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Abstract

The zebrafish larva is a promising whole-animal model for safety pharmacology, environmental risk assess-
ment, and developmental toxicity. This model has been used for the high-throughput toxicity screening of
various compounds. Our aim here is to identify possible phenotypic markers of teratogenicity in zebrafish
embryos that could be used for the assaying compounds for reproductive toxicity. We have screened a panel of
60 water-soluble toxicants to examine their effects on zebrafish development. A total of 22,080 wild-type
zebrafish larvae were raised in 250 lL defined buffer in 96-well plates at a plating density of one embryo per
well. They were exposed for a 96-h period starting at 24 h post-fertilization. A logarithmic concentration series
was used for range-finding, followed by a narrower geometric series for developmental toxicity assessment. A
total of 9017 survivors were analyzed at 5 days post-fertilization for nine phenotypes, namely, (1) normal, (2)
pericardial oedema, (3) yolk sac oedema, (4) melanophores dispersed, (5) bent tail tip, (6) bent body axis, (7)
abnormal Meckel’s cartilage, (8) abnormal branchial arches, and (9) uninflated swim bladder. For each toxicant,
the EC50 (concentration required to produce one or more of these abnormalities in 50% of embryos) was also
calculated. For the majority of toxicants (55/60) there was, at the population level, a statistically significant,
concentration-dependent increase in the incidence of abnormal phenotypes among survivors. The commonest
abnormalities were pericardial oedema, yolk sac oedema, dispersed melanophores, and uninflated swim bladder.
It is possible therefore that these could prove to be general indicators of reproductive toxicity in the zebrafish
embryo assay.

Introduction

The zebrafish embryo is a promising alternative model
in some fields of biomedical research, such as drug

screening, safety pharmacology, and developmental toxicity
assessment.1–9 This whole-animal model may be useful as a
rapid, high-throughput, low-cost assay in the early stages of
the drug-development pipeline.8 Recent studies reported that
the zebrafish embryo model has good predictivity for the
toxicity and teratogenicity of compounds in rodents.4,10–17

The zebrafish has been extensively used in toxicological
studies to screen either single compounds or small panels of
compounds (reviewed by refs.18–22). Examples include the
use of adult zebrafish for the testing of lead and uranium,23

malathion,24 colchicine,25 anilines,26 and metronidazole,27

and the use of juveniles and embryos for testing agricultural
biocides.28,29 Not only adult zebrafish, but also zebrafish
embryos or larvae are used in toxicity studies (reviewed
by Truong et al.30). Examples of this application include the
toxicity testing of nanoparticles31–34 and chemical com-

pounds from different pharmacological classes,11 and
developmental toxicity testing of ethanol35–37 and other
compounds.13,14,38–47

There are several advantages of using zebrafish embryos in
biomedical research (reviewed in Ali et al.20). These include
the small size of the embryo, the small volume of test com-
pound required for testing, and the relatively rapid develop-
ment of the embryo. Many major organ systems are partially
developed at 5 days post-fertilization (dpf).5,48 Further, cel-
lular and molecular pathways implicated in the response to
chemicals or stress, as well as many developmental path-
ways, show evolutionary conservation between the zebra-
fish and mammals.48–51 Broad homologies of zebrafish to
other vertebrate species (including rodents and humans)
include similarities in their genome, brain patterning, and
the structure and function of several neural and physiologi-
cal systems, including the stress-regulating axis.3,52–64

Although there are some essential similarities between
zebrafish and mammals, there are also some important dif-
ferences. The zebrafish is ectothermic, lacks cardiac septa,
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synovial joints, lungs, and other structures.65–67 The last com-
mon ancestor of zebrafish and mammals probably lived around
445 million years ago.68 For these and other reasons, some
phenotypic effects produced by toxicants in humans are difficult
or impossible to model in the zebrafish. Another negative issue
concerning the use of the early zebrafish embryo in compound
screening is that it remains inside the chorion (an extraembry-
onic membrane) until at least 48 hours post-fertilization (hpf).48

This is significant because the chorion may constitute a
barrier to compound diffusion into the embryo.69,70

Given that the use of zebrafish embryos in biomedical
research is increasing, there is a need for further research into
the model.7 Our aim here is to examine the teratogenicity to
zebrafish embryos of a panel of 60 toxicants. Because we add
the compounds to the water in which the embryos develop,
we focus on water-soluble compounds to avoid any confusing
effects of carrier solvents. The compounds were selected (in a
previous study11) to represent a range of chemical classes and
toxicological mechanisms without a priori knowledge of
their effects on the zebrafish embryo. Survivors were ana-
lyzed at 5 dpf for the presence of eight abnormal phenotypes
(the remainder being classified as normal). We did not aim to
make a comprehensive survey of organ morphology since
this would be impracticable given the large scale of this study
and the number of compounds and replicates used. Instead,
we selected readouts for their ease of screening in a medium-
throughput context. Note that the present study is part of a
large-scale toxicity study in this lab, and the LC50 data (96-h
duration of exposure) of this same panel of 60 water-soluble
toxicants have been already published by us.11 The same set
of embryos used in that study are analyzed here. In addition,
we have previously tested the effects of these 60 compounds
on zebrafish embryo behavioral responses.71

Materials and Methods

The embryos analyzed in this study are the same speci-
mens for which mortality rates (and behavioral responses to
toxicants) have already been reported.11,71 For the sake of
completeness, we give the materials and methods used in that
study11 in the following sections, together with additional
information on the EC50 calculations and malformations.

Ethics statement

All animal experimental procedures were conducted in
accordance with local and international regulations. The local
regulation is the Wet op de dierproeven (Article 9) of Dutch
Law (National) and the same law administered by the Bureau
of Animal Experiment Licensing, Leiden University (Local).
This local regulation serves as the implementation of
Guidelines on the protection of experimental animals by the
Council of Europe, Directive 86/609/EEC, which allows
zebrafish embryos to be used up to the moment of free living
(*5–7 days after fertilization). Because embryos used here
were no more than 5 days old, no license is required by
Council of Europe (1986), Directive 86/609/EEC, or the
Leiden University ethics committee.

Animals

Male and female adult zebrafish (Danio rerio) of AB wild-
type were purchased from Selecta Aquarium Speciaalzaak

who obtains stock from Europet Bernina International BV.
The AB strain is a wild-type strain (see www.zfin.org) and
shows high genetic diversity, increasing the likelihood that
we will detect idiosyncratic responses to the toxicants. Fish
were kept at a maximum density of 100 individuals in glass
recirculation aquaria (L = 80 cm, H = 50 cm, and W = 46 cm)
on a 14-h light:10-h dark cycle (lights on at 08.00). Water
and air were temperature controlled (26 – 0.5�C and 23�C,
respectively). The fish were fed twice daily with ‘‘Sprir-
ulina’’ brand flake food (O.S.L. Marine Lab., Inc.) and
twice a week with frozen Artemia (Dutch Select Food;
Aquadistri BV).

Table 1. Phenotype Analysis

Larval phenotype Criteria

1. Normal Absence of any of the
phenotypes listed below

2. Pericardial oedema Pericardium abnormally
swollen by the
accumulation of pellucid
fluid

3. Yolk sac oedema Yolk sac swollen with
accumulated pellucid fluid

4. Melanophores (pigment
cells) dispersed

Melanophores overlying
ventral half of yolk sac
region are relatively pale in
color, with dispersed
melanosomes (in contrast to
the normal phenotype in
which the melanophores are
dark in color, punctuate,
and have aggregated
melanosomes). Note: we
did not score iridophores or
xanthophores

5. Tail bent Tail at the axial level of the
caudal fin is abnormally
flexed dorsoventrally or
laterally

6. Body axis bent Primary axis (excluding the
‘‘tail’’ as defined above) is
abnormally flexed
dorsoventrally or laterally

7. Meckel’s cartilage
abnormal

Meckel’s cartilage grossly
hypoplastic, missing or
unfused in midline. These
effects may be unilateral or
bilateral

8. Branchial arches
abnormal

One or more cartilages of the
branchial skeleton
hypoplastic or missing

9. Swim bladder uninflated The swim bladder is
unexpanded (in contrast to
the normal phenotype at
this stage in which there is
a prominent, dilated lumen)

Description of the nine categories used to score larval phenotypes
at 5 dpf. See Figure 2 for selected illustrations of these phenotypes.

We take the presence of any one or more of the seven phenotypic
abnormalities listed in this table to classify a compound as a
teratogen for the purposes of this study.

dpf, days post-fertilization.
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Table 2. Summary of Outcomes of Compound Treatment Tested in Zebrafish Larvae Assay

Compounds
Significant phenotypic

abnormalities observed a
NOAEC
(mg/L)

1 Aconitine None 50
2 Atropine Pericardial oedema, yolk sac oedema, dispersed pigment cells,

body axis bent, Meckel’s cartilage hypoplasia, swim bladder
uninflated

400

3 Berberine chloride Pericardial oedema, yolk sac oedema, swim bladder uninflated 50
4 Colchicine Pericardial oedema, yolk sac oedema, pigment cells dispersed 20
5 Coniine Yolk sac oedema 20
6 a-Lobeline hydrochloride Pericardial oedema, yolk sac oedema, dispersed pigment cells,

body axis bent
10

7 Morphine hydrochloride Yolk sac oedema, dispersed pigment cells 2000
8 Nicotine Yolk sac oedema, dispersed pigment cells, tail bent, body axis

bent, swim bladder uninflated
0

9 Quinine sulfate Dispersed pigment cells, tail bent, swim bladder uninflated 240
10 ( - )-Scopolamine hydrobromide trihydrate Pericardial oedema, yolk sac oedema, dispersed pigment cells,

tail bent, Meckel’s cartilage hypoplasia, swim bladder
uninflated

2000

11 Strychnine hydrochloride Pericardial oedema, yolk sac oedema, body axis bent, swim
bladder uninflated

0

12 Theobromine Pericardial oedema, yolk sac oedema, dispersed pigment cells,
body axis bent, swim bladder uninflated

30

13 ( + )-Tubocurarine chloride hydrate Yolk sac oedema 200
14 Yohimbine hydrochloride Pericardial oedema, yolk sac oedema, dispersed pigment cells,

swim bladder uninflated
10

15 Amygdalin Yolk sac oedema, dispersed pigment cells, body axis bent,
swim bladder uninflated

10

16 Arbutin Dispersed pigment cells 80
17 Convallatoxin None 0
18 Coumarin Pericardial oedema, yolk sac oedema, dispersed pigment cells,

body axis bent, Meckel’s cartilage hypoplasia, brachial arch
hypoplasia, swim bladder uninflated

70

19 Digitoxin Dispersed pigment cells 0
20 Gentamycin sulfate Dispersed pigment cells, swim bladder uninflated 200
21 Glycyrrhizin Pericardial oedema, yolk sac oedema, dispersed pigment cells,

Meckel’s cartilage hypoplasia, brachial arch hypoplasia,
swim bladder uninflated

20

22 Hesperidin Yolk sac oedema, dispersed pigment cells, Meckel’s cartilage
hypoplasia

40

23 Kanamycin monosulfate Yolk sac oedema, dispersed pigment cells, Meckel’s cartilage
hypoplasia, swim bladder uninflated

250

24 Naringin Tail bent, Meckel’s cartilage hypoplasia, swim bladder
uninflated

400

25 Neohesperidin Yolk sac oedema, dispersed pigment cells, body axis bent,
swim bladder uninflated

20

26 Ouabain octahydrate Body axis bent, swim bladder uninflated 100
27 Phloridzin dihydrate Pericardial oedema, yolk sac oedema, dispersed pigment cells,

tail bent, Meckel’s cartilage hypoplasia, brachial arch
hypoplasia, swim bladder uninflated

280

28 Rutin hydrate Pericardial oedema, yolk sac oedema, dispersed pigment cells,
body axis bent, Meckel’s cartilage hypoplasia, brachial arch
hypoplasia, swim bladder uninflated

2000

29 Streptomycin sulfate Yolk sac oedema, Meckel’s cartilage hypoplasia, swim bladder
uninflated

1000

30 Cadmium(II) chloride Pericardial oedema, yolk sac oedema, dispersed pigment cells,
tail bent, Meckel’s cartilage hypoplasia, brachial arch
hypoplasia, swim bladder uninflated

0

31 Copper(II) nitrate trihydrate Pericardial oedema, yolk sac oedema, dispersed pigment cells,
body axis bent, swim bladder uninflated

0

32 Lead acetate trihydrate None 40
33 Lithium chloride Pericardial oedema, yolk sac oedema, dispersed pigment cells,

Meckel’s cartilage hypoplasia, brachial arch hypoplasia,
swim bladder uninflated

1000

(continued)
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Defined embryo buffer

To produce a defined and standardized vehicle (control)
for these experiments, we used 10% Hanks’ balanced salt
solution (made from cell-culture-tested, powdered Hanks’
salts, without sodium bicarbonate, Cat. No. H6136-10X1L;

Sigma-Aldrich) at a concentration of 0.98 g/L in Milli-Q
water (resistivity = 18.2 MO$cm), with the addition of so-
dium bicarbonate at 0.035 g/L (cell culture tested; Sigma
Cat. No. S5761), and adjusted to pH 7.46. A similar me-
dium has been used previously as a zebrafish embryo
buffer.11,35,72

Table 2. (Continued)

Compounds
Significant phenotypic

abnormalities observed a
NOAEC
(mg/L)

34 Chloramphenicol Pericardial oedema, yolk sac oedema, dispersed pigment cells,
Meckel’s cartilage hypoplasia, brachial arch hypoplasia,
swim bladder uninflated

200

35 Ethanol Pericardial oedema, dispersed pigment cells 4000
36 Glycerol Body axis bent 8000
37 Tween 80 Dispersed pigment cells, body axis bent, branchial arch

hypoplasia
100

38 Acetic acid Pericardial oedema, yolk sac oedema, dispersed pigment cells,
Meckel’s cartilage hypoplasia, brachial arch hypoplasia,
swim bladder uninflated

50

39 Salicylic acid Yolk sac oedema 15
40 Sodium oxalate Pericardial oedema, dispersed pigment cells, Meckel’s cartilage

hypoplasia, brachial arch hypoplasia, swim bladder
uninflated

100

41 Trichloroacetic acid Pericardial oedema, swim bladder uninflated 40
42 Ampicillin sodium None 4000
43 Cyclophosphamide monohydrate Pericardial oedema, yolk sac oedema, dispersed pigment cells,

swim bladder uninflated
1000

44 Paracetamol None 400
45 Phenacetin Pericardial oedema, yolk sac oedema, Meckel’s cartilage

hypoplasia, swim bladder uninflated
100

46 Benserazide hydrochloride Pericardial oedema, yolk sac oedema, swim bladder uninflated 0
47 Chlorpromazine hydrochloride Pericardial oedema, yolk sac oedema, dispersed pigment cells,

Meckel’s cartilage hypoplasia, swim bladder uninflated
1

48 Isoniazid Pericardial oedema, yolk sac oedema, dispersed pigment cells,
Meckel’s cartilage hypoplasia, swim bladder uninflated

200

49 Phenelzine sulfate Pericardial oedema, yolk sac oedema, Meckel’s cartilage
hypoplasia

5

50 Ethambutol dihydrochloride Pericardial oedema, yolk sac oedema, tail bent, body axis bent,
branchial arch hypoplasia, swim bladder uninflated

4000

51 Verapamil hydrochloride Pericardial oedema, dispersed pigment cells, Meckel’s cartilage
hypoplasia, swim bladder uninflated

20

52 Phenol Pericardial oedema, yolk sac oedema, dispersed pigment cells,
body axis bent, Meckel’s cartilage hypoplasia, swim bladder
uninflated

20

53 Sodium azide Pericardial oedema, yolk sac oedema, dispersed pigment cells,
branchial arch hypoplasia, swim bladder uninflated

0.5

54 Dimethyl sulfoxide Pericardial oedema, swim bladder uninflated 8000
55 Formaldehyde Yolk sac oedema, dispersed pigment cells, swim bladder

uninflated
8

56 Phenformin hydrochloride Yolk sac oedema, swim bladder uninflated 200
57 Ropinirole hydrochloride Pericardial oedema, yolk sac oedema, dispersed pigment cells,

swim bladder uninflated
100

58 Amitriptyline hydrochloride Pericardial oedema, yolk sac oedema, dispersed pigment cells,
Meckel’s cartilage hypoplasia, swim bladder uninflated

0

59 Sodium dodecyl sulfate Yolk sac oedema, dispersed pigment cells, swim bladder
uninflated

2

60 Barbital sodium Pericardial oedema, yolk sac oedema, dispersed pigment cells,
body axis bent, Meckel’s cartilage hypoplasia, branchial arch
hypoplasia, swim bladder uninflated

500

For the full range of concentrations used, see Supplementary Tables S2 and S3.
aThe presence of teratogenic phenotypes (i.e., any of the abnormal phenotypes 2–9 in Table 1) was scored in this column only if the

incidence was significantly higher after exposure to compound as compared with vehicle.
NOAEC, no observed adverse effects (malformations) concentration.
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Embryo care

Eggs were obtained by random pairwise mating of zebra-
fish. Three adult males and four females were placed to-
gether in small breeding tanks (Ehret GmbH) the evening
before eggs were required. The breeding tanks (L = 26 cm,
H = 12.5 cm, and W = 20 cm) had mesh egg traps to prevent
the eggs from being eaten. The eggs were harvested the fol-
lowing morning and transferred into 92-mm plastic Petri
dishes (50 eggs per dish) containing 40 mL fresh embryo
buffer. Eggs were washed four times to remove debris. Fur-
ther, unfertilized, unhealthy, and dead embryos were identi-
fied under a dissecting microscope and removed by selective
aspiration with a pipette. At 3.5 hpf, embryos were again
screened and any further dead and unhealthy embryos were
removed. Throughout all procedures, the embryos and the
solutions were kept at 28 – 0.5�C, either in the incubator or a
climatized room under a light cycle of 14 h light:10 h dark
(lights on at 08.00). All pipetting was done manually, with an
eight-channel pipetter.

Test compounds

We used water-soluble toxic compounds representing a
range of different chemical classes and biochemical activities
(Supplementary Table S1; Supplementary Data are available
online at www.liebertpub.com/zeb). These compounds have
been screened by us for embryo lethality in two previous
studies.11,71 The required dilution was always freshly pre-
pared in buffer just prior to the assay on zebrafish embryos.

Range finding

To determine a suitable range of concentrations for testing,
we performed range finding using a logarithmic series (0, 1,
10, 100, and 1000 mg/L) as recommended in standard pro-
tocols.73 Zebrafish embryos of 24 hpf were gently trans-
ferred from the Petri dish using a sterile plastic pipette into
96-well sterile microtitre plates (Costar 3599; Corning,
Inc.). A single embryo was plated per well, so that dead
embryos would not affect others, and also to allow

FIG. 1. Concentration-dependent phenotypic abnormalities in zebrafish larvae (survivors) produced by selected toxicants
[(A), coumarin, (B) atropine, (C) lithium chloride, and (D) verapamil hydrochloride]. In each case, the ordinate (y-axis)
indicates the percentage of survivors showing a particular phenotype, and the abscissa (x-axis) indicates the concentration of
compound tested in mg/mL. Error bars – standard error of the mean of N = 48 larvae for vehicle (0 mg/L) and surviving larvae
for each concentration for each compound from three independent experiments. Note that for coumarin at 200 mg/mL the error
was nil.
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individual embryos to be tracked for the whole duration of
the experiment. A static nonreplacement regime was used
(thus, there was no replacement or refreshment of buffer
after the addition of compound). Each well contained
250 lL of either freshly prepared test compound, or vehicle
only (buffer) as control. All pipetting of compounds
and vehicle was done manually, with an eight-channel pi-
petter. We used 16 embryos for each concentration and 16
embryos as controls for each compound. The embryos for
controls and treatment groups for each compound were
plated in the same 96-well microtitre plates in each inde-
pendent experiment.

Mortality scoring

Mortality rates at 48, 72, 96, and 120 hpf in both loga-
rithmic series and geometric series were determined using a
dissecting stereomicroscope as previously described.11

Geometric series

After the range-finding experiments, a series of concen-
trations lying in the range between 0% and 100% mortality
were selected. The actual concentrations used are shown in
Supplementary Table S2. The concentrations were in a geo-
metric series in which each concentration was double the next
lowest value.73 Each geometric series of concentrations of
each compound was repeated three times (in total 48 embryos
per concentration and 48 embryos for vehicle for each
compound). The embryos for controls and treatment groups

for each compound were plated in the same 96-well micro-
titre plates in each independent experiment.

Morphological assessment of larval phenotypes
in the survivor population

Larvae at 5 days were fixed in 4% paraformaldehyde in
phosphate-buffered saline at pH 7.2 at 4�C overnight. They
were then rinsed five times in distilled water and dehydrated
in a graded ethanol series (25%, 50%, and 70%) for 5 min
each. Larvae were then rinsed in acid alcohol (1% concen-
trated hydrochloric acid in 70% ethanol) for 10 min. They
were then placed in filtered Alcian blue solution (0.03%
Alcian blue in acid alcohol) overnight. Larvae were subse-
quently differentiated in acid alcohol for 1 h and washed
2 · 30 min in distilled water. Finally, they were cleared and
stored in glycerol. All larvae remained in their original
multiwell plates, so that each individual could be tracked
throughout the entire experimental and analysis procedure.
Analysis of larval morphology was carried out using a dis-
secting stereomicroscope. The phenotypes were scored ac-
cording to the criteria listed in Table 1.

Statistical analysis and EC50 determination

Statistical analyses were performed using GraphPad Prism
for Windows (version 5.03). To see the impact of compounds
on zebrafish larvae development, we used one-way analysis of
variance and Dunnett’s multiple-comparison test with a prob-
ability level of 5% as the minimal criterion of significance.

FIG. 2. Morphological analysis of zebrafish larvae at 5 days post-fertilization. The larvae were fixed, stained with Alcian
blue, and cleared in glycerol to show cartilage and other structures in the head and branchial region. The aim of this figure is
to show examples of the range of malformations obtained. (A, C) Left lateral views; (B, D) ventral views. In all figures,
rostral is to the left. All embryos are shown to the same scale, indicated by the scale bar (250 lm) in (D). (A, B) Vehicle
only, normal phenotype. (C, D) Scopolamine hydrobromide trihydrate treated (4 g/L), having pericardial and yolk sac
oedema, grossly hypoplastic Meckel’s and branchial cartilages, dispersed phenotype of melanocytes on the dorsal surface of
head and yolk sac area [white arrows in (C)], and also an uninflated swim bladder [sm in (C)]. The eyes in the scopolamine-
treated larva (C, D) also appear smaller, although this was not quantified. cb1, First ceratobranchial cartilage; ch, ceratohyal
cartilage; e, eye; M, Meckel’s cartilage; n, notochord; oa, occipital arches; pc, pericardium and heart oedema; pq, pala-
toquadrate; ys, yolk sac oedema; sm, swim bladder.
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EC50 (expressed in mg compound/L of buffer) was determined
based on morphological assessment of three independent ex-
periments from geometric series using Regression Probit
Analysis with SPSS Statistics for Windows version 17.0 (SPSS,
Inc.). The EC50 in mg/L was converted into EC50 mM using the
molecular weights shown in Supplementary Table S1.

Results and Discussion

We have studied the effects of differing concentrations
of a panel of 60 toxicants on zebrafish development. Em-
bryos were exposed continuously from 24 to 120 hpf. They

were then assessed for malformations at 5 dpf. An over-
view of the data is given in Table 2 and Supplementary
Table S3. Figures 1 and 2 show examples of abnormal
phenotypes and the profile of teratogenic effects is sum-
marized in Figure 3.

Discussion and criticism of the methodology used

Recently, in a study using the same culture protocols (and
the same embryos that we have reanalyzed here), we found
that, in controls (embryo buffer only), 5% of zebrafish eggs
were unfertilized, and a further 9% represented embryos

FIG. 3. Profile of developmental effects in zebrafish larvae after exposure to different compounds. Phenotypic effects of
compounds were compared to embryos exposed to vehicle only. The percentage increase of malformations at any given
compound concentration is indicated by the color of the cell (see legend). The excess incidence of phenotypic defects at
each concentration of each compound was calculated from three independent experiments. Only increases that were
statistically significant are included; thus, in the range 7–30% increase, the values for 1–6% increase are omitted because
they were not statistically significant. For full dataset, see Supplementary Table S3. As can be seen, from top to bottom,
there is a general increase in the severity of effects; thus, the compounds at the top of that were not associated with a
statistically significant increase in any abnormal phenotypes in survivors; by contrast, those at the bottom caused multiple
abnormal phenotypes. By reading the figure form left to right, the frequency of different abnormal phenotypes is seen, with
the least common on the left and the most common on the right. For the five remaining toxicants (aconitine, convallotoxin,
lead acetate trihydrate, ampicillin sodium, and paracetomol) we could not find a statistically significant increase in the
survivor population. This is either because the compounds are not teratogenic, or because they are so toxic that the number
of survivors was too small to detect a statistically significant increase in abnormal phenotypes.
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that died spontaneously in the first 24 hpf.11 Spontaneous
mortality of 5–25% was also reported for zebrafish devel-
opment.74 To avoid this early mortality, we began our as-
says at 24 hpf. This also makes our study consistent with a
previous one, in which the zebrafish was exposed to various
compounds from 24 hpf to find the predictivity of zebrafish
assays for the toxicity of compounds in rodents.4 Therefore,
we must assume that compounds that induce phenotype
abnormalities only following early exposure will not be
detected in our assays. The results are summarized in
Tables 2 and 3. In previous studies, similar morphological
parameters have been used to examine zebrafish embryos/
larvae.13,31,75–78

General findings

Of the 60 toxicants tested, 55 produced one or more
phenotypic effects at the range of concentrations used (Fig.
3 and Table 2; Supplementary Table S3). For the five re-
maining toxicants (aconitine, convallotoxin, lead acetate
trihydrate, ampicillin sodium, and paracetomol) we could
not find a statistically significant increase in the survivor
population. This could be because these compounds are not
teratogenic according to the criteria used here. An alterna-
tive explanation is that these five compounds are so toxic
that there were too few survivors to yield a statistically
significant change. EC50 values of compounds were esti-
mated and shown in Table 4.

Relationship between malformations
and concentration of compound

For most of compounds, the incidence of malformations
was concentration dependent. To give one example, the in-
cidence of yolk sac oedema for coumarin was 38.9% at

70 mg/L, 47.9% (140 mg/L), and 87.5% (240 mg/L). The data
in the same case for dispersed pigment phenotype were
22.2% (70 mg/L), 29.2% (140 mg/L), and 100% (240 mg/L)
(see Fig. 1A). Further, selected examples are shown in Figure
1B–D and the full dataset in Supplementary Table S3. These
data are consistent with previous studies14,38,76,77 in which
incidences of malformations were concentration dependent.

The results of morphological analyses of larvae are sum-
marized in Table 2. The wide range of phenotypic effects that
can be seen in one treatment group are illustrated in Figure 2,
which compares an untreated larva (Fig. 2A, B) with larva
exposed to scopolamine hydrobromide trihydrate with 4 g/L
(Fig. 2C, D). The larva in Figure 2C and D shows a range of
phenotypic abnormalities, including Meckel’s cartilage hy-
poplasia, branchial arch hypoplasia, pericardial oedema, yolk
sac oedema, ‘‘dispersed’’ morphology of melanocytes, and
uninflated swim bladder.

Compound specificity of malformations

A range of phenotypic effects were recorded in zebrafish
larvae after exposure (Fig. 3 and Table 2; Supplementary
Table S3). Uninflated swim bladder, yolk sac oedema, and
dispersed pigment cells were the phenotypes most fre-
quently observed. Bent tail, brachial arch hypoplasia, and
bent body axis were the least recorded phenotypes (Fig. 3).
Five compounds (Fig. 3) did not produce any significant
effects. Five produced only one effect (Fig. 3) while the
majority of compounds (50) produced multiple phenotypic
effects (Fig. 3).

That types of malformation that we report here after ex-
posure to cadmium(II) chloride, chloramphenicol, lithium
chloride, chlorpromazine hydrochloride, kanamycin, and
isoniazid (Fig. 3) are consistent with previous studies using

Table 3. Classification of Compounds Tested in Zebrafish Larvae Assay

Compound class Teratogenic in zebrafish assay (this study)
Non-teratogenic in zebrafish

assay (this study)

Alkaloids Atropine, berberine chloride, colchicine, coniine, a-lobeline
hydrochloride, morphine hydrochloride, nicotine, quinine sulfate,
( - )-scopolamine hydrobromide trihydrate, strychnine
hydrochloride, theobromine, tubocurarine chloride hydrate
yohimbine hydrochloride

Aconitine

Glycosides Amygdalin, arbutin, coumarin, digitoxin, hesperidin, gentamycin
sulfate, glycyrrhizin, naringin, rutin hydrate, kanamycin
monosulfate, neohesperidin, ouabain octahydrate, phloridzin
dihydrate, streptomycin sulfate

—

Carboxylic acids Acetic acid, sodium oxalate, salicylic acid, trichloroacetic acid
Alcohols Tween 80, chloramphenicol, ethanol, glycerol
Amides Cyclophosphamide monohydrate, phenacetin Ampicillin sodium, paracetamol
Others Amitriptyline hydrochloride, barbital sodium, benserazide

hydrochloride, cadmium(II) chloride, chlorpromazine
hydrochloride, copper(ii)nitrate trihydrate, dimethyl sulfoxide,
ethambutol dihydrochloride, formaldehyde, isoniazid, lithium
chloride, phenelzine sulfate, phenformin hydrochloride, phenol,
ropinirole hydrochloride, sodium azide, sodium dodecyl sulfate,
verapamil hydrochloride

Lead acetate trihydrate

Note that for aconitine, convallotoxin, lead acetate, ampicillin sodium, and paracetomol, we could not find a statistically significant
increase in phenotypic abnormalities in the survivor population. This is either because the compounds are not teratogenic, or because they
are so toxic that the number of survivors was too small to detect a statistically significant increase in abnormal phenotypes. Producing a
statistically significant increase in any one or more of the abnormal phenotypes in Table 1.
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Table 4. Zebrafish Embryo EC50 Values

Compounds
Zebrafish embryo EC50

(mg/L – SEM)
Zebrafish embryo EC50

(mM – SEM)

1 Aconitine n/a n/a
2 Atropine 559.1 – 22.39 1.93206 – 0.0774
3 Berberine chloride 90.6 – 15.01 0.24367 – 0.0404
4 Colchicine 26.4 – 1.53 0.06601 – 0.0038
5 Coniine 75.0 – 11.58 0.58922 – 0.0910
6 a-Lobeline hydrochloride 11.5 – 0.97 0.03067 – 0.0026
7 Morphine hydrochloride 1335.6 – 58.41 3.15082 – 0.1378
8 Nicotine 9.2 – 0.03 0.05690 – 0.0002
9 Quinine sulfate 198.6 – 5.20 0.50732 – 0.0133

10 ( - )-Scopolamine hydrobromidetrihydrate 1833.3 – 190.13 4.18258 – 0.4338
11 Strychnine hydrochloride 8.2 – 1.04 0.02211 – 0.0028
12 Theobromine 108.3 – 19.58 0.60132 – 0.1087
13 ( + )-Tubocurarine chloride hydrate 285.5 – 12.07 0.41889 – 0.0177
14 Yohimbine hydrochloride 14.5 – 3.25 0.03718 – 0.0083
15 Amygdalin 36.5 – 13.43 0.07987 – 0.0294
16 Arbutin 81.5 – 6.23 0.29923 – 0.0229
17 Convallatoxin n/a n/a
18 Coumarin 97.0 – 14.82 0.00025 – 0.0000
19 Digitoxin n/a n/a
20 Gentamycin sulfate 115.9 – 12.67 0.20139 – 0.0220
21 Glycyrrhizin 16.2 – 1.24 0.01933 – 0.0015
22 Hesperidin 3.1 – 0.20 0.00513 – 0.0003
23 Kanamycin monosulfate 399.3 – 21.55 0.68538 – 0.0370
24 Naringin 159.4 – 27.93 0.27463 – 0.0481
25 Neohesperidin 27.9 – 0.87 0.04575 – 0.0014
26 Ouabainoctahydrate 54.8 – 9.19 0.07520 – 0.0126
27 Phloridzindihydrate 157.2 – 33.10 0.33281 – 0.0701
28 Rutin hydrate 5769.4 – 127.15 9.45003 – 0.2083
29 Streptomycin sulfate 1110.4 – 11.57 0.76194 – 0.0079
30 Cadmium(II) chloride 5.2 – 0.80 0.01091 – 0.0017
31 Copper(II) nitrate trihydrate 6.2 – 0.13 0.02580 – 0.0006
32 Lead acetate trihydrate 30.1 – 0.37 0.07944 – 0.0010
33 Lithium chloride 296.4 – 37.40 6.99222 – 0.8823
34 Chloramphenicol 319.0 – 25.82 0.98726 – 0.0799
35 Ethanol 11693.3 – 887.59 253.81666 – 19.2661
36 Glycerol 10250.7 – 374.87 111.28723 – 4.0698
37 Tween 80 117.4 – 6.00 0.08962 – 0.0046
38 Acetic acid 56.4 – 1.57 0.93866 – 0.0261
39 Salicylic acid 27.3 – 2.28 0.19790 – 0.0165
40 Sodium oxalate 72.0 – 10.19 0.53731 – 0.0760
41 Trichloroacetic acid 40.8 – 7.24 0.24952 – 0.0443
42 Ampicillin sodium 347.6 – 22.97 0.93601 – 0.0618
43 Cyclophosphamide monohydrate 1185.1 – 99.27 4.24603 – 0.3557
44 Paracetamol 282.0 – 10.03 1.86567 – 0.0664
45 Phenacetin 151.4 – 8.78 0.84459 – 0.0490
46 Benserazide hydrochloride 790.1 – 74.00 2.69016 – 0.2520
47 Chlorpromazine hydrochloride 1.9 – 0.26 0.00535 – 0.0007
48 Isoniazid 485.8 – 64.93 3.54237 – 0.4735
49 Phenelzine sulfate 7.8 – 0.45 0.03315 – 0.0019
50 Ethambutol dihydrochloride 1946.0 – 208.68 7.02008 – 0.7528
51 Verapamil hydrochloride 24.2 – 2.71 0.04935 – 0.0055
52 Phenol 19.0 – 2.53 0.20154 – 0.0269
53 Sodium azide 0.7 – 0.23 0.01128 – 0.0036
54 Dimethyl sulfoxide 9136.4 – 479.56 78.54047 – 6.1380
55 Formaldehyde 6.7 – 0.30 0.22311 – 0.0100
56 Phenformin hydrochloride 201.5 – 21.84 0.83361 – 0.0904
57 Ropinirole hydrochloride 123.8 – 14.66 0.41695 – 0.0494
58 Amitriptyline hydrochloride 2.0 – 0.03 0.00648 – 0.0001
59 Sodium dodecyl sulfate 1.4 – 0.35 0.00484 – 0.0012
60 Barbital sodium 1065.5 – 18.76 5.16731 – 0.0910

We could not estimate EC50 because only few survivors were obtained on only lowest concentration of these compounds.
n/a, not applicable; SEM, standard error of the mean.
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zebrafish embryos.14,38,77,79 Pericardial oedema induced by
glycyrrhizin has also been reported in a human adult.80 Other
literatures are consistent with the compound-specific mal-
formation reported here (Fig. 3): the report of craniofacial
malformations in mouse embryos exposure to lithium,81

craniofacial defects in monkeys exposed to Isoniazid, and
craniofacial defects in rats exposed to ethambutol (reviewed
in Holdiness82). The teratogenicity of colchicine is known
from one case study of a human fetus that had heart mal-
formations83; however, another larger scale study found no
evidence of teratogenicity of colchicine in humans.84

It could be argued that, by beginning exposure at 24 h, we
are missing out on early developmental toxicity effects, such
as the action of compounds on gastrula stages. However, this
is likely to be a general phenomenon because other compounds
mainly cause embryo death at these early stages. For example,
we showed35 that exposure of zebrafish embryos at early
stages (dome to 26-somite) to ethanol resulted in high mor-
tality, while exposure at later stages ( prim-6 and prim-16) led
to a high incidence of malformations. Other compounds, such
as copper and cadmium, also show a development window of
sensitivity and are more toxic to larval stages than to embry-
onic and adult stages of freshwater fish species.85,86

These previous results are consistent with a time window
of sensitivity within the range of stages exposed here. It
should also be remembered that early embryos may be
shielded from teratogen actions because of the presence of
the chorion at early stages. This membrane acts as a possible
barrier to diffusion of some compounds.35,69,70

Teratogenicity per compound class in zebrafish larvae

To see whether the variation in developmental toxicity of
compounds screened in the zebrafish assay was due to com-
pound class, we sorted the compounds by chemical class
according to Ali et al.11 The classes were alcohols, alkaloids,
amides, carboxylic acids, glycosides, and the remaining
compounds (others). The break-down by compound class
shows that teratogens were detected in all compound classes
(Table 3).

Conclusions

Our findings show that teratogenicity assessment on
zebrafish larvae can provide a sensitive evaluation of the
teratogenicity of a wide range of toxicants. Thus, it could, in
principle, also provide a useful tool in the screening of new
drugs for treating human diseases. The zebrafish larval as-
say is compatible with high-throughput screening and can
be implemented early in the drug-discovery pipeline for
early assessment of drug safety. However, future work in
the validation of the zebrafish larval assay must include a
wider range of compounds, including those that are known
teratogens in humans.
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