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Summary

The importance of Fc-mediated effector function in protective immunity

to HIV-1 (hereafter referred to simply as HIV) is becoming increasingly

apparent. A large of number of studies in natural infection cohorts, span-

ning the last 26 years, have associated Fc-mediated effector function, par-

ticularly antibody-dependent cellular cytotoxicity, with a favourable

clinical course. These studies strongly suggest a role for Fc-mediated

effector function in the post-infection control of viraemia. More recently,

studies in both humans and non-human primates (NHPs) also implicate

Fc-mediated effector function in blocking HIV acquisition. Accordingly,

this review will discuss the results supporting a role of Fc-mediated effec-

tor function in both blocking acquisition and post-infection control of vi-

raemia. Parallel studies in NHPs and humans will be compared for

common themes. Context for this discussion will be provided by summa-

rizing the temporal emergence of key host and virological events over the

course of an untreated HIV infection framing where, when and how Fc-

mediated effector function might be protective. A hypothesis that Fc-med-

iated effector function protects primarily in the early stages of both acqui-

sition and post-infection control of viraemia will be developed.

Keywords: Fc-mediated effector function; HIV-1; monocytes; natural killer

cells; protective immunity.

Course of a typical untreated HIV infection

The course of HIV infection is shown in Fig. 1, which

depicts the classical pattern seen in untreated individuals.

The advent of potent anti-retroviral therapy dramatically

changed this course and deaths from uncontrolled infec-

tions are increasingly rare. The course is marked by two

major phases leading to AIDS. The first phase is acquisi-

tion that occurs during eclipse, which is the time from

exposure to HIV to the time of first detectable viraemia

(T0). The eclipse phase is approximately 10 days in HIV-

infected individuals.1 The precise time it takes HIV to

establish an irreversible foothold is unknown but the

outer bound is probably the point at which the latent

viral reservoir is established in resting memory CD4+ T

cells.2,3 This is known to occur as early as 10 days after

acute retroviral symptoms appear in humans.4 However,

studies using anti-retroviral post-exposure prophylaxis to

block infection of non-human primates (NHPs) with

simian immunodeficiency virus indicate that the reservoir

is established much earlier, between 24 and 72 hr post-

exposure,5 which places it significantly before T0.
1 Hence,

for Fc-mediated effector function to block acquisition it

must do so in this ‘window of opportunity’.

The second phase is post-infection control of viraemia,

which begins at T0 and continues until control is lost.

This phase can last for many years but it is dynamic in

both viral replication and host immune response. Before

turning to details of where, when and how Fc-mediated

effector function might block acquisition or contribute to

post-infection control of viraemia, it is useful to consider

the dynamics of viral replication, immune responses and

pathological changes in an untreated HIV infection. As

shown in Fig. 1, peripheral CD4+ T-cell counts are in the

normal range during the eclipse phase. HIV establishes a

local foothold at this time infecting CD4+ T cells and

Abbreviations: ADCC, antibody-mediated cellular cytotoxicity; NHPs, non-human primates; ADCVI, antibody-dependent cellular
viral inhibition; b12-LALA, mAb b12 with L to A mutations at residues 234–235
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perhaps other CD4+ cells, such as dendritic cells and

monocytes, setting the stage for exponential growth that

continues for approximately 6 weeks to peak viraemia.

Exponential viral growth is followed by a sharp exponen-

tial decline to the viral set-point, which can be stable for

many years. Circulating CD4+ T cells are depleted pro-

gressively during the exponential phase with a nadir

around peak viraemia, followed by a rebound during the

exponential decline as the HIV comes under immunologi-

cal control. Some individuals manifest an acute retroviral

syndrome during the burst of early viraemia indicated by

mononucleosis-like symptoms, which disappear as the

virus is brought under control. As the CD4+ T cells

rebound and viraemia exponentially decreases, a phase of

clinical latency is entered that can last for many years,

although there is continuous steady-state viral replication

and accumulating damage to the immune system6–9 even

in individuals who control their infections without ther-

apy.10 The clinical latency phase is characterized by a slow

decline in circulating CD4+ T cells. As CD4+ T cells

decline during this phase, there is an expansion of acti-

vated CD8+ T cells, maintaining homeostatic numbers of

total CD3+ T cells (reviewed in ref. 11). Eventually, con-

trol of the virus is lost leading to increasing viraemia,

sharply increased losses of all CD3+ T cells, and AIDS-

defining symptoms. Failure of T-cell homeostasis occurs

around 18 months before the appearance of AIDS-defin-

ing conditions.12 This failure is signalled by an inflection

point in the curve quantifying total circulating CD3+ T

cells over time as indicated in Fig. 1.12 During this

period, there is a catastrophic loss of secondary lymphoid

architecture due to fibrosis.6,9,13–15 This is due to progres-

sive collagen accumulation in secondary lymphoid tissues

that begins early in infection and continues until lympho-

cyte homeostasis fails (Fig. 1 and refs 7,9,14,15).

Although these pathological changes occur over many

years, studies in NHPs show that immunological16–19 and

anti-retroviral interventions5 very early in infection have

lasting and profound effects on post-infection control of

viraemia, even if the intervention is transient.5,16,17 This is

also consistent with the relationship between peak vira-

emia early in HIV infection and viral set-point later in

infection.20 Therefore, the discussion will focus on the

Fiebig stages that define early infection,1 shown in Fig. 2.

Fiebig stages

Several recent reviews,21–23 paint an increasingly clear pic-

ture of the immunological and pathological events

that occur sequentially in the Fiebig stages1 shown in

Fig. 2. The discussion will further map the appearance of

Fc-mediated effector function in this scheme with empha-

sis where, when and how it might contribute to blocking

acquisition and post-infection control of viraemia. Fiebig

stages1 were defined initially by diagnostic measurements

such as plasma viraemia and seroconversion as shown in

Fig. 2. Intensive characterization of acute infection

cohorts enables further mapping of virological and

immunological events in Fiebig stages (reviewed in refs

21–23). Figure 2 provides an update of the information
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Figure 1. A depiction of the typical course of untreated HIV infection from acquisition to the development of AIDS. General clinical signs and

symptoms are shown in addition to key pathological processes leading to failure of lymphocyte homeostasis followed by AIDS and death. This

figure is modelled on figures in ref. 21.

ª 2013 John Wiley & Sons Ltd, Immunology, 142, 46–57 47

HIV specific Fc-mediated effector function



originally summarized in the figures of reference21 with

information on the emergence of Fc-mediated effector

functions during acute infection that probably contribute

to post-infection control of viraemia later on.24–27 Addi-

tionally, the eclipse phase and early Fiebig stages provide

the context for discussion of how Fc-mediated effector

function might block acquisition.

As shown in Fig. 2, the first 10 days following infection

defines the eclipse phase where there are no systemic vi-

rological signs that specifically indicate HIV infection.1 As

indicated above, the first 24 to 72 hr after exposure

includes the window of opportunity when acquisition can

be blocked.5 Its outer limit is establishment of the resting

memory CD4+ T-cell reservoir, which no known inter-

vention has depleted (reviewed in ref. 28).

After eclipse, the first specific laboratory sign of HIV

infection is plasma viraemia (T0), which occurs approxi-

mately 10 days after exposure.1 This defines Fiebig Stage

I, which also includes much of the exponential increase

in viraemia. Symptoms of acute retroviral syndrome can

also appear at this stage but they are not pathognomonic.

Detection of the capsid protein, p24, in the circulation

defines Fiebig Stage II that also includes the upper part of

the exponential virus load curve. Appearance of the first

anti-HIV antibodies, determined by ELISA using whole

viral lysates, defines Fiebig Stage III around day 20 post-

exposure or day 10 post-T0. This stage spans the first part

of peak viraemia and symptoms of acute retroviral syn-

drome can be present. Fiebig Stage IV occurs during the

second part of peak viraemia. It is defined by an indeter-

minate Western blot in which antibodies react with a

minority of bands. Fiebig Stages III and IV occur when

HIV is starting to be controlled, which continues in to

Stages V and VI. Fiebig Stage V is defined by antibodies

that react with all bands on a Western blot except for

p31. It also includes the exponential decline of plasma vi-

raemia. The temporal association between the appearance

of antibodies and exponential decline in plasma viraemia

indicates that immunological control is coming to the

fore,1 although the protective capacity of these antibodies

has been questioned.29 Fiebig Stage VI is defined by anti-

bodies that react will all bands on a Western blot and

when plasma viraemia reaches early set-point. The first

four stages are approximately 5 days each in duration

whereas Stage V lasts for 69 days. Stage VI duration is

indeterminate and can last for many years until immuno-

logical control fails (Fig. 1). The temporal appearance of

functional responses in relation to viral dynamics pro-

vides important clues about the mechanisms of immuno-

logical control. In this regard, it is also possible to
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discriminate between recent and chronic infections in Fie-

big Stage VI using a sensitive/less-sensitive algorithm that

employs a standard HIV ELISA (sensitive) and a ‘detuned

HIV ELISA’ (less sensitive) that detects increasing anti-

body titres that emerge early after infection.30 Hence, the

detuned ELISA can discriminate individuals in the early

part of Fiebig Stage VI who were recently infected versus

those who are chronically infected.

More recent studies show that increased levels of acute-

phase proteins, such as serum amyloid precursor A, are

elevated as early as the eclipse phase but wane around

day 20 post-T0.
31 A cytokine storm follows beginning

6 days after T0 in Fiebig Stage II, waning around day 20

post-T0.
32 Immune complexes of HIV with either IgM or

IgG appear at day 8 post-T0 and become undetectable

around day 20 post-T0. Free IgG non-neutralizing anti-

bodies to gp41 appear 13 days after T0, early in Fiebig

Stage IV.29 Free IgG non-neutralizing antibodies appear

28 days after T0, midway in Fiebig Stage IV.29 Autologous

neutralizing antibodies appear approximately at day 82

post-T0, late in Fiebig Stage V, followed by neutralization

insensitive viral variants around 10 days later, apparently

selected by neutralization pressure (reviewed in ref. 21).

These antibodies are narrowly specific for autologous

virus with neutralization breadth increasing slowly over

time thereafter.33 Hence, there is a 55-day window

between the appearance of the first free IgG antibodies

that bind to gp41 or gp120 and the emergence of nar-

rowly specific neutralizing antibodies.21 By contrast, the

first CD8+ cytotoxic T-lymphocyte (CTL) responses

appear at the beginning of Fiebig Stage III, around day

20, followed by the emergence of CTL escape viruses

10 days later at the beginning of Fiebig Stage V, suggest-

ing that these responses exert immunological pressure on

the virus (reviewed in ref. 21). Because there is a 60-day

lag between the CD8+ CTL response and neutralizing

antibody response, it has been widely accepted that post-

infection control of viraemia is largely due to CTLs. This

conclusion is also supported by CD8 depletion studies in

NHPs.34,35 By contrast, in acutely HIV-infected individu-

als, there is evidence that antibody-mediated cellular cyto-

toxicity (ADCC) responses appear around day 36 post-T0,

at the beginning of Fiebig Stage V, and that these

responses correlate inversely with viral load.24 This is

approximately 23 days after the appearance of free non-

neutralizing anti-gp41 antibodies and 8 days after the

appearance of free non-neutralizing anti-gp120 antibod-

ies. In a more recent study, ADCC responses can induce

epitope-specific escape mutations as early as 50 days after

T0.
26 Taken together, these studies suggest that the first

functional antibody responses to Env appear almost con-

comitantly with binding antibodies, which is approxi-

mately 50 days before the emergence of the first

detectable neutralizing antibodies against autologous

viruses.

HIV acquisition phase

It goes without saying that antibodies must be present at

the time of acquisition to block it and this can only be

accomplished by active or passive immunization. In

recent years, a good picture of the early events during

acquisition after vaginal exposure has emerged (reviewed

in refs 21,22,36,37). Figure 3 summarizes the virological

events that occur during the eclipse phase where the ‘win-

dow of opportunity’ is key for blocking acquisition. Pas-

sive immunization studies in NHPs using neutralizing

antibodies suggest that the window of opportunity is

24 hr at most.38,39 Transmission across the mucosal epi-

thelium is thought to occur within hours of exposure and

results in infectious virus reaching susceptible CD4+ tar-

get cells. Transmission across the mucosal barrier can be

passive through epithelial breaks but an active transport

mechanism is also known.40 The nature of the first

infected type of CD4+ cell has been debated over the

years but recent acute transmission studies strongly sug-

gest that it is a CD4+ CCR5+ memory T cell.41,42 Strik-

ingly, most HIV infections are due to a single founder

virus,42 which is also true for model AIDS viruses in

NHPs.41 It takes approximately 24 hr for an infected

CD4+ cell to produce infectious virus,43 so it is likely that

the earliest time that HIV can start to spread to other

CD4+ CCR5+ T cells is within the first 24–28 hr, a small

number of local infected founder cells 2–3 days after

exposure44,45 (Fig. 3). Local expansion of the infected

founder cells occurs around days 4 to 5 post-expo-

sure,44,45 likely aided by an innate response of the muco-

sal epithelium that attracts additional target cells to the

site (ref. 46 and discussed in ref. 36). Virus or virus-

infected cells from the local expansion spread via afferent

lymphatics to the draining lymph node, which is rich in

additional CD4+ CCR5+ target cells. From there, virus

and infected cells spread systemically via the thoracic duct

leading to distal and propagating infections in the gut

and spleen by haematogenous flow and finally back to

lymph nodes. Once the infection spreads from the local

focus, it is very likely that the window of opportunity is

closed because of the establishment of viral reservoirs and

protective niches in distal tissues. The systemic spread of

infection ultimately leads to plasma viral loads that cross

the 100 copy limit of sensitivity (i.e. T0) around day 10

and exponential expansion of infection during Fiebig

Stage 1 (Fig. 2). At this point, the infection is established

systemically and comes under immunological control in

Fiebig Stage IV. It remains under control until accumu-

lated damage to lymphoid architecture leads to failure of

lymphocyte homeostasis and AIDS.

Now that the key immunological and virological mile-

stones during HIV acquisition and post-infection control

have been laid out, the evidence implicating Fc-mediated

effector function in protection in each of these phases will
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be considered. Although acquisition must occur first for

there to be post-infection control, the discussion will

begin with post-infection control because it provides the

earliest and the most comprehensive indication that Fc-

mediated effector function contributes to protective

immunity to HIV. Details of Fc-receptor expression on

various effector populations and binding to distinct IgG

subclasses will not be discussed except in the context of

specific examples because several excellent reviews deal

with these subjects.47–49 Instead, the primary focus will be

on the evidence that Fc-mediated effector function con-

tributes to blocking acquisition or post-infection control

of viraemia.

Role of Fc-mediated effector function in post-
infection control of viraemia

The first point at which Fc-mediated effector function

might contribute to post-infection control is around day

8 post-T0 when immune complexes of HIV with IgM and

IgG appear in the circulation.29 The coincident appear-

ance of IgM and IgG antibodies in immune complexes so

early after infection is surprising. Either immunoglobulin

class switching is occurring rapidly or the immune com-

plexes are between virions and naturally occurring

‘innate’ antibodies specific for HIV.50 Regardless of how

the antibodies arise, there is evidence that naturally

occurring IgM can neutralize HIV, although this does not

require Fc-mediated effector function.50 There is also evi-

dence that both neutralizing and non-neutralizing IgG

can inhibit infection of macrophages (Mph) and imma-

ture monocyte-derived dendritic cells by an Fc-receptor

dependent mechanism.51–53 Inhibition of macrophage

infection was mediated by FccR1,51,52 whereas inhibition

of immature monocyte-derived dendritic cell infection

was mediated by FccRIIa.53 It is not clear the degree to

which this inhibition involves phagocytosis (reviewed in

refs 54,55), but phagocytosis has been implicated indi-

rectly in the passive protection of rhesus macaques

against a vaginal challenge with SHIV162p3.17 It is possi-

ble that it is responsible for the disappearance of virion–
antibody complexes from the circulation around day 20

post-T0. If so, it will occur at systemic sites because HIV

has spread to secondary lymphoid tissues by this time

(Fig. 3). Although the first stage in infection when HIV-

specific phagocytosis occurs is unclear, the frequency of

FccR1+ myeloid dendritic cells and the intensity of FccR1
expression on monocytes is increased in Fiebig Stages IV

and V compared with later stages.27 consistent with a role

for phagocytosis in the disappearance of virion–IgG com-

plexes in Fiebig Stage IV.27 This hypothesis is supported

by the finding that phagocytosis by both monocytes and

dendritic cells is increased in acute infection and

impaired in chronic infection.27 The impairment in

chronic infection was tightly associated with down-regula-

tion of FccR2a and FccR3a on monocytes and dendritic

cells.27 The expansion of circulating natural killer cells

expressing FccR3 in Fiebig Stages II and III,56 immedi-

ately before or at the beginning of seroconversion, sug-

gests that ADCC responses might occur concomitant with
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emergence of free IgG antibodies to gp41 and gp120. The

involvement of Fc-mediated effector function before Fie-

big Stage V where ADCC responses are first detect-

able24,26 is hypothetical and based on indirect indications.

This hypothesis can be tested readily with infection mod-

els in NHPs where effector cells and antibodies can be

quantified at defined times post-infection.

Despite the uncertainty about the role of Fc-mediated

effector function in acute infection, a large body of data

has accumulated over the years demonstrating correla-

tions between clinical outcome and ADCC titres in HIV-

infected individuals. These studies are summarized in

Table 1. The earliest report of a correlation between

ADCC titres and clinical stage appeared in 198757 and

studies with similar conclusions continue to appear up to

the time of writing.58 Of the 19 studies listed in Table 1,

three failed to detect correlations between ADCC and

clinical outcomes whereas the other 16 reported correla-

tions between ADCC and positive clinical outcomes. Fur-

ther, the negative studies were in the early years of the

epidemic when methodology was more challenging. The

15 positive studies, spanning 26 years and involving dif-

ferent cohorts and methods, provide compelling support

for the involvement of Fc-mediated effector function,

particularly ADCC, and post-infection control of HIV.

This conclusion is supported also by similar studies in

NHPs, although they are fewer in number. The first NHP

study, which appeared in 2002, reported an inverse corre-

lation between ADCC titres and progression to simian

AIDS in the simian immunodeficiency virus model of

infection.59 A second study appeared in 2011 and

reported similar conclusions in the same model.60 A third

study reported an inverse correlation between another

Fc-mediated effector function, antibody-dependent cellu-

lar viral inhibition (ADCVI),24,61 which has elements

similar to ADCC, and viral control.62 Collectively, studies

in both HIV-infected individuals and simian immunode-

ficiency virus-infected rhesus macaques strongly support

a role for Fc-mediated effector function, and ADCC in

particular, in post-infection control of viraemia. If these

correlations are causal, they raise the questions of where,

when and how do these responses most influence post-

infection control?

If Fc-mediated protection exerts immune pressure, its

largest influence is likely to be early in secondary lym-

phoid tissues at the sites of HIV replication during Fiebig

Stage V and early in Fiebig Stage VI. As pointed out

above, early transient anti-retroviral5 and immunological

interventions16–19 have lasting effects on post-infection

control of viraemia, persisting long after the interven-

tions5,16,17,19 are no longer present. At this point, it is

important to recognize that Fc-mediated effector function

Table 1. Studies implicating Fc-mediated effector function and post-infection control of viraemia

Year Cohort Results References

1 1987 Healthy seropositives, AIDS with Kaposi’s

sarcoma and/or opportunistic infections

Higher ADCC titres in healthy seropositives 57

2 1987 HIV-infected individuals at all stages of infection Higher ADCC titres earlier stages of infection 99

3 1988 HIV-infected men Higher ADCC titres in controllers 100

4 1989 HIV-infected men,

MACS cohort

No correlation between ADCC titres and slow progression. 101

5 1990 HIV-infected children with and without AIDS Higher ADCC titres correlated inversely with progression 102

6 1990 HIV-infected men, MACS cohort Higher ADCC titres earlier stages of infection. 103

7 1990 HIV-infected haemophiliacs No correlation between ADCC titres and progression 104

8 1993 HIV-infected children with and without AIDS Higher ADCC titres correlated inversely with progression 105

9 1994 Perinatal transmission cohort No correlation between ADCC titres and transmission 106

10 1994 HIV-infected individuals with high, intermediate,

and low CD4+ T-cell counts

Inverse relationship between ADCC titres and CD4+

T-cell counts

107

11 1999 Perinatal transmission cohort Higher ADCC titres were associated with

lower progression in infected children

108

12 2001 HIV-infected individuals at different stages of disease Inverse correlation between ADCC titres and progression 109

13 2001 HIV-infected individuals at different stages of disease Inverse correlation between ADCC titres and viral load 110

14 2001 Acute infection cohort Inverse correlation between ADCC titres and with one load 24

15 2004 HIV-infected women DATRI-009 Protocol Higher ADCC titres in cervicovaginal lavage correlated

with lower local viral loads

111

16 2011 HIV-infected adults Apparent ADCC-mediated escape at specific epitopes 26

17 2011 HIV-infected adults Inverse correlation with gp140-specific ADCC and progression 112

18 2013 HIV-infected adults Correlation between ADCC epitope breadth and

slower progression

58

19 2013 HIV-infected controllers Higher ADCC, lower viral loads 113
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in vivo requires two partners, an appropriate antibody

and a functional effector cell. The studies outlined in

Table 1 evaluated antibodies for ADCC activity using

effector cells from uninfected individuals. Although posi-

tive correlations between ADCC titres and favourable

clinical pictures were found, these studies do not speak to

Fc-mediated effector function in the HIV-infected sub-

jects because they did not examine autologous effector

cells. As stated above, there is an early increase in effector

cells early in infection accompanied by increased phago-

cytic activity.27 However, phagocytosis27 and natural

killer-mediated ADCC63 are profoundly depressed during

progressive HIV infection. Hence, for these effector func-

tions to impact the post-infection control of HIV, it is

likely to be early infection where both partners are pres-

ent. In summary, these studies strongly implicate Fc-med-

iated effector function in post-infection control of HIV.

Further, they indicate that their efficacy is likely to be

early infection, in Fiebig Stages V and VI, because both

functional effector cells as well as appropriate antibodies

must be present and autologous effector cell function

wanes during chronic infection. Although the evidence is

indirect, the effector mechanisms probably include

ADCC, ADCVI and phagocytosis.

Role of Fc-mediated effector function in blocking
HIV acquisition

Susceptibility of the acquisition phase to abrogation is

established unequivocally by the CAPRISA 009 microbi-

cide trial in at-risk women64 and by the pre-exposure

prophylaxis (PREP) trial in men who have sex with

men.65 Both studies employed reverse transcriptase inhib-

itors, which prevent viral replication at a post-entry step.

Hence, the protection against acquisition by these drugs

must occur very early in the eclipse phase (Fig. 3), most

likely either preventing a productive infection of the ini-

tial CD4+ CCR5+ T cell or possibly abrogating establish-

ment of a small local founder population. These studies

suggest that the ‘window of opportunity’ for blocking

acquisition is around 3 days post-exposure (Fig. 3), con-

sistent with similar studies in NHPs.5 The window of

opportunity is also framed by passive immunization stud-

ies in NHPs where transfer of protective neutralizing anti-

bodies 24 hr after infection fails to prevent infection as

mentioned above.38,39

A salient feature of HIV transmission is the low proba-

bility of infection per exposure. Approximately 70% of

HIV acquisitions worldwide are via heterosexual sex

where the frequency of transmission per coital event

ranges from 1/200 to 1/3000, which is probably the lower

boundary (reviewed in refs 23,66). It is also well estab-

lished that there is a direct relationship between high viral

loads and transmission probability.67 Despite this rela-

tionship, as indicated above, 75% of infections are by a

single variant.68 Hence, the challenge for blocking of

acquisition immunologically becomes one of inhibiting

productive infection of a small number of cells by a small

number of virions at local mucosal sites within the first

3 days following exposure.

Passive immunization studies in NHPs have established

unequivocally that neutralization is a key mechanism of

protection against infection with model AIDS viruses

such as SHIV162p3.16,69 By contrast, the role of Fc-medi-

ated effector function in blocking acquisition is indirect

and more controversial.70,71 Two seminal passive immu-

nization studies in NHPs employing the neutralizing

monoclonal antibody (mAb), b12, point toward a role of

Fc-mediated effector function in protection against both

high-dose70 and low-dose71 vaginal challenges with

SHIV162p3. Groups received either wild-type b12 capable

of both neutralization and Fc-mediated effector function

or b12-LALA, in which Fc-mediated effector function,

but not neutralization, was abrogated by L to A muta-

tions at residues 234 and 235 in the CH2 domain of IgG1

(b12-LALA). In both models, protection against

SHIV162p3 decreased by approximately 50% for b12-

LALA. These are the only passive immunization studies

to date unambiguously indicating a role of Fc-mediated

effector function in blocking acquisition. The contribut-

ing effector function is not known because b12-LALA is

incapable of ADCC, ADCVI and phagocytosis. Further,

b12 variants with improved Fc receptor binding and bio-

logical function did not increase protection in this model,

although vaginal mAb levels might not have been optimal

to reveal enhanced protection at the times of challenge.72

Hence the precise role of Fc-mediated effector function in

blocking acquisition in this model is unknown. There is

no evidence that passive immunization with non-neutral-

izing mAbs can block acquisition by Fc-mediated effector

function.

By contrast, a recent study suggested that passive

immunization using non-neutralizing antibodies with

potent Fc-mediated effector function can increase post-

infection control of viraemia.17 That study reported statis-

tically significant post-infection control against a vaginal

challenge with SHIV162p3 using a mixture of two non-

neutralizing anti-gp41 mAbs specific for its principal im-

munodominant domain.17 These mAbs were vetted by an

algorithm assigning weights based on their abilities to

neutralize, mediate ADCC, block infection of monocyte-

derived macrophages, bind Fc receptors on cell surfaces

and capture free virions. They were compared with a

mixture of mAbs that neutralize as well as mediating one

or more of these effector functions. The neutralizing mAb

mixture prevented acquisition whereas the non-neutraliz-

ing mAb mixture did not. On the other hand, this mix-

ture afforded post-infection control of viraemia,

suggesting that Fc-mediated effector function contributes

to this type of protection. Similar results were reported
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for another antibody specific for the immunodominant

region of gp41 but no functional data other than virus

capture was provided in that study.16 Post-infection con-

trol is also a common finding for neutralizing mAbs used

at doses insufficient to block acquisition (summarized in

ref. 19).

Given that the in vivo half-lives of mAbs are short, typ-

ically ranging from 3 days to 2 weeks, they must exert

their activities early after passive immunization as post-

infection control by Fiebig Stage VI.19 The short-term

effect probably is to protect components of the immune

system early in infection such that they can mature and

mediate post-infection control after mAb decay. This pos-

sibility is supported by studies in mice showing that NK-

mediated lysis of target cells expressing a foreign antigen

early in the immune response results in strong CD4+ T

cell, CD8+ T cell and antibody responses downstream to

release of the foreign antigen.73 It is reasonable to expect

that a similar phenomenon would follow ADCC-induced

lysis of target cells early in infection. This form of Fc-

mediated protection would be most important in limiting

the expansion of the local founder population or perhaps

decreasing systemic viral spread (Fig. 3). Correlations

have been reported repeatedly between ADCC or ADCVI

and post-infection control in vaccinated NHPs,74–78 sup-

porting this possibility. Despite the repeated correlations

between Fc-mediated effector function and post-infection

control in both active and passive immunization studies

in NHPs, no study shows that passive immunization with

a non-neutralizing mAb can block acquisition. Until a

definitive passive immunization study employing a non-

neutralizing antibody with Fc-mediated effector function,

including an attenuated LALA variant as a negative con-

trol, either rules this possibility in or out, the field is left

with correlations.

Two recent NHP vaccine studies report an inverse cor-

relation between reduced acquisition and ADCC ti-

tres.79,80 In addition to the NHP studies, increasingly

solid support indicating a role of Fc-mediated protection

in preventing acquisition is developing from studies of

infected and vaccinated humans. A recent study in HIV-

infected mothers with high viral loads showed an inverse

correlation between ADCC titres in breast milk and

probability of transmission to their infants.81 No such

correlation was found for neutralization.81 The earliest

vaccine study reported an inverse correlation between

ADCVI titres and risk of infection in a subgroup of vac-

cines in the VAX004 Phase III efficacy trial, although no

overall protection was observed.82 This was followed by

the RV144 trial in which modest overall efficacy of 31%

was observed83 although subsequent analysis showed that

efficacy was as high as 60�5% in the first year of the

study,84 which is consistent with the known short half-

life of anti-Env antibodies (discussed in ref. 85). ADCC

emerged as a correlate of reduced infection risk for

vaccinees in the lower two-thirds of titre range for IgA

antibodies specific for a C1 peptide,86 raising the possi-

bility that the IgA antibodies competitively inhibited

ADCC by IgG in the upper third of the IgA responses.

The ability of IgA mAbs isolated from RV144 vacci-

nees,87 a specific highly conserved ADCC epitope recog-

nized by the A32 mAb,88 to block ADCC mediated by

matched IgG1 mAbs specific for the same epitope was

confirmed recently.89 This suggests that vaccine-elicited

antibodies to this epitope region contribute to decreased

infection risk in RV144. This epitope region is not a

neutralization target,26,90 although it is a very potent

ADCC target.88,90 As shown in Fig. 4(d), mutagenesis

studies have mapped the A32 epitope region to the C1

segment of gp120 involving mobile layers one and

two,91,92 which we have confirmed and extended by

mutagenesis and X-ray crystallography (in preparation).

The importance of this region in protective immunity

mediated by ADCC is supported by studies in natural

infection and the RV144 trial.

Importance of the A32 epitope region in natural infec-

tion is indicated by the ability of A32 Fab fragments to

inhibit ADCC in most infected individuals.88 It is also

indicated by recognition of C1 peptides by polyclonal

antibodies from infected individuals that mediate

ADCC88,93 (Fig. 4(e,f) and isolation of A32-like mAbs

that mediate potent ADCC from infected individuals.90

Importantly, the A32 epitope region is also a target of

ADCC-mediated viral escape early in infection26 (Fig. 4f).

With respect to acquisition, the A32 epitope region has

been implicated as a target of antibodies that mediate

ADCC, which correlate with reduced infection risk in

RV144.86,89 The structural details of the A32 epitope

region will be described in another report (in prepara-

tion) but the key point for this discussion is its identifica-

tion by four independent groups as a potent ADCC

target in infected individuals26,88,90,93 and that it appears

to be a target of protective antibodies in the RV144

trial.86,87,89 Collectively, these findings strongly point

toward the importance of ADCC responses to the A32

epitope region in both blocking acquisition and in post-

infection control of viraemia, raising the questions of

where, when and how this happens.

If these responses are important in blocking acquisi-

tion, they must occur before the establishment of the

latent viral reservoir, which is likely to be in the first

3 days post-exposure when the small, infected founder

population is established and expanded locally (Fig. 3).

ADCC cannot come in to play until a CD4+ CCR5+ T

cell has either bound an entering virion90 or become

infected and is budding virions,88 which is at a sub-

mucosal site and in the first or second day following

exposure. It is paradoxical that the A32 epitope region is

a potent ADCC target. This region is typically buried in

the native Env trimer,91 becoming exposed as an ADCC
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target only during cell-to-cell fusion94,95 or viral entry.90

However, there is sound evidence that this epitope can be

exposed on Env expressed on infected CD4+ target cells,

either by interaction with cell surface CD4 or constitu-

tively for certain viral isolates, including the A/E Env tar-

geted in the RV144 trial (ref 88 and A.L. DeVico,

personal communication). These observations inform the

questions of when and where but the how is more diffi-

cult. This is because a wide variety of cell types mediate

ADCC, including natural killer cells, monocytes/macro-

phages, myeloid dendritic cells, cd T cells and neutrophils

(reviewed in refs 96,97) but little is known about their

presence and activity at local sites during mucosal HIV

acquisition. Additionally, effector cell phenotype is likely

to vary with the mucosal tissue and it is also likely to be

affected by ongoing, local innate immune responses as

well as by the innate epithelial cell response when HIV

crosses mucosal epithelia.98

Conclusion

The large body of data discussed above strongly suggests

that Fc-mediated effector function plays a role in blocking

HIV acquisition and in post-infection control of viraemia.

This picture has emerged over the 27 years since the first

report that healthy seropositive individuals had greater

ADCC titres than individuals with AIDS.57 Although not

all studies support these two conclusions (Table 1), the

body of supporting literature is impressive, particularly for

post-infection control of viraemia. However, with two

exceptions,70,71 the studies implicating a role for Fc-medi-

ated effector function in blocking acquisition are correla-

tive. The same is true for post-infection control of

viraemia. Causality will be difficult to evaluate directly in

humans but it can be tested by passive immunization

studies in NHPs. To date, two independent studies using

non-neutralizing mAbs specific for the immunodominant

Inner domain(a) (b) (c)

(d) (e) (f) (g)

Outer domain

Mobile layer 1

Mobile layer 2

Mobile layer 3

Figure 4. The A32 epitope region in gp120 C1 that is implicated as a dominant antibody-mediated cellular cytotoxicity (ADCC) target of non-

neutralizing antibodies implicated in protection against HIV. (a) The inner (grey) and outer domains (bronze) of gp120 from PDB:3JW0.91 (b)

gp120 rotated to show inner domain mobile layers 1 (yellow), 2 (green) and 3 (cyan).91 (c) Mobile layers 1, 2 and 3 with the outer domain of

gp120 removed for clarity. (d) Point mutations (red) in mobile layers 1 and 2 that alter binding of monoclonal antibody A32 to gp120.92 (e)

Peptides (red) in mobile layers 1 and 2 that are ADCC targets in a Thai HIV cohort.93 (f) Peptides (red) in mobile layers 1 and 2 that are ADCC

targets in an Australian HIV cohort.26 The purple residues in mobile layer 2 are sites of ADCC escape.26 (g) Peptide (red) recognized by RV144

IgA antibodies that inhibit ADCC mediated by RV144 IgG antibodies to the A32 epitope region.86,87,89
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domain of gp41 have failed to demonstrate a role for

Fc-mediated effector function in blocking vaginal chal-

lenges with high doses of SHIV162p3.16,17 In both of those

studies, comparable doses of neutralizing mAbs blocked

acquisition. Further, improved Fc-mediated effector func-

tion of mAb b12 did not increase its ability to protect

against low-dose challenges with SHIV162p3.72 Hence, cau-

sality was not established for blocking acquisition in these

studies. However, the two earlier studies suggesting that

Fc-mediated effector function contributes to blocking of

acquisition by the neutralizing mAb b12,70,71 leaves the

question open.

By contrast, post-infection control of viraemia was

observed in the two passive immunization studies using

non-neutralizing anti-gp41 mAbs.16,17 Both anti-gp41

mAbs used in one study17 were active in ADCC and

Fc-dependent inhibition of viral replication in macrophag-

es, though they were non-neutralizing in conventional neu-

tralization assays. Taken together, these two studies

strongly support a role of Fc-mediated effector function in

the post-infection control of viraemia. They also suggest

that the protective effect is at a very early step in infection

as postulated above. Future studies of a role for Fc-medi-

ated effector function in blocking acquisition and post-

infection control would benefit greatly from a better under-

standing of the effector cells extant at the local site of virus

entry, the innate epithelial cell response to virus, and the

impact of non-neutralizing mAbs with potent Fc-mediated

effector function on early viral dynamics and escape. Char-

acterization of these variables using the approaches

reviewed in references 6,36,37 for post-infection control of

viraemia mediated by non-neutralizing mAbs, should

inform the design of more definitive passive immunization

studies to resolve the controversy of whether Fc-mediated

effector function plays a role in the blocking of acquisition.
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