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Summary

Protective antibodies play an essential role in immunity to infection by

neutralizing microbes or their toxins and recruiting microbicidal effector

functions. Identification of the protective B-cell epitopes, those parts of

microbial antigens that contact the variable regions of the protective anti-

bodies, can lead to development of antibody therapeutics, guide vaccine

design, enable assessment of protective antibody responses in infected or

vaccinated individuals, and uncover or localize pathogenic microbial func-

tions that could be targeted by novel antimicrobials. Monoclonal antibod-

ies are required to link in vivo or in vitro protective effects to specific

epitopes and may be obtained from experimental animals or from

humans, and their binding can be localized to specific regions of antigens

by immunochemical assays. The epitopes are then identified with map-

ping methods such as X-ray crystallography of antigen–antibody com-

plexes, antibody inhibition of hydrogen–deuterium exchange in the

antigen, antibody-induced alteration of the nuclear magnetic resonance

spectrum of the antigen, and experimentally validated computational

docking of antigen–antibody complexes. The diversity in shape, size and

structure of protective B-cell epitopes, and the increasing importance of

protective B-cell epitope discovery to development of vaccines and anti-

body therapeutics are illustrated through examples from different microbe

categories, with emphasis on epitopes targeted by broadly neutralizing

antibodies to pathogens of high antigenic variation. Examples include the

V-shaped Ab52 glycan epitope in the O-antigen of Francisella tularensis,

the concave CR6261 peptidic epitope in the haemagglutinin stem of influ-

enza virus H1N1, and the convex/concave PG16 glycopeptidic epitope in

the gp120 V1/V2 loop of HIV type 1.

Keywords: antibodies; antigens/peptides/epitopes; human; structural biol-

ogy/crystallography.

Introduction

Antibodies participate in the immune response to

microbes by interacting with surface or secreted microbial

antigens. Each antibody binds to an epitope, defined as

the three-dimensional structure of the amino acids, sugars

or other residues in an antigen that can be contacted by

the variable (V) regions of an antibody.1,2 The most pro-

tective antibodies against viruses and toxins target those

epitopes on microbial antigens that interact with host

receptors to invade host cells, and block invasion. They

are therefore neutralizing antibodies.3–7 The most protec-

tive antibodies against extracellular microbes target

carbohydrate epitopes on capsular or other cell surface

Abbreviations: bNAb, broadly neutralizing antibody; cryoEM, cryoelectron microscopy; DXMS, deuterium exchange/mass spec-
trometry; HIV, human immunodeficiency virus; IC50, half-maximal inhibitory concentration; LPS, lipopolysaccharide; NMR,
nuclear magnetic resonance; RSV, respiratory syncitial virus; STD, saturation transfer difference; scFv, single-chain variable frag-
ment
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polysaccharides,7 enabling microbe-killing through

Fc-mediated effector mechanisms: complement-dependent

killing, phagocytosis, and antibody-dependent cellular

cytotoxicity.8 These antibody functions are major deter-

minants for the success of vaccination at preventing infec-

tious disease.

Currently licensed vaccines are directed against: viruses,

including measles, mumps, rubella, rabies, poliovirus, var-

icella virus, papillomavirus; extracellular bacteria, such as

Streptococcus, Meningococcus and Haemophilus influenzae

type b; and bacterial toxins, such as diphtheria and teta-

nus toxins (http://www.cdc.gov/vaccines/schedules/).7

These vaccines work by inducing microbe-specific or

toxin-specific protective antibodies,3–7 although T cells

are required for somatic hypermutation to produce high-

affinity IgG and IgA antibodies, and are important for

the generation of B-cell memory.9

The essential role of antibodies against infectious dis-

eases is further evidenced by the effectiveness of passively

administered intravenous immunoglobulin for long-term

treatment of immune deficiencies like X-linked agamma-

globulinaemia and hyper-IgM syndrome.10 Specific im-

munoglobulins, such as hepatitis B immunoglobulin

(http://www.cdc.gov/mmwr/preview/mmwrhtml/

00022736.htm), tetanus immunoglobulin11 and rabies

immunoglobulin12 are successfully used as post-exposure

prophylaxis. In recent years, monoclonal antibodies

(mAbs) have been used for prophylaxis against infections

with respiratory syncytial virus (RSV)13 and rabies,12 and

for treatment of inhalational anthrax.14

Despite the clinical success of licensed vaccines and

passively administered antibody preparations, the devel-

opment of effective vaccines and therapeutic antibodies

against viruses and extracellular bacteria that exhibit high

antigenic variation, against non-viral intracellular patho-

gens like fungi and intracellular bacteria, and against

microbes with multi-stage life-cycles like protozoan and

metazoan parasites has proven to be challenging.6,7 Fur-

thermore, vaccines, immunotherapeutics and other anti-

microbials are needed for prophylaxis and treatment of

diseases caused by emerging and re-emerging infectious

agents and potential agents of bioterrorism, including

naturally evolving or intentionally engineered drug-resis-

tant variants (http://www.niaid.nih.gov/topics/emerging/

pages/list.aspx).

Development of vaccines and antibody therapeutics is

greatly aided by identification of microbial epitopes tar-

geted by protective antibodies – protective B-cell epi-

topes. This knowledge can lead directly to development

of therapeutic antibodies, as it has for infections with

RSV,13 rabies12 and anthrax.14 It could also guide the

design of subunit vaccines to include protective epitopes

and exclude any identified pathogenic epitopes that might

induce cross-reactive autoimmune15 or infection-enhanc-

ing antibodies.16–18 Furthermore, known protective B-cell

epitopes could be used to monitor the quality of antibody

responses in infected or vaccinated individuals.19–21

Lastly, identification of protective B-cell epitopes may

uncover or localize pathogenic microbial functions which,

as has been suggested22,23 and demonstrated,24 may lead

to the development of novel antimicrobials. We review

here recent approaches to discovery of protective micro-

bial B-cell epitopes, based largely on examples tabulated

at the end of the article.

Strategies to identify and characterize anti-
microbial protective mAbs

Identification of protective B-cell epitopes requires pro-

tective mAbs which, through their interaction with anti-

gen, prevent or contribute to prevention of microbial

pathogenesis. How are protective mAbs obtained? In

some cases one or more protective antigens in a given

microbe are known and mAbs to a target antigen, or

fragments thereof, are generated and tested for efficacy

against the microbe in vivo and/or in vitro. In other cases

no knowledge of protective microbial antigens is avail-

able, or such knowledge is ignored, and a collection of

mAbs to microbial surface components and/or secreted

products is first generated and divided into groups in

which all group members bind to the same antigen in im-

munoassays. The target antigens are identified and repre-

sentative mAbs against each antigen are then tested for

efficacy against the microbe.25

The mAbs are derived from lymphocyte-containing

samples obtained from immunized experimental animals,

most often mice, usually by hybridoma production,25–32

or from naturally infected or vaccinated humans by one

of several methods. These include: cloning of V region

genes from bone marrow or peripheral blood B cells or

plasma cells into phage-display22,33,34 or yeast-display35

vectors, in vitro activation and expansion of memory B

cells,21 cloning of the V region genes from single memory

B cells21,22,36–40 or plasma cells41,42 into IgG expression

vectors, or Epstein–Barr virus transformation of B

cells40,43 optionally followed by fusion with myeloma

cells.44 The target antigen of each mAb is identified by

immunochemical assays including ELISA and Western

blot analysis on purified candidate microbial anti-

gens.25,45,46 Whether or not purified (native or recombi-

nant) antigen is available, the protein and/or

carbohydrate nature of the target epitope can be deter-

mined by pre-treatment of the antigen or antigen mixture

with proteases25 or glycosidases37,47,48 in ELISA or Wes-

tern blot. Protein antigens can be identified by proteome

microarray analysis, in which reactivity of each mAb to

the recombinantly expressed microbial proteins is

assessed;25 or by mass spectrometric analysis of an SDS–
polyacrylamide gel band immuneprecipitated from a

microbial extract by the mAb49 or of a mAb-reactive spot
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on a two-dimensional gel.50 Alternatively, mAbs are

screened directly in a functional assay such as neutraliza-

tion,21,36–38 or memory B cells are selected by FACS for

binding to the antigen but not to an antigen variant in

which the epitope region of interest has been deleted.39

Monoclonal antibodies specific for the same microbial

antigen can be subgrouped by the germline genes that

encode their VH and VL regions22,29,38,42,44,51 and by

their ability to block each other’s binding to the antigen

in competition immunoassays.29,37–40,45,46 Hence, sharing

of the same VH, D, JH, VL and JL genes, or even just the

same VH and VL genes is reflected in high amino acid

sequence homology (http://www.imgt.org/) and indicates

specificity for the same epitope. For antigens with sequen-

tially repeating epitopes, as often found in capsular and

outer-membrane microbial polysaccharides, mAbs that

block each other’s binding to the antigen target the same

or an overlapping epitope.29,32,52 Although this is also

true for protein antigens, some anti-protein mAbs that

block each other’s binding to the antigen may do so not

by targeting an overlapping epitope but by interfering

with each other’s binding sterically or allosterically.38

However, in a group of mAbs specific for the same anti-

gen, those mAbs that do not block each other’s antigen-

binding, or that show different cross-blocking profiles

with third-party mAbs, define different epitopes.

In vivo testing of mAbs for anti-microbial efficacy is

done in animal models of infection, including

mice,22,28,29,33,53–55 rats,36 guinea pigs,56 non-human pri-

mates,57,58 and humanized mice,59 in which protective

mAbs are identified by their ability to confer or prolong

survival or reduce microbial burden. In addition, or alter-

natively, mAbs are functionally evaluated in vitro for their

ability to cause killing of target microbes or a reduction

in the microbes’ replication,27,30 block host-cell invasion

by microbes or their products (neutralize),21,22,33,36–

39,42,44,46,56,58,60–63 block the binding of microbial factors

to host components,30,33 or interfere with assembly of

microbial toxins.64 Use of human immune components

in these in vitro assays, such as human cell lines,33,36–

38,46,55 can validate results obtained in vivo in animal

models. Although efficacy indicates that the targeted epi-

tope is protective, lack of efficacy does not necessarily

mean that the epitope is non-protective because in addi-

tion to epitope specificity the protective efficacy of mAbs

depends on their avidity and isotype.29,52,54 A flow dia-

gram of general strategies for generation and identifica-

tion of protective mAbs is shown in Fig. 1.

Types, definitions and documentation of
microbial B-cell epitopes

Microbial B-cell epitopes are located mainly on the

exposed parts of microbial antigens,65 generally protein

and carbohydrate components, and may consist entirely

of amino acids in peptidic epitopes, sugar residues in gly-

can epitopes, or combinations thereof in glycopeptidic

epitopes. Many glycan epitopes and a small minority of

peptidic epitopes consist of contiguous residues and are,

therefore, referred to as continuous (or linear). However,

the vast majority of peptidic epitopes are discontinuous,

consisting of one to several amino acids that are sepa-

rated by a few or many non-contact amino acids in the

primary sequence but are brought together by the folding

of the protein.2 Therefore, the existence of discontinuous

peptidic epitopes depends on a supporting scaffold of

non-contact residues. The minimal contiguous amino

acid sequence containing all residues of a discontinuous

epitope, which is required for proper conformation of the

contact residues, has been termed the ‘contact residue

span’ and may range from 20 to 400 amino acids (most

frequently 50–79) in native proteins.66 Hence, a B-cell

epitope is defined both by the identities of the contact

residues and by their conformation, which is determined

by the three-dimensional fold of the contact residue span.

Information on published and investigator-submitted

microbial B-cell epitopes can be found at the Immune

Animals immunized with
microbial Ag mix or
purified microbial Ag

Naturally infected or
vaccinated humans

Effector or memory B cells

(select/screen for Ag- or epitope region-specificity)

Immortalize and/or clone V region genes

Cell lines secreting native or recombinant mAbs

Identify or confirm target Ag by immunochemical assays

Sequence expressed V region genes of Ag-specific cell lines

Unique-sequence mAbs to target Ag

Identify cross-blocking mAb profiles by competition assays

mAbs to different epitopes of target Ag

Test for anti-microbial efficacy

Protective mAbs

in vivo in animal models in vitro in functional assays

Figure 1. Flow diagram of general strategies for identification of

protective monoclonal antibodies (mAbs).
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Epitope Database and Analysis Resource (IEDB) (http://

www.iedb.org/), which houses B-cell and T-cell epitope

data and makes them accessible and searchable.1,67 This

includes the contact residues of the epitopes, antibody-

binding and protection assays, and tools for mapping of

discontinuous epitopes onto three-dimensional antigen

structures and for epitope prediction.67 Among the tens

of thousands of documented microbial B-cell epitopes,

the vast majority were defined based on antigen-derived

synthetic peptides used to induce antibodies in experi-

mental animals. Some of the antibodies to these peptides

cross-react with the native and/or recombinant microbial

antigen (http://www.iedb.org/), but their affinities for the

native microbial antigen are generally several orders of

magnitude lower than those of antibodies induced by

immunization with the native antigen.2 Among the dis-

continuous peptidic and the non-peptidic epitopes only

some have been shown to be protective, and no or few B-

cell epitopes have been studied for several of the microbes

considered to be emerging or re-emerging infectious

agents or potential agents of bioterrorism (http://www.

iedb.org/).

Methods of B-cell epitope mapping

Epitope mapping refers to identification of the antigen

residues that are contacted by a complementary antibody

during antigen–antibody binding. As a first step in epi-

tope mapping, the binding of protective mAbs (often

referred to as just antibodies) can be localized to specific

regions of antigens by testing the reactivity of the mAbs

to antigen subunits or fragments.26,30,68,69 For microbial

carbohydrate chains with repeating units, antibodies that

bind to unique epitopes at the non-reducing end can be

distinguished from those that bind to repeating internal

epitopes by their Western blot patterns, where the bind-

ing intensity of the latter but not the former increases

with increasing chain size. This is exemplified in Fig. 2

for O-antigen chains that comprise a capsular polysaccha-

ride and part of the lipopolysaccharide of Francisella tu-

larensis, a potential bioterrorism agent.29,32

Finer mapping methods for peptidic, glycan and glyco-

peptidic epitopes include: X-ray crystallography of anti-

gen–antibody (Ag–Ab) complexes, antibody inhibition of

hydrogen-deuterium exchange in the antigen, antibody-

induced alteration of the nuclear magnetic resonance

(NMR) spectrum of the antigen, glycan microarray prob-

ing of the antibody, oligosaccharide (glycan) competition

with antigen for antibody-binding, selection or screening

of antigen-derived proteolytic fragments or peptides for

antibody-binding, testing the Ag–Ab reactivity of site-

directed (antigen or antibody) or random (antigen)

mutants, electron and cryoelectron microscopy of Ag–Ab
complexes, and experimentally validated computational

docking of Ag–Ab complexes.

X-ray crystallographic analysis of Ag–Ab complexes

reveals the identities of the contact residues and confor-

mations of both the epitope and the complementary

binding-site of the antibody.21,30,33,42,48,52,62,70–75 It can be

applied to any type of antigen, including protein and car-

bohydrate antigens. In the first step of this method,

favourable conditions for nucleation and growth of high-

quality crystals of the Ag–Ab complex are identified by

testing a wide variety of crystallization solutions. The

crystal of choice is exposed in multiple orientations to a

beam of monochromatic X-rays, which are scattered by

the electrons of its atoms, and the resulting diffraction

patterns of spots (or reflections) are recorded. The infor-

mation in the diffraction data is then used to calculate a

three-dimensional electron-density map of the molecules

that make up the crystal, in which the known (non-

hydrogen) atoms of the antigen and antibody (from pri-

mary sequence analysis) are positioned to create a model

of the complex. The contact residues that comprise the

epitope can be defined by identifying all antigen residues

within 4–5 �A of the antibody, a distance used by the

Molecular Modeling Database to define contacts.76,77 X-

ray crystallography requires large amounts of highly pure

antigen and antibody, usually Fab antibody fragment, and

is limited by inability to obtain Ag–Ab co-crystals with

some antigens, especially membrane proteins.

Antibody inhibition of hydrogen–deuterium exchange

in the antigen, which involves the deuterium

exchange – mass spectrometry (DXMS) technology,78,79

reveals small segments containing contact residues in
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Figure 2. Western blot distinction between unique terminal and

repeating internal epitopes of microbial carbohydrate chains with

repeating units. The N62 monoclonal antibody (mAb), specific for a

terminal epitope in the O-antigen (O-Ag) of the Francisella tularensis

lipopolysaccharide (which consists of variable numbers of a tetrasac-

charide repeat, represented as ABCD) binds with equal intensity to

short and long lipopolysaccharide chains (relative to the abundance

of each chain). But the binding intensity of the Ab52 mAb, specific

for a repeating internal epitope, increases with increasing chain

length, as more mAb molecules are bound. The basis for the differ-

ential binding pattern is illustrated schematically for the (bracketed)

lower part of the Western blot, with N62 represented by grey ovals

and Ab52 by cyan ovals. Western blot lanes from Lu et al.29
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protein antigens.30,44 DXMS exploits the continuous

reversible exchange of peptide-amide hydrogens in pro-

teins with water hydrogens, the exchange rate of each

hydrogen correlating directly with the extent to which it

is exposed (accessible) to solvent. The exchange rates are

determined by incubating the protein in buffer with deu-

terated water (D2O) for graded time periods followed by

proteolysis into overlapping peptides, which are separated

chromatographically. The deuterium content of each pep-

tide is then analysed by mass spectrometry to obtain a

‘heat’ map of the exchange rate for the entire protein.

Subtraction of the DXMS heat map of the antibody-

bound antigen from the DXMS heat map of the free anti-

gen reveals the sequences(s) of the antigen where deute-

rium exchange was inhibited by antibody binding.

Although the spatial resolution of DXMS is not at the

single residue level, the antigen segments comprising the

epitope are localized to within a few amino acids.79

DXMS can be performed with lower-purity preparations

of antigen and antibody than X-ray crystallography, does

not require crystals, and intact antibody molecules, rather

than Fab fragments, can be routinely used.

Antibody-induced alteration of the NMR spectrum of

the antigen reveals contact residues of both protein and

carbohydrate antigens.48,80–83 NMR spectroscopy is based

on the ability of the nuclei of some isotopes, like 1H, 2H,
13C and 15N, to absorb and re-emit electromagnetic radia-

tion at a specific resonance frequency when placed in a

magnetic field (http://www.cis.rit.edu/htbooks/nmr/). The

resonance frequency of different nuclei of the same iso-

tope is altered by the electrons of neighbouring atoms.

This results in different signals (chemical shifts) relative

to a standard reference molecule, generating a spectrum

that yields information about the chemical environment

of each nucleus, from which its identity can be deter-

mined. The complexity of NMR spectra makes it difficult

to determine the structure of large Ag–Ab complexes.

However, the antigen residues within 5 �A of the antibody

(the contact residues) can be determined if the antigen

spectrum does not overlap with the antibody spectrum,

as will be the case for carbohydrate antigens or for

recombinant protein antigens that have been labelled, for

example, with 2H, 13C and 15N.81,84 Subtraction of the

NMR spectrum of the antibody-bound antigen from the

NMR spectrum of the free antigen is then used to iden-

tify contact residues by the changes in chemical shifts that

occur when residues exposed to solvent in the free anti-

gen are buried in the Ag–Ab complex. This technique,

called saturation transfer difference (STD) NMR, is simi-

lar in principle to DXMS except that both peptidic and

non-peptidic epitopes can be mapped and the actual con-

tact residues are identified in STD NMR. However, only

relatively small antigen fragments can be used for epitope

mapping by STD NMR, and labelled recombinant protein

fragments are needed.

Oligosaccharides, synthesized or purified from micro-

bial sources, can be used to probe the binding of anti-

body in glycan microarrays37 or in competition

immunoassays.29,37,54,80,85 For glycan microarray probing,

large numbers of different glycans are immobilized

(printed) on glass slides in microspots, and antibody-

binding is detected with fluorescent reagents, which are

quantified in a fluorescence scanner.86 For oligosaccharide

competition, short antigen-derived oligosaccharides of

different length and structure are used as competitors in

immunoassays that measure binding of the antibody to

the antigen. Per cent binding-inhibition versus competi-

tor concentration is plotted for each competitor and the

most potent competitor, which requires the lowest con-

centration for half-maximal binding-inhibition, is

deduced to comprise the glycan epitope. These methods

are limited by the difficulty of synthesizing some oligosac-

charides or purifying sufficient quantities from microbial

sources. Furthermore, the spatial resolution will not be at

the single residue level if oligosaccharides that differ by

single sugar residues are not available.29,54

Antigen-derived overlapping or non-overlapping prote-

olytic fragments and peptides can be displayed on the

surface of phage particles30 or yeast cells26,68 for selection

by the antibody or can be used in Western blot or ELISA

or microarrays to screen for antibody binding (peptide

scanning).21,30,40,75 This approach is limited by the depen-

dence of many epitopes on the three-dimensional struc-

ture of the larger antigen75 and the likelihood of

identifying only partial epitopes.2,30

Site-directed mutations (point mutations, insertions,

deletions) can be introduced into recombinant versions

of either the antigen21,38,40,43,44,62,87 or the anti-

body21,48,52,74 and the mutants can be tested for loss of

Ag–Ab binding or other functions. Mutants are often

obtained by changing entire segments of the antigen or

specific residues to alanine (alanine shaving)88 and verify-

ing proper folding of the mutant proteins by their bind-

ing to mAbs that target other epitopes and/or to

polyclonal antibodies.39,46 Alternatively, systematic ran-

dom mutations to alanine can be introduced along an

entire protein antigen (alanine scanning) and mutants

probed for antibody binding, to obtain partial epitope

information.21,26,38,46,48,87

Electron microscopy (EM) allows visualization of Ag–
Ab complexes.44,52 The Ag–Ab mixtures are spread on a

metal grid and introduced into a high-vacuum column

in the electron microscope. There the sample is exposed

to and diffracts an electron beam, which is then focused

by electrostatic and electromagnetic lenses to yield elec-

tron-density maps that can be converted into an image.

Stains and fixatives are used to protect the sample from

radiation damage, but these alter the fine structure of

the macromolecules. In a modification called cryoEM,

Ag–Ab complexes can be observed in physiological

ª 2013 John Wiley & Sons Ltd, Immunology, 142, 1–23 5

Protective B-cell epitopes



buffers, without stains and fixatives, by preserving the

complexes in a frozen hydrated state by rapid freezing

at near liquid nitrogen temperatures, which protects the

sample from radiation damage. The resolution of most

EM and cryoEM methods is too low to reveal contact

residues and, therefore, Ag–Ab models obtained by other

methods are used to interpret the EM and cryoEM

maps.

Computational docking of Ag–Ab complexes can be

used to predict the contact residues using Ag–Ab models

from either homology modelling or, preferably, X-ray

crystallography of both or at least one of the partners. In

the docking protocol, the antigen and antibody structures

are tested in a large number of orientations and then each

orientation is scored by energy, seeking the global mini-

mum orientation. The scoring function can be greatly

enhanced in accuracy if experimental data from the meth-

ods discussed above are used to guide (constrain) the

selection, referred to as experimentally validated compu-

tational docking.20,40,43,44,54,80,82,83

Because epitope information from different mapping

methods differs in extent and resolution (summarized in

Table 1), multiple mapping methods are often used to

obtain complementary or supporting data. As exemplified

in Fig. 3 for the mapping of a protective peptidic B-cell

epitope in Neisseria meningitides factor H binding pro-

tein,30 X-ray crystallography usually provides the most

complete highest-resolution map. But other methods such

as mutational analysis of both antigen and antibody con-

tact residues and testing the binding of intact antibody to

antigen under physiological conditions may be needed to

reveal the critical contacts, without which Ag–Ab binding

is abolished or greatly reduced, or those that make one

antibody more potent or more cross-reactive than

another at a particular function like neutraliza-

tion.19,27,33,35,38,56,60,61,71 Furthermore, the epitope core

responsible for a pathogenic function may be shared by

antibodies that target overlapping epitopes with slightly

different registers of contact residues.81 Therefore, for ini-

tial identification of protective B-cell epitope cores, the

lower resolution maps obtained using DXMS for peptidic

epitopes, and oligosaccharide competition and/or glycan

microarray probing for glycan epitopes, may suffice.

Table 1. Information obtained from different epitope mapping methods

Method

Epitope type(s)

mapped Extent and resolution of map

X-ray crystallography of Ag–Ab complex any1 entire epitope, contact residues, epitope conformation

DXMS (Ab-inhibition of hydrogen-deuterium exchange in

the Ag)

peptidic entire epitope, small segments containing the contact

residues

STD NMR (Ab-induced alteration of the NMR spectrum of

the Ag)

any contact residues

Glycan array probing or oligosaccharide competition for

Ab-binding

glycan and

glycopeptidic

entire epitope (glycan) or partial epitope

(glycopeptidic), contact residues if oligosaccharides

differing by one sugar are available; otherwise –

small segments containing the contact residues

Peptide scanning (of Ag peptides) or testing of Ag fragments

for Ab binding

peptidic usually partial epitope, small segments containing

some of the contact residues

Mutagenesis (alanine shaving, alanine scanning, point or deletion

mutations) and testing for Ag–Ab binding

peptidic and

glycopeptidic

partial epitope, critical contacts

EM or cryoEM of Ag–Ab complex any epitope region

Experimentally validated computational docking of Ag–Ab

complex (constrained by data from other methods)

any entire epitope, contact residues, epitope conformation

Ab, antibody; Ag, antigen; cryoEM, cryoelectron microscopy; DXMS, deuterium exchange/mass spectrometry; EM, electron microscopy; STD

NMR, saturation transfer difference nuclear magnetic resonance.
1Including peptidic, glycan, lipid, nucleic acid, or combinations thereof.

Array of overlapping peptides

Phage display of fragments

DXMS

238 249

224 250

25121413710796894834

38 41 92 114 128 131 214

217-221 241-246

239 248
126130 215

X-ray crystallography

Figure 3. Linear representation of mapping results for a B-cell epi-

tope in Neisseria meningitides factor H binding protein, obtained

using different methods. Figure adapted with modifications from

Malito et al.30 Epitope segments and contact residues are indicated

by amino acid numbers and represented in orange.
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Relation of shape, size and structure of
microbial B-cell epitopes to protective antibody
function

B-cell epitopes come in a variety of shapes and sizes,

reflecting the complementary shapes and sizes of the

binding-sites of antibodies, as illustrated in Fig. 4 for five

protective epitopes and outlined in Table 2 for one or

more protective epitope examples from each microbe cat-

egory including bacteria, fungi, parasites and viruses. Epi-

topes can be convex, concave, relatively flat (with minor

protrusions and depressions), or mixtures thereof, vary in

surface area from < 200 to > 1500 �A2, and consist of

from fewer than two to more than 34 residues (Fig. 4

and Table 2). They can be glycan, peptidic or glycopepti-

dic, include secondary structure segments of a-helices, b-
strands and loops, and encompass or depend on the con-

formation of multiple antigen subunits (quaternary epi-

topes72,73) (Fig. 4 and Table 2), or even span two

antigens (hybrid epitopes43).

A terminal and a repeating-internal epitope in F. tular-

ensis O-antigen exemplify convex glycan epitopes, the for-

mer a 185-�A2 two-sugar epitope that fits in a cavity-type

antibody-binding site29 and the latter a 308-�A2 six-sugar V-

shaped epitope that fits in a groove-type binding site that

has a small central pocket that anchors the vertex of the

epitope89 (Fig. 4a and Table 2). The protective efficacy of

the two targeting antibodies is probably due mainly to

mediation of effector functions. A 680-�A2 20-amino acid

hydrophobic pocket formed by parts of a highly conserved

a-helix and loop in the stem of influenza virus haemagglu-

tinin is a concave peptidic epitope, which interacts with a

convex binding-site formed by an exceptionally long CDR3

in the VH region of a broadly neutralizing Ab (bNAb).71

This bNAb can inactivate six of the 16 influenza virus hae-

magglutinin subtypes by blocking the low pH-induced

conformational change required for fusion of the virus

with the host cell endocytic membrane during infection71

(Fig. 4b and Table 2). A 1013-�A2 18-amino acid epitope

with convex and concave parts, consisting of both helical

and loop segments of the trimeric RSV fusion (F) protein

in its pre-fusion conformation, interacts with a comple-

mentary antibody that locks the F protein in the pre-fusion

conformation, preventing the rearrangement required for

exposure of the fusion peptide and fusion of the viral and

host cell membranes73 (Table 2 and Fig. 4c; the post-

fusion conformation of the F protein is shown for compar-

ison). A 1535-�A2 glycopeptidic epitope with both convex

and concave parts, and consisting of b-strand amino acids

and both high mannose-type and complex-type N-linked

glycans in gp120 of the HIV-1 envelope spike, interacts

with a bNAb38,48 (Table 2 and Fig. 4d). The bNAb can

inactivate 73% of 162 strains representing major HIV-1

clades,48 possibly by preventing envelope conformations

that allow binding to the host cell receptor CD4.

Clinical applications or implications of protective
microbial B-cell epitopes

Translation of protective B-cell epitope mapping results

into clinical applications is occurring and will continue to

occur. As outlined for the examples given in Table 2, the

influenza A bNAb CR6261, specific for a conserved epi-

tope in the haemagglutinin stem, is in Phase I clinical tri-

als as a therapeutic, and sera from patients with

tularaemia,20 malaria19 and HIV infection21 have been

tested for the presence of antibodies to mapped protective

epitopes by competition ELISA for antigen-binding with

the protective mAbs. Two antigens for which protective

epitopes have been mapped are in Phase I–II clinical trials
as malaria vaccines (Table 2), and one is a major compo-

nent of a meningococcal serogroup B vaccine that has

been recently licensed for use by the European Medicines

Agency90 (see Table 2). The sera of vaccinees could be

tested for the presence of antibodies to mapped protective

epitopes as a correlate of vaccine protection.

Other protective antibodies could also be developed as

therapeutics, especially for infections with drug-resistant

microbes like methicillin-resistant S. aureus33 or Oseltam-

ivir-resistant H1N1 influenza viruses,42 or for long-term

vectored immunoprophylaxis against HIV infection by

injection of adeno-associated virus transduced with an

expression vector encoding several non-overlapping

bNAbs.59 In addition, or alternatively, the mapped epi-

topes of protective antibodies could be engineered into

new or improved vaccine designs. For example, an influ-

enza virus haemagglutinin comprised of the stem only,

without the highly variable head domain, is efficacious in

mouse models and has been proposed as a candidate for

a universal flu vaccine.91,92 Development of engineered

improved versions of bNAbs could be considered for

therapeutic or prophylactic treatment of dengue virus

infection, if combined with modifications to the Fc region

to reduce interaction with Fcc receptors and hence the

possibility of antibody-dependent enhancement of infec-

tion, which occurs at sub-neutralizing antibody concen-

trations.46,55 And, in view of the high number of somatic

mutations found in the V regions of HIV-1 bNAbs21,93,94

and the discovery that the germline V region progenitors

may not bind the same antigen,39 the development of

HIV vaccines that would guide the immune system, step-

wise, from immunoglobulin gene rearrangement, through

affinity maturation and production of bNAbs, has been

proposed6,74,95 (see Table 2).

Concluding remarks

Mapping the protective B-cell epitomes of microbes, the

totality of protective epitope cores on microbial antigens,

will continue to provide the best mAb candidates to be

used for antimicrobial therapy and prophylaxis. Further-
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from influenza virus
H1N1 (of 1918)
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Figure 4. Examples of protective B-cell epitope structures. Antigens are represented as solid molecular surfaces (left panels and top right) and

ribbon diagrams (right panels) rotated away from the reader approximately 90° about the horizontal axis, coloured with cyan carbons except for

contact residues which are coloured orange. Antibody V regions are shown as wire-mesh molecular surfaces coloured grey (VH) and purple

(VL). Images are clipped front and back to more clearly show interactions of antibodies and antigens. Selected contact residues are indicated in

each panel for reference. The four sugars of the tetrasaccharide repeat in Francisella tularensis O-Ag108 are represented as ABCD for one and

A’B’C’D’ for the other of the two repeats shown. S, serine; E, glutamic acid; Q, glutamine; K, lysine; N, asparagine; D, aspartic acid; Man, man-

nose; Sia, sialic acid. Images were generated using MAESTRO (version 9 3 5, Schr€odinger, Inc., New York, NY).
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more, such epitome knowledge will enable the design of

subunit vaccines enriched in protective epitopes. Analysis

of the molecular interactions between bNAbs and micro-

bial antigens will inform the engineering of vaccine su-

bunits to guide the immune system towards production

of similar antibodies. Such vaccine strategies have a

chance for success against pathogens of high antigenic

variation that can replicate inside Fc receptor-bearing

host cells if multiple protective epitopes are used68,96 and,

most importantly, if combined with strategies to elicit

both cytotoxic and helper T cells that can kill or stimu-

late the microbicidal activity of microbe-infected host

cells.
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