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Summary

The term ‘neuromyelitis optica’ (‘Devic’s syndrome’, NMO) refers to a syn-
drome characterized by optic neuritis and myelitis. In recent years, the
condition has raised enormous interest among scientists and clinical neu-
rologists, fuelled by the detection of a specific serum immunoglobulin (Ig)G
reactivity (NMO-IgG) in up to 80% of patients with NMO. These
autoantibodies were later shown to target aquaporin-4 (AQP4), the most
abundant water channel in the central nervous system (CNS). Here we
give an up-to-date overview of the clinical and paraclinical features,
immunopathogenesis and treatment of NMO. We discuss the widening clini-
cal spectrum of AQP4-related autoimmunity, the role of magnetic resonance
imaging (MRI) and new diagnostic means such as optical coherence tomog-
raphy in the diagnosis of NMO, the role of NMO-IgG, T cells and granulo-
cytes in the pathophysiology of NMO, and outline prospects for new and
emerging therapies for this rare, but often devastating condition.
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Introduction

Neuromyelitis optica (NMO, Devic’s syndrome) is an
inflammatory disorder of the central nervous system (CNS)
that presents typically with relapses of optic neuritis (ON)
or myelitis [1–4]. In recent years, the condition has raised
enormous interest among scientists and clinical neurolo-
gists, fuelled by the detection of a highly specific serum
immunoglobulin (Ig)G autoantibody (NMO-IgG) targeting
the most abundant astrocytic water channel aquaporin-4
(AQP4) [5–8]. NMO-IgG/AQP4-antibodies are present in
up to 80% of patients with NMO [8–11]. This seminal dis-

covery has – together with previous neuropathological work
that had already suggested humoral mechanisms to be rel-
evant in the disease pathogenesis [12] – made clear that in
most cases NMO is not a subform of multiple sclerosis
(MS), as had been assumed for decades, but rather an auto-
immune condition with an immunopathogenesis distinct
from that of MS despite considerable overlap in clinical
presentation and paraclinical findings. AQP4-antibody-
positive NMO is part of an expanding spectrum of
humorally mediated autoimmune diseases of the CNS that
have been identified over the last few years [13,14]. Several
studies suggest that optimum treatment options may differ
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between NMO and MS, which underscores the necessity for
a timely and accurate diagnosis. Another important advance
was the discovery that AQP4 autoimmunity is associated
with a much broader range of CNS symptoms than just
NMO; this prompted the proposal to refer to the condition
by terms such as ‘NMO spectrum disorder’ (NMOSD) [15],
‘autoimmune AQP4 channelopathy’ [16], ‘AQP4 autoim-
mune syndrome’ [17] or ‘AQP4 encephalomyelitis’ [18].

The aim of this review paper is to summarize current
knowledge on the pathogenesis of AQP4-antibody-related
NMO and to provide an update on the widening clinical
spectrum, relevant paraclinical findings and current
treatments.

History

First reports on patients with myelitis and amaurosis date
back to the early 19th century [18–24]. However, neurolo-
gists and ophthalmologists only developed sustained inter-
est in this rare syndrome after Eugène Devic and his student
Fernand Gault published a review in 1894 [25,26]. Devic
and Gault also coined the term neuro-myélite optique aiguë
[25,26]. In 1907 the Turkish physician Acchioté suggested
naming the syndrome after Devic [18].

Epidemiology

Epidemiological and population-based studies suggest that
the prevalence of NMO ranges from <1/100 000 to 4·4/
100 000 in Europe and North America [27–31]. However,
the true number of cases may be higher, as some studies
reported a rate of patients misdiagnosed with MS as high as
30–40%, especially before tests for AQP4 antibodies became
broadly available [1,32]. Typical age at onset peaks at
approximately 35–45 years, but NMO may also become
manifest in children and the elderly [1,33–39]. Female pre-
ponderance is substantially higher in seropositive (∼9–10:1)
than in seronegative patients (∼2:1) [1,40]. The majority of
NMO cases are sporadic, although rare familial cases indis-
tinguishable from the former with respect to clinical pres-
entation, age and sex distribution have been reported [41].

Clinical presentation, disease course and prognosis

In more than 90% of patients, NMO is a relapsing disease
with attacks of ON, myelitis or both, occurring unpredict-
ably [1]. A monophasic course accounts for the remaining
10% and is more often associated with simultaneous ON
and myelitis [1,36], while a progressive course seems to be
extremely uncommon [42]. Attacks of ON and myelitis are
often more disabling and, if untreated, remission is poorer
than in MS, which leads to a faster accrual of irreversible
neurological disability. Following older studies, approxi-
mately 60% of patients exhibited severely impaired

ambulation [expanded disability status scale (EDSS) [43]
≥6] or blindness in at least one eye after a disease course of
7–8 years [36]. Five-year survival rate was reported to be as
low as 68% in a North American study on patients seen
between 1977 and 1997, which is in strong contrast to more
recent studies that report 5-year survival rates of more than
90% [1,44]. In a small subset of patients the disease may
follow a benign course, with only minor disability after up
to 10 years [1,45]. The majority of NMO-related deaths
result from severe ascending cervical myelitis or brainstem
involvement leading to respiratory failure [1,36]. The dis-
crepancy between older and newer studies with respect to
prognosis and survival rate may be explained by increased
awareness of the disease subsequent to the detection and
availability of AQP testing in clinical routine. Thus, it can be
assumed that the rate of misdiagnoses may have dropped
and that more patients are diagnosed and treated earlier.
Moreover, treatment options have improved. Nevertheless,
NMO remains a potentially life-threatening and severely
disabling condition that usually requires prompt and conse-
quent immunosuppressive treatment. Clinical decision-
making with respect to diagnosis and treatment initiation
remains challenging when a patient presents with ON or
myelitis only, or with other clinical symptoms, such as
brainstem encephalitis with intractable hiccups and vomit-
ing or a syndrome of inappropriate anti-diuretic hormone
secretion [1,46–50]. In such cases, testing for AQP4-
antibody by means of a both highly sensitive and highly
specific assay can be essential [51]. Other symptoms and
syndromes that have occasionally been reported in associa-
tion with AQP4 autoimmunity include seizures [52],
posterior reversible encephalopathy syndrome [53],
myeloradiculitis [54], meningoencephalitis [55], findings
related to brainstem involvement, such as hearing loss,
diplopia, olfactory dysfunction and other cranial nerve
palsies, or endocrinological abnormalities due to dien-
cephalic lesions [1,56–58]. Moreover, pain syndromes
[1,59,60] and cognitive dysfunction [61–63] seem to
develop more frequently than appreciated previously.

In contrast to MS, a higher proportion of NMO patients
(30–50%) exhibit laboratory findings or clinical signs of
other systemic or organ-specific autoimmunity, such as sys-
temic lupus erythematosus, Sjögren’s syndrome, autoim-
mune thyroid disease, myasthenia gravis or, possibly,
autoimmune-mediated vitamin B12 deficiency [64–74]. The
invariable association with myelitis and/or ON suggests that
AQP4 antibodies in patients with rheumatic diseases do
not represent an unspecific epiphenomenon, but rather
points to the existence of two concomitant autoimmune
conditions.

Two studies found an increase in relapse rate in the first
or the first and second trimenon, respectively, after delivery
[75,76]. Preliminary data suggest that AQP4-antibodies
might also be capable of causing damage in AQP4-
expressing organs and tissues outside the CNS (e.g.
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placentitis with the risk of miscarriage [77–79], myositis
[80–83], internal otitis [56] or gastritis [74]).

Diagnostic criteria

In 2006, the diagnostic criteria for NMO were revised after
NMO-IgG were detected. In addition to including this novel
and highly specific marker, the absolute restriction of CNS
involvement beyond the optic nerves and spinal cord was
removed and the specificity of longitudinally extensive
spinal cord lesions emphasized [84,85]. In addition to the
two clinical index events of ON and acute myelitis, a diag-
nosis of NMO now requires that two of the three following
supportive criteria be fulfilled:

• Contiguous spinal cord magnetic resonance imaging
(MRI) lesion extending over three or more vertebral
segments;

• Brain MRI not meeting diagnostic criteria for MS accord-
ing to Paty [86]; and

• NMO-IgG seropositive status.

Given the rapid expansion of our knowledge on NMO, it is
to be expected that these diagnostic criteria may be modi-
fied or replaced in the nearer future.

Immunopathogenesis

Several lines of evidence from clinical, pathological and
immunological studies indicate that AQP4-antibodies have
a decisive role in the pathogenesis of NMO [87–90]:

(a) NMO-IgG/AQP4-IgG is highly specific for NMO and
its limited forms [9,51,88]. The largest study per-
formed thus far found the antibody in only 0·6% of
1672 controls using a tissue-based assay (TBA) [29].
Similarly, specificity rates as high as 99·83% (n = 604;
TBA) [91], 99·57% [n = 234; cell-based assay (CBA)]
[92], 99·27% (n = 137; TBA) [7], 99·71% (n = 695,
TBA) [93], 98·69% [n = 153, enzyme-linked immuno-
sorbent assay (ELISA)] [10], 100% (n = 100, CBA [9],
n = 85, CBA [11], n = 114, fluorescence activated cell
sorter (FACS) [94], n = 178, ELISA [94], n = 85,
immunoprecipitation [11]) were reported in a number
of recent studies (see references [88] and [51] for a
comprehensive summary).

(b) AQP4-IgG serum levels were found to correlate with
NMO disease activity in several independent studies
[10,95–97], serum levels increasing shortly before
relapse and declining during recovery [95–97].

(c) Similarly, AQP4-antibody-positive plasmablasts are
selectively increased in the blood of NMO patients and
peak at relapse [98].

(d) In patients with isolated ON and in patients with
isolated longitudinally extensive transverse myelitis

(LETM), AQP4-antibodies have been shown to predict
conversion to NMO, i.e. the development of additional
LETM or additional ON, respectively [10,99–101].

(e) In patients with NMO or its limited forms, the
presence of AQP4-antibodies predicts future relapse
[1,99–101].

(f) Clinically, the presence of AQP4-antibodies in patients
with NMO is associated with distinct phenotypic fea-
tures. AQP4-antibody-positive patients are more often
female (~10:1), show a relapsing disease course more
often than seronegative patients and frequently exhibit
signs of co-existing autoimmunity [10,102,103]. By
contrast, seronegative NMO is more frequently mono-
phasic and shows only a slight female preponderance
(~1:2) [10,102].

(g) Some studies found a correlation between disease
severity and AQP4-antibody status and/or titres [95–
97,102]: the presence of AQP4-antibodies may be
associated with more extensive spinal involvement as
assessed by MRI [1,97], more severe attack-related
optic and/or motor disability [1,97] and, possibly,
more severe disability in the long-term course [102].
Seronegative NMO was also reported to take a milder
disease course in paediatric patients [35]. In addition
to AQP4-antibodies, genetic background and age at
onset also seem to determine prognosis [103].

(h) B cell or antibody-targeted treatments have been
found to be effective in NMO, including plasma
exchange (PE) [104–109], B cell depletion by
rituximab [87,110–114] and the interleukin (IL)-6
receptor inhibitor tocilizumab [115–117].

(i) Incomplete B cell depletion or recurrence of B cells is
associated with breakthrough attacks [95,114].

(j) Successful treatment is usually associated with a
decline in AQP4-antibody serum concentrations and
stable suppression during remission [10,95–97].

(k) AQP4 is expressed at highest levels in opticospinal
tissues, which also appear to contain higher amounts
of supramolecular AQP4 aggregates [118]. An immune
response targeting AQP4 could thus well explain why
the optic nerve and the spinal cord are predilection
sites in NMO.

(l) NMO lesions are characterized by a marked loss of
astrocytic AQP4 and by prominent deposits of IgG and
IgM concentrated around blood vessels, i.e. at the
main sites of AQP4 expression [12,119–121].

(m) In some lesions astroglial loss is not associated with
loss of myelin and neuronal axons [119,120,122], sug-
gesting that the initial immune response in NMO is
directed against astrocytes, a cell population that
expresses AQP4 at high levels.

(n) While AQP4 is lost in parallel with glial fibrillary
acidic protein (GFAP), indicating astrocyte loss, GFAP
is preserved in other lesions, indicating that AQP4 is
the primary target of the anti-astrocytic immune
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response in NMO [119,120,122]. This initial loss of
AQP4 might reflect internalization (and possibly
endolysosomal degradation [123]) of AQP4 (either of
M1-AQP4 [124] or of both isoforms [125]), as dem-
onstrated both in transfected cell lines and in cultured
astrocytes [123,124,126–128], and might thus still be
reversible. However, as a limitation, a more recent
study could not find evidence of AQP4 endocytosis in
vivo after injecting fluorescent AQP4-antibodies [129].

(o) Most importantly, passive transfer animal experiments
using IgG from AQP4-antibody-positive patients were
able to reproduce the neuropathological features of
NMO. Intracerebral injection of IgG from AQP4-
antibody-positive patients, together with human com-
plement, caused a marked loss of astrocytes [130].
However, the fact that pretreatment with complete
Freund’s adjuvant or pre-existing experimental auto-
immune encephalomyelitis (EAE) was required for
inducing tissue damage in studies administering IgG
intravenously or intraperitoneally suggests that a dis-
rupted blood–brain barrier (BBB) and, possibly, an
inflammatory environment is necessary for AQP4-IgG
to exert its pathogenic effects in vivo [131–134]. As
in human lesions, AQP4 preceded astrocyte loss,
demyelination and neuronal necrosis in those models
[130,133].

(p) Strong direct evidence for a pathogenic role of AQP4-
IgG comes from the finding that AQP4-antibody
belongs mainly to the complement-activating IgG1
subclass [11,94,135,136]. In line with this finding, the
presence of the terminal membrane attack complex,
indicating complement activation, at sites of AQP4
loss has been described as a key feature of NMO
lesions in humans [12,119,120]; anaphylatoxin C5a
levels in the cerebrospinal fluid (CSF) of AQP4-
antibody-seropositive patients have been found to be
elevated [137]; and eculizumab, a C5 inhibitor, was
recently shown to substantially reduce the relapse rates
in patients with NMO [138,139]. In several independ-
ent in-vitro studies it was shown that sera from NMO-
IgG-positive patients, but not from controls, can
induce (according to some studies, titre-dependent)
death of AQP4-transfected cell lines in the presence of
human complement [11,123,136,140,141] (possibly
more effectively after transfection with M23-AQP4
than M1-AQP4 [142]). One of these studies even
reported a correlation between the percentage of
damaged cells by AQP4-IgG-positive sera and the
severity of clinical relapses [140]. Similarly, co-
administration of (human) complement was necessary
to induce lesion pathology in AQP4-IgG-driven
animal models of NMO, whereas a C1 complement
inhibitor prevented tissue damage [130]. As in human
lesions, complement deposits have been found
within spinal cord lesions in these animal models

[130,132,133]. This observation is corroborated by
ex-vivo and animal models of NMO. Exposure to
AQP4-antibody-positive NMO sera or recombinant
NMO antibody in the presence of human complement
reproduced the loss of AQP4, GFAP and myelin that
characterizes human NMO lesions in cultured mouse
spinal cord slices or optic nerves [143]. Lesions were
not seen in spinal cord slices from AQP4 null mice
[143]. Verkman and colleagues performed a number of
sophisticated experiments that provide further strong
evidence for an essential role of AQP4-antibody- and
complement-dependent cytotoxicity (CDC): a high-
affinity monoclonal antibody (termed aquaporumab)
from recombinant monoclonal antibodies derived
from AQP4-IgG-positive CSF plasmablasts of a patient
with NMO and rendered non-pathogenic by introduc-
ing IgG1Fc mutations at locations required for the
induction of CDC [144], cleavage of IgG from NMO
patients by means of an IgG-degrading enzyme of
Streptococcus pyogenesto (IdeS) to yield Fc and F(ab’)2

fragments [145], selectively deglycosylating the heavy
chain of natural AQP4-IgG with bacteria-derived
endoglycosidase S to render it non-pathogenic [146],
and preincubation with small molecules (identified by
automated high-throughput screening) that sterically
block interaction between AQP4-antibody and its
target antigen [147,148] have all been shown to
prevent lesion formation in both slice cultures and
mice exposed to AQP4-antibody-positive sera and
human complement.

While AQP4-antibody-mediated CDC may play a major
role in the pathogenesis of NMO, there is abundant evi-
dence suggesting that additional immunological players are
involved:

(a) NMO lesions have been shown to contain large
numbers of macrophages, eosinophils and neutrophils,
which often display signs of degranulation, as well as a
few T cells [12,149].

(b) Numerous proinflammatory cytokines have been found
to be elevated in the serum and CSF of patients with
NMO: serum levels of IL-6 are increased significantly
and have been implicated in the maintenance of AQP4-
antibody-positive plasmablasts in the blood [98,150].
IL-6 is also elevated in the CSF [150,151], as are the
B cell recruiting and activating factor (BAFF), a
proliferation-inducing ligand (APRIL) and C-X-C
motif chemokine 13 (CXCL13) [152–154], indicating
the presence of a B cell-friendly environment in the
CNS as well. However, IL-6 also promotes development
and maintenance of IL-17-producing T helper type 17
(Th17) cells by inhibiting the conversion of conven-
tional T cells to forkhead box protein 3 (FoxP3)+ T
regulatory cells [155,156]. Whether Th17 cells contrib-
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ute to NMO pathogenesis is currently being studied
[157–161]. IL-17 levels are indeed increased in patients
with NMO during acute attacks [157,162], and an
IL-17 gene polymorphism has been reported recently
in Chinese patients with NMO [162]. Intrathecal acti-
vation of the IL-17/IL-8 axis is thought to promote
recruitment of neutrophils [163]. IL-4, a major secreted
cytokine of eosinophils, is known to cause a shift
towards a type 2 helper T cell (Th2) response [164].
Both neutrophils and eosinophils have been found in
the CSF and are present in NMO lesions [12,165]. In
spinal cord slice cultures a number of proinflammatory
cytokines, including IL-6, were shown to enhance
AQP4-antibody-mediated cytotoxicity [143].

(c) AQP4-IgG could act on macrophages, neutrophils and
eosinophils by binding to Fc receptors. Direct evidence
for a role of neutrophils in the pathogenesis of NMO
comes from the finding that neutrophil elastase inhibi-
tors can ameliorate lesion formation in mouse models
of NMO [166], and from the observation that disease
was exacerbated both in a mouse model of NMO and
in an NMO patient treated with granulocyte colony-
stimulating factor [166,167]. In spinal cord slice cul-
tures treated with NMO-IgG and human complement,
the severity of lesions is increased markedly by includ-
ing macrophages, neutrophils or eosinophils (or their
granule toxins) and could be ameliorated by antihista-
mines such as cetirizine and ketotifen, which have
eosinophil-stabilizing effects [143,168]. Antihistamines
were also effective in an animal model of NMO [168],
and lesion severity has been shown to be increased
in transgenic hypereosinophilic mice. By contrast,
reduced lesion severity was observed in mice rendered
hypoeosinophilic by anti-IL-5 antibody or by gene
deletion [168]. Neutrophil and eosinophil infiltration
has also been noted in animal models of NMO follow-
ing peripheral or intracerebral injection of AQP4-IgG
and complement [133,168]. Complement-dependent
attraction has been suggested to be involved in granu-
locyte trafficking through the BBB [128]. Granulocyte
trafficking is not inhibited by natalizumab, a drug
employed successfully in MS; accordingly, natalizumab
does not seem to be effective in NMO [169–171].

(d) The contribution of natural killer (NK) cells to NMO
pathology is controversial. In one study, NMO-IgG
binding to human fetal astrocytes was found to result
in NK cell degranulation and astrocyte killing by
antibody-dependent cellular cytotoxicity (ADCC)
[128]. NK cell-mediated ADCC following exposure to
AQP4-antibodies was also observed in mouse astrocyte
and spinal cord slice cultures and in a mouse passive
transfer model [143,172]. An AQP4-antibody mutant
lacking ADCC effector function and Fc fragments gen-
erated by IdeS-mediated cleavage of recombinant
AQP4-specific IgG significantly reduced tissue damage

[145,172]. However, the relevance of these findings in
human disease is somewhat doubtful, given the rarity
of granzyme B+ and perforin+ NK cells and cytotoxic T
cells in active human NMO lesions reported in a recent
study [149].

(e) B cells are surely involved in the pathophysiology of
NMO as progenitors of AQP4-antibody-producing
plasma cells. In addition, B cells could contribute
to the pathogenesis of NMO by producing IL-6 and
as antigen-presenting cells for AQP4-specific T cells.
BAFF, APRIL and CXCL13 levels are elevated in the
CSF and the percentage of BAFF-R- and CXCR5-
expressing peripheral B cells is higher in NMO
[152–154]. A recent study reported possibly impaired
immunoregulatory B cell properties, as indicated by
lowered CD19+CD24highCD38high regulatory B cell levels
and reduced B cell expression of regulatory IL-10
[154].

(f) T cells are also certainly relevant, because T helper
cells (including Th17 cells [173]) are involved in B cell
isotype switching and affinity maturation. Further-
more, CD3+ and CD8+ T cells were detected directly
within NMO lesions, albeit at low numbers [12].
Moreover, NMO has been reported to be associated
with human leucocyte antigen D-related (HLA-
DR)B1*03 in Brazilians [174]; this allele group has also
been associated with other autoimmune disorders,
including systemic lupus erythematosus, a disease
which frequently co-exists with NMO [64–67]. Simi-
larly, a French group found NMO-IgG-positive NMO
to be associated with a high frequency of HLA-
DRB1*01*03 alleles, mainly of the DR3 pattern [175].
HLA-DR3 heterodimers enhance T cell stimulation and
stabilize T cell/CD4/class II interaction [175]. Like
DR1, DR3 has been reported to increase the T cell
response by enhancing B and T cell co-operation
[175]. The exact role of T cells in NMO is currently
being investigated intensively, and several studies
have attempted to identify immunodominant (T
cell-activating) determinants of human AQP4
[157,159,160,176–180]. T cells have also been proposed
to be involved in molecular mimicry (e.g. involving
bacterial aquaporins), which is currently discussed as a
potential trigger of NMO attacks [160,181–184].

(g) In addition, a role for glutamate-mediated excitotoxicity
has been discussed. While one study reported that
membrane AQP4 in human embryonic kidney (HEK)
cells transfected with human AQP4 is endocytosed
together with the excitatory amino acid transporter 2
(EAAT2) following incubation with NMO-IgG in the
absence of complement, resulting in disruption
of glutamate homeostasis, another study could not
confirm these findings in cultures of mouse astrocytes
[126,129]. An increase in extracellular glutamate
could result in overstimulation of neurones and

TRANSLATIONAL NEUROIMMUNOLOGY REVIEW SERIES

Neuromyelitis optica

153© 2014 British Society for Immunology, Clinical and Experimental Immunology, 176: 149–164



oligodendrocytes, and could render the latter more
susceptible to Ig-independent complement attack
[126,185].

(h) Similarly, it is still controversial whether AQP4-
antibodies exert some of their pathogenic effects by
compromising the water homeostatic function of
AQP4 either by blocking the water pore or by
endocytosing the protein. According to a time-to-lysis
assay using AQP4-transfected Xenopus oocytes, one
study reported that NMO-IgG impairs water influx
[124]; however, other studies which utilized cultured
astrocytes [127] or plasma membrane vesicles isolated
from AQP4-expressing Chinese hamster ovary (CHO)
cells did not find an effect on the water transport capa-
bility of AQP4 [90,186,187].

(i) As mentioned above, IgG deposits in NMO lesions are
accompanied by prominent IgM deposits [12]. IgM is
an even more efficient activator of complement than
IgG. Serum AQP4-IgM antibodies can be detected in
approximately 10% of NMO patients [188].

Depending on the detection method used, 10–50% of
patients with NMO are negative for AQP4-IgG [51]. Insu-
fficient assay sensitivity is certainly a common cause
of AQP4-IgG seronegativity, as shown in a number of
recent comparative studies [9,10,51,189–191]. Moreover,
AQP4-antibody titres have been shown to vary strongly
over the course of disease depending, among other factors,
on disease activity and treatment status. Retesting in a
second, more sensitive assay and at follow-up visits, in par-
ticular during acute relapses, is thus advisable in seronega-
tive cases (see reference [51] for a comprehensive overview
and comparison of the currently available assays and a
discussion of diagnostic pitfalls). However, the fact that
approximately 10–20% of patients are seronegative even in
the most up-to-date assays, as well as the recent demonstra-
tion of significant epidemiological and clinical differences
between seropositive and seronegative patients [1,102,189],
suggests that NMO might indeed be an aetiologically het-
erogeneous syndrome, i.e. a common phenotype shared
by various autoimmune, (para)infectious [183,192,193] and
metabolic diseases affecting the optic nerve and spinal
cord. Indirect evidence for a role of so far unknown auto-
antibodies in seronegative NMO comes from reports that
PE also has a therapeutic effect in some seronegative NMO
patients [104] and from studies finding that complement-
dependent astrocyte cell death induced by serum from
AQP4-IgG-seronegative patients with NMO is more pro-
nounced than that induced by serum from patients with
MS or healthy donors [141]. Recently, antibodies to myelin
oligodendrocyte glycoprotein (MOG) have been identified
in a subset of patients with seronegative NMOSD [194–
197]; the pathogenic, prognostic and therapeutic relevance
of these antibodies is currently being investigated. More-
over, anti-CV2/CRMP5 and, possibly, NMDA receptor

autoimmunity have been shown to mimic NMO in single
patients [198,199]. In addition, connective tissue disorders
(CTD), in particular systemic lupus erythematosus and
Sjögren’s syndrome, have been implicated in the patho-
genesis of NMOSD in some patients [64,65,67]. A broad
summary of the differential diagnosis of NMO is provided
in the reference list [200–202]. It should be kept in mind
that a lack of NMO-IgG/AQP4-antibody seropositivity does
not rule out a diagnosis of NMO, according to the currently
most widely adopted diagnostic criteria [84]. As will be dis-
cussed in the following sections, CSF analysis and spinal
cord and brain imaging can facilitate the differential diag-
nosis of seronegative NMO and MS.

Paraclinical findings

Cerebrospinal fluid

CSF findings in NMO and MS differ markedly. CSF-
restricted oligoclonal bands (OCB), a diagnostic mainstay
in MS, are present in only approximately 18% of AQP4-
antibody-positive cases and frequently disappear during
remission [1,165]. Similarly, quantitative evidence for
intrathecal IgG synthesis, i.e. an elevated IgG CSF/serum
ratio, is only present in approximately 8% of CSF samples
and exclusively during relapse [165]. By contrast, OCB are
present in far more than 90% of cases in classical MS
[203,204] and can be detected over the entire course of the
disease [205]. A positive, polyspecific, intrathecal immune
reaction to measles, rubella and varicella zoster virus (also
termed MRZ reaction [206–208]) – as defined by at least
two out of three positive antibody indices – is present in
60–80% of MS patients, but absent in approximately 97%
of NMO patients [1,209]. CSF white cell counts (WCC) are
often normal or only mildly elevated in NMO (median
19/μl during acute disease, 3/μl during remission [165]).
However, cell counts >100/μl are possible [1,165], especially
during relapse [165]. In addition to lymphocytes and
monocytes, cytology often reveals neutrophilic and eosino-
philic granulocytes [1,36,165], cell types which are usually
absent in MS. An elevated albumin CSF/serum ratio, indi-
cating blood–CSF barrier (BCB) disruption, and an increase
in total protein is present in approximately 50% of cases,
more often during acute attacks. CSF lactate levels are
elevated during acute myelitis in approximately 40%,
but normal during remission [165,210]. In rare AQP4-
antibody-positive NMOSD patients, elevated lactate with
marked neutrophilic pleocytosis may be taken falsely
as bacterial CNS infection, all the more if the meninges
are also involved [55,165,211]. A positive correlation was
reported between QAlb values, CSF total protein levels
and CSF L-lactate levels, on one hand, and the spinal cord
lesion load as determined by MRI, on the other hand [165].
Importantly, CSF findings in AQP4-antibody-positive
NMOSD vary significantly both between relapse and remis-
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sion and – probably reflecting both differences in lesion
volume and the rostrocaudal CSF gradient – between acute
myelitis and acute ON [165]; in fact, normal CSF findings
are not unusual in patients presenting with acute AQP4-
antibody-positive ON [165]. No significant differences
were found between seropositive and seronegative patients
with regard to OCB, MRZ reaction and WCC in a recent
multicentre study [1].

AQP4-antibodies are produced mainly by plasma cells
in the peripheral blood. The trigger underlying AQP4-
antibody production is unknown, although molecular
mimicry has been suggested [160,181–184,212–215]. By
contrast, intrathecal synthesis to an extent detectable by
antibody index calculation is very rare [131,136,216,217].
AQP4-antibodies may enter the CNS by passive diffusion
and, in addition, at sites lacking a proper BBB, such as the
area postrema [47], or through a disrupted BBB, caused
possibly by acute infections, which were shown to precede
NMO attacks in 15–35% of patients [1,36,44,103,218].
Notably, AQP4, the target antigen of NMO-IgG, is itself an
integral constituent of the BBB.

Magnetic resonance imaging

Spinal MRI is crucial for diagnosis and differential diag-
nosis. Long cord lesions extending over three or more
vertebral segments, often with patchy and inhomogeneous
contrast enhancement over weeks or even months or, less
frequently, central necrosis and cavitation, are characteristic
features and highly suggestive of an NMOSD [1,37,84,219].
However, it is important to keep in mind that, depending
on the timing of spinal MRI to onset of clinical symptoms,
NMOSD patients may well exhibit shorter spinal lesions
[1,32] and that other, mostly rare differential diagnoses of
long cord lesions need to be considered, including spinal
ischaemia, neurosarcoidosis and others [201,202]. Despite
their often dramatic appearance, cord lesions in NMO may
improve substantially upon treatment and even recover
fully. Conversely, severe inflammation may cause irrevers-
ible cord atrophy, which may be a negative predictive factor
for response to PE in case of subsequent attacks [220].
Recently, so-called spinal ‘bright spotty lesions’ have been
suggested as an additional criterion to distinguish NMOSD
from MS [221]. Moreover, advanced imaging techniques
such as magnetic resonance spectroscopy and diffusion
tensor imaging that are not applied regularly in clinical
routine have confirmed severe spinal tissue injury and also
suggest astrocytic damage that may help to distinguish
NMO from MS [222–224].

Substantial new insights on brain involvement in NMO
result from a multitude of MRI studies performed in
the past few years. These studies were encouraged by the
seminal work by Pittock and colleagues who showed that,
contrary to previous thinking, the majority of NMO
patients (up to 60%) exhibit (mostly unspecific) lesions on

serial cranial MRI during the course of the disease. Some
of these lesions are typical of MS and may even fulfill the
so-called ‘Barkhof criteria’ [1,225]. Similar findings have
been reported by other groups, with approximately 15%
of patients fulfilling the Barkhof criteria [1,226]. Thus, it is
widely accepted nowadays that, although many patients
have normal cranial MRI findings at disease onset, brain
lesions – including even those resembling typical MS lesions
– do not rule out an NMO diagnosis [227]. However,
ultrahigh-field imaging studies reported that, in contrast to
MS, NMO lesions do not typically show central veins and a
hypointense rim and lack visible cortical lesions [228,229].
This is in line with other imaging and neuropathological
reports that indicate the absence of cortical demyelination
in NMO [63,230,231]. Brain lesions tend to be located at
sites of high aquaporin-4 expression, such as the dience-
phalon, the hypothalamus and the aqueduct [232–234],
and may also appear large and oedematous in the corpus
callosum [235,236]. Contrast enhancement on brain MRI
with a cloudlike shape and pencil-thin ependymal enhance-
ment were reported to be typical of NMO [237,238]. Recent
diffusion, perfusion and brain volume studies, including
voxel-based morphometry, revealed diffuse and widespread
white matter and grey matter alterations in NMO [239–
243]. Thus, brain damage is probably more severe than can
be estimated from conventional MR images.

While there is now compelling evidence that AQP4-Ab-
positive ‘Asian opticospinal MS’ (OSMS) is identical to
Western NMO, a small proportion of Asian patients still
cannot be easily classified as NMO or MS, e.g. seronegative
patients presenting with LETM and a secondary progressive
course or OSMS patients with LETM and peripheral spinal
cord lesions [244,245]. However, re-evaluation using more
up-to-date assays, together with strict MRI criteria distin-
guishing between confluent (as sometimes seen in MS) and
contiguous (as typically seen in NMO) longitudinal lesions,
may help to clarify the nosological status of those patients.

Optical coherence tomography and
visual-evoked potentials

Optical coherence tomography (OCT) is a non-invasive
technique by which unmyelinated retinal CNS axons (the
so-called retinal nerve fibre layer RNFL) and their neurons,
the retinal ganglion cells, can be visualized. Neuroaxonal
retinal damage has been shown widely in MS and ON and is
currently under investigation in many other neurological
conditions [246–254]). In NMO, OCT studies have been
consistent with the clinical experience of a more severe
visual dysfunction and poorer visual outcome than for MS
and more profound damage to the RNFL [246,255–257].
Whereas progressive reduction of the RNFL, independent of
clinical attacks of ON, has been reported in MS, retinal
axonal loss in NMO is probably associated predominantly
with clinical relapses [258–261]. The utility of OCT for
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distinguishing NMO from MS and other inflammatory
conditions with ocular involvement is currently being
investigated. Visual evoked potentials show either reduced
amplitudes or prolonged latencies, or both; in more severe
cases there may be no response at all [262]. Delayed P100
latencies may indicate that the optic nerve is subclinically
affected in patients presenting with LETM, but with no
history of clinically apparent ON.

Treatment

NMO is still an incurable disease. The goal of treating acute
NMO events is to improve relapse symptoms and restore
neurological functions; long-term immunosuppression
aims to prevent further attacks [4,263,264]. Any treatment
recommendations are limited by the small size of most
studies, which were mostly retrospective case-series. No
prospective controlled trials in NMO have been conducted,
and most study designs with long placebo treatment would
probably be considered unethical. Relapses are treated with
high-dose intravenous methylprednisolone; if response is
insufficient, patients may benefit from PE [265]. If a patient
has previously responded well to PE, PE may be considered
as initial treatment in case of another relapse. In patients in
whom both steroids and PE do not improve symptoms,
treatment with intravenous immunoglobulins [266] or an
escalation to cytoablative therapy such as cyclophospha-
mide may be considered [264].

For long-term immunosuppression, patients usually
receive either B cell-targeted therapies such as intravenous
rituximab or oral azathioprine and/or prednisone
[87,110,113,267–272]. Other possible options include
mycophenolate mofetil [273], methotrexate [274] or
mitoxantrone which, however, is limited by major side
effects such as cardiotoxicity or leukaemia and thus gener-
ally not considered as initial treatment [264,275–280]. It is
beyond the scope of this paper to provide details on dosing
schemes and monitoring of the various NMO drugs, and
therefore we refer the reader to two recent, excellent over-
views on treatment recommendations [264,281]. However,
one aspect deserves mention: less severe lesions have been
found in type I interferon (IFN) receptor-deficient mice,
suggesting that type I IFNs might be involved in the patho-
genesis of NMO. Accordingly, IFN-β, a therapeutic main-
stay in MS, has been repeatedly reported to exacerbate
disease or to be ineffective in patients with NMO. The use
of IFN-β in the treatment of NMO is therefore strongly dis-
couraged. Similarly, lack of efficacy or disease exacerbation
has also been reported following treatment with other
typical MS drugs such as natalizumab and, in single cases,
also fingolimod and alemtuzumab [169–171,282–290].

Further prospects

A recent, small, open-label study with the monoclonal
antibody eculizumab, an inhibitor of the complement

component C5 approved for the treatment of paroxysmal
nocturnal haemoglobinuria, reported an impressive reduc-
tion of relapse rates in 14 NMO patients with disease activ-
ity [138,139]. This finding has stimulated a larger trial that
is expected to begin in late 2013 or early 2014. Given the
role of IL-6 in NMO, IL-6-targeted therapy with the
monoclonal anti-IL-6-receptor antibody tocilizumab might
represent another future treatment strategy, following
encouraging case reports [115–117]. Further preliminary
but intriguing experimental approaches are competi-
tive, non-pathogenic, AQP4-specific antibodies, neutrophil
elastase inhibitors or antihistamines with eosinophil-
stabilizing properties [144,166,168,291].
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