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Summary

The gastrointestinal tract is a mucosal surface constantly exposed to for-

eign antigens and microbes, and is protected by a vast array of immuno-

logically active structures and cells. Epithelial cells directly participate in

immunological surveillance and direction of host responses in the gut and

can express numerous pattern recognition receptors, including Toll-like

receptor 5 (TLR5), TLR1, TLR2, TLR3, TLR9, and nucleotide oligomeriza-

tion domain 2, as well as produce chemotactic factors for both myeloid

and lymphoid cells following inflammatory stimulation. Within the epi-

thelium and in the underlying lamina propria resides a population of

innate lymphoid cells that, following stimulation, can become activated

and produce effector cytokines and exert both protective and pathogenic

roles during inflammation. Lamina propria dendritic cells play a large role

in determining whether the response to a particular antigen will be

inflammatory or anti-inflammatory. It is becoming clear that the composi-

tion and metabolic activity of the intestinal microbiome, as a whole com-

munity, exerts a profound influence on mucosal immune regulation. The

microbiome produces short-chain fatty acids, polysaccharide A, a-galacto-

sylceramide and tryptophan metabolites, which can induce interleukin-22,

Reg3c, IgA and interleukin-17 responses. However, much of what is

known about microbiome–host immune interactions has come from the

study of single bacterial members of the gastrointestinal microbiome and

their impact on intestinal mucosal immunity. Additionally, evidence con-

tinues to accumulate that alterations of the intestinal microbiome can

impact not only gastrointestinal immunity but also immune regulation at

distal mucosal sites.
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Introduction

The gastrointestinal tract is the largest environment-

exposed surface area in the body, and is in direct contact

with a large and varied microbial community.1 Fortu-

nately, the gastrointestinal tract is also home to a large

variety of immune cells and structures that help maintain

intestinal homeostasis in the face of microbial challenge.2–

4 Intestinal epithelial cells physically separate underlying

tissues from the intestinal lumen,5,6 while goblet cells

maintain a mucus layer to prevent microbial contact with

epithelial cells.7,8 Leucocytes beneath the epithelial cell

layer can both promote and inhibit inflammatory

responses,9–12 and are efficiently organized into effector

and inductive sites.13–15 This organization largely prevents

unwanted inflammation while retaining the ability to

respond rapidly to a wide array of perturbations.

The gastrointestinal tract is also the home of the intes-

tinal microbiome, defined as all of the microbial inhabit-

ants (microbial community) and their collective

genomes.16 While the microbiome provides numerous

nutritional benefits to the host, including synthesizing

vitamins17 and short chain-fatty acids (SCFAs),18 the

presence of the microbiome is also vitally important for

Abbreviations: FAE, follicle-associated epithelium; GF, germ-free; IELs, intraepithelial lymphocytes; IFN-c, interferon-c; IL-17,
interleukin-17; ILCs, innate lymphoid cells; LPDC, lamina propria dendritic cell; SCFA, short chain fatty acids; SFB, segmented
filamentous bacteria; Th17, T helper type 17; TLR, toll-like receptor
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the development and functionality of the intestinal

immune system.19,20 Animals devoid of intestinal micro-

bial stimulation exhibit large defects in the organization

and activity of immune structures in the gut, and proper

activity can be restored via microbial stimulation.19,20

Individually, members of the microbiome can also have

profound effects on host mucosal homeostasis, and spe-

cific microbes have been demonstrated to promote

inflammatory21,22 or anti-inflammatory23,24 responses in

the gut. Hence, cross-talk between the microbiome and

the intestinal immune system is critical in the mainte-

nance of mucosal homeostasis.

The small intestine and the large intestine are physio-

logically distinct sites. While nutrient absorption occurs

in the small intestine, absorption of water occurs in the

large intestine.1,25 Consistent with their varied physiologi-

cal roles, the structure and organization of the small and

large intestines are different. For example, Peyer’s patches

and isolated lymphoid follicles are both found within the

small intestine,26 but only isolated lymphoid follicles have

been described in the large intestine.27 Hence, we will first

discuss the structural and cellular composition of the

small and large intestines, establishing the proper context

for our subsequent discussion of microbiome modulation

of mucosal immunity (Fig. 1a,b).

Structure and cellular composition of the small
intestine

The small intestinal epithelium is actually a single layer of

cells, all of which are derived from multipotent stem cells

located within the intestinal crypts.2,6 Collectively, these

cells are responsible for nutrient absorption, physical

exclusion of luminal contents from underlying tissues,

antimicrobial peptide production and maintenance of the

intestinal mucus layer.2,6

Columnar epithelial cells constitute the majority of cells

present in the intestinal epithelium.6,28 Enterocytes pro-

vide a physical barrier separating the luminal contents of

the gastrointestinal tract from underlying tissues, as well

as participating in the absorption of materials from

lumen.5,6 Epithelial cells directly participate in immuno-

logical surveillance and direction of host responses in the

gut. Epithelial cells can express numerous pattern recog-

nition receptors, including Toll-like receptor 5 (TLR5),29

TLR1, TLR2, TLR3, TLR9,2 and nucleotide oligomeriza-

tion domain 2,5 and can produce chemotactic factors for

both myeloid and lymphoid cells following inflammatory

stimulation.30 Interleukin-17 (IL-17) stimulation of intes-

tinal epithelial cells can drive the expression of neutrophil

chemokines.31 Epithelial cells can produce anti-microbial

peptides, such as cathelicidin-related antimicrobial pep-

tide, to directly influence microbial populations in the

lumen of the gut.32 Additionally, epithelial cells can inter-

act with leucocyte populations through the expression of

both MHCII33 and MHCI.34 Therefore, enterocytes play a

key role in not only preventing microbes and microbial

products from penetrating to underlying tissues, but also

initiating and directing inflammatory responses.

Within the epithelium resides a population of lympho-

cytes referred to as intraepithelial lymphocytes (IELs).35

Almost all IELs are T cells, with both ab+ and cd+ popu-

lations represented.35,36 Adherence of IELs to epithelial

cells is mediated by interactions between CD103

expressed on IELS, and E-cadherin expressed on epithelial

cells.37 Many IELs at baseline display a mixed phenotype,

with expression of some activation markers but not oth-

ers.38 However, following stimulation, IELs become acti-

vated and express effector cytokines including interferon-

c (IFN-c) and keratinocyte growth factor.38–40 The IELs
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Figure 1. The cellular and structural composition of the small and

large intestinal epithelium. (a) Organization of the small intestinal

epithelium. Intestinal epithelial cells and a mucus layer separate the

intestinal lumen from the underlying tissue. Lymphocytes beneath the

intestinal epithelium are found in either inductive and effector sites.

Inductive sites, such as Peyer’s patches, generate mature lymphocytes

that then migrate to effector sites, such as the lamina propria, to

respond to microbial stimulation. (b) Organization of the large intes-

tinal epithelium. The organization of the large intestinal epithelium is

very similar to that of the small intestine, excepting the lack of Peyer’s

patches and a predominance of B cells instead of T cells in the under-

lying lamina propria. IEL, intraepithelial lymphocyte.
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can exert both protective and pathogenic roles during

inflammation: whereas IEL-derived keratinocyte growth

factor is believed to protect the epithelium from damage

during chemically induced colitis,41 IELs producing IFN-c
and tumour necrosis factor-a have been associated with

the development of inflammatory bowel disease.42 The

proximity of IELs to the lumen of the gut, and their abil-

ity to rapidly produce both inflammatory and epithelial-

protective signals, make them key “first-line” defenders in

the intestinal tract.

Underlying the intestinal epithelium is the lamina

propria, an area rich in B and T lymphocytes.2 In con-

trast to Peyer’s patches, which are inductive sites for the

priming of lymphocytes, the lamina propria is an effec-

tor site where activated lymphocytes respond to appro-

priate stimulation.13–15 ab T-cell receptor-positive T cells

are the most common lymphocyte within the small

intestinal lamina propria.36 In keeping with the effector

function of the lamina propria, T cells found within the

lamina propria express markers indicative of activation,

including high levels of CD69 and CD25,43 as well as

spontaneously secreting IL-4 and IFN-c.44 Subsets within

this population have drastically different activities: while

CD4+ CD25+ regulatory T cells in the lamina propria

can inhibit T-cell proliferation, cytokine production and

the development of colitis,10,11 lamina propria CD4+ T

cells can secrete both IL-17 and IL-22 and are associated

with the development of intestinal inflammation.9,12

Therefore, lamina propria T cells have the ability to

rapidly react to signals received from the luminal

environment and initiate both inflammatory and anti-

inflammatory responses.

Lamina propria dendritic cells (LPDCs) play a large

role in determining whether the response to a particular

antigen will be inflammatory or anti-inflammatory.

LPDCs capture luminal antigen by extending their pro-

cesses through the epithelial cell layer, a process depen-

dent on CX3CR1.45 There are two broad classifications of

LPDCs to consider: CD103+ and CD103�. The CD103+

LPDCS promote the generation of Foxp3+ regulatory T

cells through the secretion of retinoic acid and in combi-

nation with transforming growth factor-b.3,4 In contrast,

CD103� LPDCs support the development of inflamma-

tion, and increase expression of inflammatory mediators

such as tumour necrosis factor-a and IL-6 following stim-

ulation with TLR ligands.46 The presence of CD103+

LPDCs is particularly important in preventing unneces-

sary inflammation, as the absence of CD103+ CX3CR1�

LPDCs enhances epithelial damage during colitis.47

Innate lymphoid cells (ILCs) are another cellular popu-

lation found in the lamina propria.48,49 ILCs morphologi-

cally resemble lymphocytes, but do not possess

recombination activating gene-dependent antigen recep-

tors.50 They can be broken down into three broad

groups.50 The defining characteristic of group 1 ILCs, such

as natural killer cells, is the production of IFN-c.50 Many

group 1 ILCs are also T-bet+,50,51 and group 1 ILCs can

be found at sites of mucosal inflammation.51 In contrast,

generation of group 2 ILCs requires GATA3 and RORa,50

and IL-5 and IL-13 are the signature cytokines of this

group.50 Group 2 ILCs are important in the response to

nematode infections,50 and will be discussed no further in

this review.

Particularly relevant to the intestinal tract are group 3

ILCs, which are primarily defined by their ability to pro-

duce IL-22 and IL-17.50 Additionally, the generation and

activity of group 3 ILCs is dependent on RORct.50 Recent
evidence has strongly suggested that IL-17+ group 3 ILCs

drive colonic inflammation during Helicobacter hepaticus

infection.49 In contrast, during Citrobacter rodentium coli-

tis, group 3 ILCs are known to produce IL-22.48 The IL-

22 drives antimicrobial peptide expression and is required

to prevent severe intestinal pathology and mortality dur-

ing C. rodentium colitis.52 Hence, group 3 ILCs are

important intestinal sources of IL-17 and IL-22, and can

both promote and protect against intestinal pathology

during insult.49,50,52

Peyer’s patches are one of the most recognizable

immune structures present in the small intestine

(Fig. 1a). They are primarily a lymphoid structure, con-

taining both germinal centres and a T-cell zone, as well

as a subepithelial dome containing dendritic cells sepa-

rated from the lumen of the gut by the follicle-associated

epithelium (FAE).26,53 The FAE is functionally distinct

from other sites in the epithelium: it contains fewer secre-

tory cells, and IgA cannot be secreted across the FAE.54 A

feature of the FAE is the presence of M cells, specialized

epithelial cells that facilitate the uptake of antigen and

microbes from the lumen of the gut and its delivery to

underlying lymphoid tissue.54,55 Luminal antigens col-

lected through the FAE are the primary antigens available

in Peyer’s patches because Peyer’s patches have no affer-

ent lymphatics.26 IgA+ B cells are prevalent in the Peyer’s

patch germinal centres,56 and the Peyer’s patch dendritic

cells promote IgA production from B cells.57 Additionally,

isolated lymphoid follicles are structurally and function-

ally similar to Peyer’s patches, but are smaller in size and

can be found in both the small and large intestine.26,27,58–60

The presence of germinal centres within Peyer’s patches

and isolated lymphoid follicles, combined with their con-

stant exposure to luminal antigen, make them an ideal

site for the induction of adaptive responses along the

intestinal tract.

Structure and cellular composition of the large
intestine

In contrast to the small intestine, B cells are the predomi-

nant lymphocyte present in the lamina propria of the

large intestine.36 Lamina propria B cells secrete dimeric
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IgA, which is transcytosed through epithelial cells to the

lumen of the gut through the action of the polymeric

immunoglobulin receptor.61,62 Although antigen-specific

IgA can be generated during intestinal infection,63 intesti-

nal IgA secretion also plays a key role at baseline by

inhibiting the penetration of commensal microbes

through the epithelium and enhancing the uptake of

luminal bacterial by M cells.61 Intestinal IgA can also

directly modulate the composition of the intestinal mi-

crobiome,64 highlighting the key role of IgA and lamina

propria B cells in shaping both the membership and loca-

tion of the microbiome.

Goblet cells are another class of specialized epithelial

cells found in the intestinal epithelium.28,65 Goblet cells

can be found in both the small and large intestines, but

they represent approximately 15% of the cells found in

the large intestinal epithelium.28,65 Goblet cells contain

large mucus-laden vacuoles,65 and express high levels of

the MUC2 gene.7 MUC2 is the major structural compo-

nent of both intestinal mucus layers.66 The lower mucus

layer makes direct contact with the intestinal epithelium

and is rarely contaminated with bacteria, whereas the

outer layer contacts the intestinal lumen and the intesti-

nal microbiome.8 Goblet cells have also recently been

found to produce the antimicrobial peptides Ang4, RegI-

IIc and RegIIIb.67,68 RegIIIc activity is especially impor-

tant in preventing microbial contact with the underlying

epithelium.69 Goblet cells may also transfer antigens

acquired in the intestinal lumen to dendritic cells in the

lamina propria.70 These studies have demonstrated a

potential role for goblet cells beyond mucus production

by participating directly in the uptake of antigen and

modulating the intestinal microbiome.

The influence of the microbiome on intestinal
mucosal homeostasis

The mammalian gastrointestinal tract is home to a large

community of bacteria, reaching a density of 1011 colony

forming units/ml of colonic content in the large intestine,

that provide an array of benefits to the host.71 The

importance of the gastrointestinal tract microbiome in

the generation of mucosal immune responses has been

demonstrated using germ-free (GF) mice.19,20 The intesti-

nal immune system is largely underdeveloped in the

absence of microbial stimulation.19,20 Germ-free animals

produce lower levels of antimicrobial peptides and have

smaller numbers of IELs present than conventional ani-

mals.19,72 Additionally, the Peyer’s patches of GF animals

are less active and contain small germinal zones,20 and

IgA+ plasma cell levels are also greatly reduced in these

animals.73 The induction of oral tolerance is also deficient

in GF mice.74–76 However, intestinal microbial stimula-

tion in GF animals can restore the proper organization of

the intestinal immune system.19,77

It is becoming clear that the composition and meta-

bolic activity of the intestinal microbiome, as a whole

community, exerts the greatest influence on mucosal

immune regulation. However, much of what is known

about microbiome–host immune interactions has come

from the study of single bacterial members of the host

microbiome. For example, Bacteroides fragilis produces a

polysaccharide (polysaccharide A) with anti-inflammatory

properties.23 Polysaccharide A, in a TLR2-dependent

manner, mediates the conversion of CD4+ T cells into

Foxp3+ regulatory T cells that produce IL-10, suppress

IL-17 production and protect against numerous inflam-

matory insults.23,24,78,79 Bacteroides fragilis releases poly-

saccharide A in outer membrane vesicles that are detected

by dendritic cells,79 whereas purified polysaccharide A can

also prevent inflammation in vivo.23,24 Additionally,

B. fragilis can also produce a-galactosylceramide (a-Gal-
CerBf), a glycosphingolipid which is capable of binding

CD1d and activating invariant natural killer T cells.80

In another example, monocolonization of GF mice with

Bacteroides thetaiotamicron can cause changes in the

expression of genes involved in intestinal nutrient absorp-

tion, mucosal barrier function and angiogenesis.81 Inter-

estingly, while colonization by a complex microbiome is

associated with high-level epithelial expression of RegIIIc,
a secreted C-type lectin that limits microbial contact with

the epithelium,69,82 monocolonization of mice with

B. thetaiotamicron is not.82 This failure to induce RegIIIc
expression is probably dependent on IgA, which presum-

ably limits bacterial adhesion to and stimulation of the

epithelium, as GF animals deficient in IgA express high

levels of RegIIIc following exposure to B. thetaiotami-

cron.82 Similarly, in mice lacking RegIIIc there is

increased bacterial colonization of intestinal epithelial sur-

faces and activation of intestinal adaptive immune

responses, including increased levels of IgA+ cells.69

Recent work has also demonstrated that the microbiome

produces signals that preferentially promote IL-22 tran-

scription, which is required for RegIIIc expression.52,83

Therefore, spatial separation of the microbiome and

intestinal epithelium is maintained by a complex interplay

between both microbiome and host-derived factors.

Another widely studied example is the role of

segmented filamentous bacteria (SFB) in promoting intes-

tinal T helper type 17 (Th17) responses.21,22 SFB associate

closely with epithelial cells of the small intestine, and the

presence of SFB in the terminal ileum is associated with

an increase in the number of Th17 cells capable of

expressing both IL-17 and IL-22 in the intestinal lamina

propria.21,22 This enhanced inflammatory state appears to

be protective for the host, as animals colonized with SFB

are resistant to infection by the large intestine pathogen,

C. rodentium.21 Monoassociation of GF mice with SFB

promotes high levels of IgA, though only a small fraction

of the total IgA produced is SFB-specific.84 IgA
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production, however, is critical for containing the SFB

population; mice with deficient IgA levels (due to

deficiency of activation-induced cytidine deaminase) have

a marked expansion of SFB within the small intestine,

which is reversed upon restoration of lamina propria IgA

production.64 Hence, colonization of the small intestines

of mice with SFB is a potent immunomodulatory signal

for the mucosa, which in turn modulates the intestinal

microbiome.

Recent studies have identified numerous species of Clo-

stridia capable of inducing the development Foxp3+ regu-

latory T cells in the large intestine.85,86 Large intestine

colonization with Clostridia from clusters IV and XIVa

enhances transforming growth factor-b1 levels and pro-

motes the development of IL-10-expressing Foxp3+ regu-

latory T cells in GF mice to levels comparable to those

seen in conventionally reared animals.85,86 Colonization

of conventionally reared animals with these Clostridia

strains is also capable of reducing the severity of intestinal

inflammation during chemically induced colitis.85,86 Since

clostridial species are a major producer of SCFAs,87 one

likely mechanism is the production of SCFA.

Short-chain fatty acids, such as butyric acid/butyrate,

are by-products of fermentation by the microbiome and

are detectable in the gastrointestinal tract.18 Butyrate also

possesses potent anti-inflammatory activity on myeloid

and lymphoid cells in a variety of in vitro culture sys-

tems.88–91 Butyrate has also been used to treat colitis and

can reverse the increased mucosal permeability and intes-

tinal ulceration seen in dextran sodium sulphate coli-

tis.92,93 Conversely, in the absence of G-protein coupled

receptor 43, one of the host receptors for SCFAs, mice

are more susceptible to experimentally induced intestinal

inflammation.94 Butyrate can also act directly on leuco-

cytes, and inhibits IL-12 production, decreases co-stimu-

latory molecule expression, and blocks nuclear factor-jB
translocation in human monocyte marrow-derived den-

dritic cells and macrophages.91,95

An anti-inflammatory role has been ascribed to mem-

bers of the genus Lactobacillus.96,97 There are many reviews

that discuss this field, so we will not discuss this topic in

great detail. However, relevant to our previous point,

though lactobacilli are poor producers of butyrate, they

can produce ample quantities of lactic acid, which in turn

can be rapidly converted to butyrate by other members of

the microbiome,98,99 potentially accounting for one mech-

anism of their immunomodulatory activity. Taken

together, these data clearly demonstrate that individual,

non-pathogenic members of the intestinal microbiome can

markedly alter the inflammatory state of the intestinal

immune system to the benefit of the host (Fig. 2).

Exogenous tryptophan metabolites play an important

role in mammalian gut immune homeostasis via aryl

hydrocarbon receptor signalling.83 The aryl hydrocarbon

receptor promotes Th17 cell differentiation in vitro,100 as

well as the homeostasis and function of Group 3 ILCs in

vivo.101,102 Mice that are deficient for aryl hydrocarbon

receptor have a significant deficiency in Group 3 ILCs,

thereby resulting in much lower IL-22 production and

increased susceptibility to intestinal infection.101 However,

intestinal Th17 cells are increased in these mice, rather than

decreased, because the reduction in IL-22 permits the

expansion of SFB, thereby promoting Th17 cells.102 As

recently demonstrated, the microbiome is one source of

tryptophan metabolites, and tryptophan metabolism by

Lactobacillus populations in mice produces indole-3-alde-

hyde, an aryl hydrocarbon receptor ligand that can

drive IL-22 expression.83 This is yet another proposed
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Figure 2. Microbial modulation of mucosal immunity. The intestinal

microbiome generates numerous signals, which impact the regulation

of intestinal mucosal immunity. The microbiome produces metabolic

by-products, such as butyrate and tryptophan catabolites, which can

enhance intestinal integrity and stimulate IL-22 production by group

3 ILCs, respectively. Certain members of the microbiome are known

to activate specific arms of intestinal immunity. SFB colonization of

the small bowel enhances Th17-mediated immunity, while coloniza-

tion by Clostridia from clusters IV and XIVa promotes the develop-

ment of regulatory T cells. Polysaccharide A, generated by

Bacteroides fragilis, is also capable of enhancing regulatory T-cell

activity in the gut. SFB, segmented filamentous bacteria; PSA, poly-

saccharide A; SCFAs, short-chain fatty acids; AHR, aryl hydrocarbon

receptor; ILC, innate lymphoid cell; IL-17, interleukin-17.
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mechanism of cross-talk between the microbiome and the

host that promotes a balance between inflammatory and

anti-inflammatory signalling and the overall maintenance

of mucosal homeostasis.

Gastrointestinal microbiome and regulation of
distal mucosal immunity

There is also increasing evidence that the gastrointestinal

mucosa, the predominant site of microbiome–host inter-
action, can also play a role in the development of

immune responses at distal mucosal sites. How might the

gastrointestinal tract regulate responses to inhaled aller-

gens or other antigens? The mucociliary architecture of

the nasopharyngeal cavity and upper airways naturally

sweeps all inhaled micro-particulates that stick to the

mucus lining into the gastrointestinal tract. Shortly after

intranasal inoculation or aerosol delivery, fluids, particles

and microbes introduced into the nasal cavity are largely

found in the gastrointestinal tract.103–105 In mice, intrana-

sal inoculation of a volume as small as 2�5 ml still largely

ends up in the gastrointestinal tract.104 Therefore, inhaled

micro-particulates and aerosols (which comprise the vast

majority of aeroallergens) are also swallowed. Using an

animal model of allergic airway disease, it has been

reported that 2 days after intranasal administration of

antigenic peptide, corresponding antigen-specific CD4

T-cell division had not only occurred in the lymph nodes

draining the lungs and nasopharyngeal cavity, but also in

the mesenteric lymph nodes.106 No division was seen in

peripheral non-draining nodes. In studies from our labo-

ratory, we have been able to demonstrate that perturba-

tion of the normal microbiome in mice can promote the

development of allergic airway disease following allergen

challenge.107,108 In other studies, oral delivery of various

Lactobacillus strains can modulate pulmonary inflamma-

tion in murine systems.109–111 Other studies have shown

that the microbiome composition can regulate the gener-

ation of virus-specific CD4 and CD8 T cells and antibody

responses following respiratory influenza virus infec-

tion.112 These observations, combined with our knowl-

edge of the mechanisms underlying the gastrointestinal

afferent and systemic efferent mechanisms of oral toler-

ance, support the concept that the gastrointestinal and

pulmonary mucosa both also respond to inhaled antigens

and generate cross-regulatory immunity. It remains to be

determined how these distal mucosal sites interact in gen-

erating mucosal immunity.

Concluding remarks

The maintenance of mucosal homeostasis is a delicate

balance between the host and the intestinal microbiome.

The host employs numerous mechanisms to contain the

intestinal microbiome and prevent the development of

inappropriate inflammation. At the same time, however,

the intestinal immune system requires microbial stimula-

tion for its proper development. Conversely, while certain

members of the microbiome can activate specific arms of

host mucosal immunity, these host responses often pre-

vent inappropriate overgrowth or translocation of mem-

bers of the microbiome. Additionally, microbiome-driven

host responses can also prevent the development of inap-

propriate inflammation. The end result is an equilibrium

state, where microbial stimulation promotes normal

immune function in the intestine, which in turn allows

the intestinal microbiome to flourish in the absence of

unnecessary inflammation. Further investigation of these

complex host–microbiome interactions will undoubtedly

reveal new mechanisms underlying the maintenance of

mucosal homeostasis and the development of inflamma-

tion in the intestines and distal mucosal sites.
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