochondria from AD

brain and transgenic AD mice [17, 21]. Additionally, a recent report using molecular

docking experiments postulated that Aβ binds with ANT [80]. Both Aβ and oxidative stress

have been shown to synergistically affect MPTP formation, which is critical for

mitochondrial pathology and neuronal dysfunction in AD pathogenesis. We therefore

propose that mPTP formation is a potential target for AD therapeutic strategies [80].

4.2. Reduction of CypD perpetuated changes in axonal mitochondrial dynamics and
motility via Aβ-induction

To better understand the key role of CypD in mPTP function, it was decided to assess the

effect of CypD on Aβ-induced axonal mitochondrial trafficking and synaptic damage.

Findings revealed that the blockade of mPTP by CypD depletion rescues axonal

mitochondrial trafficking and protects synapses from Aβ toxicity. Axonal mitochondria are

distributed along axons [81] and decreased axonal mitochondrial density is a manifestation

of disrupted mitochondrial trafficking. Significant differences are observed between cultured

nonTg- and CypD-deficient hippocampal neurons after exposure to oligomeric Aβ (1–42).

NonTg neurons revealed significantly decreased axonal mitochondrial density but CypD

depletion protected axonal mitochondrial density from Aβ toxicity. Axonal mitochondrial

density showed no significant changes in vehicle-treated nonTg neurons when compared to

CypD-deficient eurons [81], suggesting no effect of CypD depletion on axonal

mitochondrial distribution without Aβ insult. These results indicate that CypD depletion

preserves the organization of axonal mitochondrial distribution following Aβ insult.

Furthermore, neurons lacking CypD are resistant to Aβ-disrupted PKA/CREB signaling, as

shown by increased PKA activity, phosphorylation of PKA catalytic subunit (PKA C), and

CREB. CypD depletion rescues loss of synapses and improves synaptic activity [75]. Thus,

CypD-dependent signaling pathway (PKA-CREB) is an important mechanism underlying

Aβ- and oxidative stress-induce synaptic injury.

5. Current CypD inhibitors

CypD, an integral part of the mPTP, belongs to the cyclophilin family of peptidylprolyl

cistransisomerases (PPIases) [20]. CypD displays an important role in the cell response to a

variety of noxious stimuli, as it modulates the opening of the mPTP channel when it

translocates to the IMM leading to eventual cell death [17]. A critical event in some forms of
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necrotic and apoptotic cell death is the opening of the mPTP [82, 83], the formation of

which is widely thought to involve an interaction between the ANT and CypD [32]. To date,

the most specific inhibitor of the mPTP is Cyclosporin A (CsA) [84], which acts by

inhibiting the PPIase activity of CypD [85, 86]. CsA lacks clinical significance because of

its immunosuppressive effect by inhibiting calcineurin (a calcium dependent protein

phosphatase), and inability to pass through the bloodbrain barrier. However, several CsA

derivatives have been developed, including N-Me-Ala-6-cyclosporin A and N-Me-Val-4-

cyclosporin which lack the immunosuppressive effects but are still potent inhibitors of the

PPIase activity of CypD, and thereby antagonize mPTP opening and apoptosis induction

[87–89]. Sanglifehrin A (SfA) is also a recently developed potent inhibitor of the mPTP;

although SfA does not prevent CyP-D binding to the ANT, it does inhibit its PPIase activity,

preventing it from facilitating the conformational change of the ANT required for pore

formation, thereby inhibiting apoptosis induction [55]. The SfA–CypD complex has no

effect on the calcium-activated protein phosphatase, calcineurin [90]. All CsA derivatives

lack significance as therapeutic molecules because of severe side effects including

nephrotoxicity, neurotoxicity, and hepatotoxicity, and their poor permeability to the blood

brain barrier. Azzolin et al., has developed a new class of drugs called antmanide (AA) from

the fungus Amanita Phallioides for targeted inhibition of the CypD PPIase activity, leading

to mPTP inhibition and cell protection from insults that cause pore opening [91]. AA lacks

its inhibitory effects on mitochondria or cells derived from CypD null mice. AA inhibits

mPTP formation in a CypD independent fashion, which requires two critical residues in the

peptide ring Phe 6, 9. AA also exhibits an additive effect with ubiquinone 0, which inhibits

mPTP opening in isolated hepatocytes. As a part of developing novel inhibitors of CypD

PPIase activity, Guo, H., et al., has synthesized small molecule quinoxaline derivatives that

inhibit mPTP opening [92]. ADP binding to the ANT causes a conformational change

thereby inhibiting mPTP opening. Currently available CypD inhibitors lack clinical

significance in AD; they are large molecules with high molecular weights, resulting in poor

cell permeability and inability to cross the bloodbrain barrier. Hence there is a need for

developing new small molecules that can overcome the above problems.

Conclusion

Several lines of evidence suggest that aging and age-related neurological diseases are

predominantly associated with mitochondrial dysfunction. Given that mitochondrial and

synaptic dysfunction is an early pathological feature of AD in the brain, targeting

mitochondrial function may be a potential therapeutic strategy for early stages of AD

treatment. Mitochondrial dysfunction leads to the increased generation of ROS, abnormal

protein-protein interactions, and decreased mitochondrial ATP production. Increased

production of ROS with accompanying compromised mitochondrial function results in

damage to neurons following formation of the mPTP. Several other factors including

increased intracellular calcium, Aβ, and CypD also play an important role in the formation

of mPTP, which leads to mitochondrial and neuronal degeneration. Thus, inhibition of

mPTP formation by blocking CypD is a rational target for potential therapeutic AD

strategies. Because the currently available CypD inhibitors are large molecules with high

molecular weights that have difficulty crossing the blood-brain barrier, and have low cell

permeability, there is currently a needin development of small, drug–like, low-molecular
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weight compounds that inhibit CypD, thereby improving mitochondrial and neuronal

function relevant to neurodegenerative diseases including AD (Figure 2).
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Highlights

• Mitochondrial permeability transition pore (mPTP) plays a central role in the

development of Alzheimer’s disease (AD).

• Cyclophilin D (CypD) and reactive oxygen species are also involved in neuronal

cell death in AD through mPTP.

• CypD-dependent mPTP is directly linked to the cellular and synaptic

perturbations in AD.

• mPTP as a potential therapeutic target for neurodegenerative diseases including

AD.
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Figure 1. Toxicities induced by Aβ

Aβ is known to cause neuronal toxicity by several mechanisms, including increased ROS

production, induction of apoptosis, disturbing calcium homeostasis, and enhancing the

vulnerability of neurons to other toxic substances, etc.
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Figure 2. Formation of mPTP is triggered by two major noxious insults
1. calcium overload in the mitochondrial matrix, and 2. oxidative stress, which triggers a

conformational change in the ANT leading to the formation of mPTP along with VDAC.

This is further facilitated by CypD. mPTP opening causes mitochondrial swelling, rupture of

the outer mitochondrial membrane, which finally leads to the releases of a pro-apoptotic

molecules such as cytochrome c into the cytosol. If the pore opens for longer period of time,

loss of membrane potential occurs that leads to the depletion of ATP, which finally triggers

necrotic oncosis. Mitochondria can maintain ATP levels if the mPTP opens for a short

period of time, which triggers necrotic apoptosis. Both of these processes are major

contributing factors for neuronal cell death in AD. CypD inhibitors have the potential to

prevent the formation of mPTP and provide protection against neuronal cell death.
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