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Abstract: We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that 
combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) 
and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training 
data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes 
the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject 
of interest and attenuation maps (µ-maps) were generated by assigning specific linear attenuation coefficients 
(LACs) to each tissue class. The µ-maps generated with this “Atlas-T1w-DUTE” approach were compared to those ob-
tained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented 
CT µ-maps were considered to the “silver standard”; the segmentation accuracy was assessed qualitatively and 
quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the 
CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of 
the reconstruction results. The µ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived 
from CT; the mean DSCs for the Atlas-T1w-DUTE-based µ-maps across all subjects were higher than those for DUTE-
based µ-maps; the atlas-based µ-maps also showed a lower percentage of misclassified voxels across all subjects. 
RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE 
method, both globally as well as regionally.
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Introduction

Integrated PET/MR is an area of rapidly growing 
interest in the medical imaging community. 
Combined systems capable of simultaneous 
data acquisition, in particular, offer a number 
of advantages over imaging subjects on sepa-
rate scanners: quantitative PET data and high 
resolution structural and functional MRI are 
automatically co-registered, PET data can be 
motion corrected using spatial information 
derived from MR [1], and temporal correlation 
between the MR and PET signals may provide 
greater insight into biological function in health 
and disease [2, 3]. Several simultaneous PET/

MR systems have been developed and tested 
for human imaging [4, 5]. These scanners, how-
ever, lack an integrated transmission source or 
CT system due to spatial constraints, and there-
fore a critical challenge in employing them for 
quantitative PET imaging is developing an accu-
rate attenuation correction (AC) method that 
relies solely on the MR data.

MR-based AC is challenging because unlike the 
Hounsfield Units (HU) of CT data, the intensity 
values of MRI are a function of proton density 
and tissue relaxation times, which are not 
directly related to the linear attenuation coeffi-
cients (LACs) that characterize 511 keV photon 
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attenuation in PET. Voxel-wise maps of LACs 
(µ-maps), however, have been obtained by 
assigning the appropriate LAC to each tissue 
class (air, soft tissue, or bone) segmented from 
MRI data. MRI segmentation is an advanced 
field, but nearly all algorithms are designed to 
segment structures or tissue types within the 
brain (i.e. white matter, gray matter, etc.) [6-8]. 
Segmentation of MRI into air, soft tissue, and 
bone is difficult since there is almost no signal 
from bone or from air when using conventional 
MR sequences and they both appear dark on 
the MR images. Distinguishing the two is cru-
cial, however, since they have the largest differ-
ence in LACs. Furthermore, the state-of-the-art 
integrated MR-PET systems have long axial 
fields of view (e.g. 19.25 and 25.8 cm in the 
case of the Siemens BrainPET prototype and 
Biograph mMR scanners, respectively), acquire 
emission data in 3D mode which means that 
numerous lines of response (LORs) pass 
through internal air spaces such as the frontal, 
nasal, maxillary and mastoid sinuses [9].

Earlier AC methods did not attempt to segment 
the internal air cavities [10-12]. Instead, they 
manually fitted an ellipse to the head, estimat-
ed the contour of the head or generated a 
rough approximation of the skull through fil-
tered back-projection of the reciprocal sino-
gram. Zaidi et al. [13] proposed a method to 
obtain µ-maps from MRI by segmenting the 
skull and nasal air spaces using a fuzzy cluster-
ing technique. This method, however, required 
manual intervention for accurate delineation of 
the skull and resulted in statistically significant 
overestimation of regional cerebral glucose 
metabolism in multiple regions of interest 
(ROIs). Atlas-based methods for AC have also 
been investigated, but current techniques rely 
heavily [14] or entirely [15] on local anatomical 
information represented by the atlas and there-
fore may not generalize well to all subjects, 
especially patients who have undergone neuro-
surgical procedures or have substantial pathol-
ogy. These techniques are also highly sensitive 
to registration errors between the atlas and the 
subject of interest.

Methods for obtaining MR-based µ-maps exclu-
sively from DUTE sequences have previously 
been proposed [9, 16]. In those approaches, 
optimal MR acquisition parameters and alge-
braic combination of the DUTE volumes 
obtained at the two echo times allowed air and 

bone voxels to be readily distinguished. 
Subsequently, a Dixon sequence was proposed 
in addition to the DUTE data to also allow the 
segmentation of fat tissue [17]. While these 
techniques produced good overall agreement 
with segmented CT data, there were still mis-
classified voxels in some regions of the brain 
(e.g. ventricles), the skull thickness was under-
estimated and substantial errors still remained 
in the sinus region, which may bias PET results 
in adjacent structures. In Poynton et al. [18] an 
atlas-based approach for bone segmentation 
of T1-weighted (T1w) structural MPRAGE MRI 
was presented, which showed promising agree-
ment with CT, but did not apply the method to 
PET AC and used a two class, binomial model 
for constructing the atlas.

To address the limitations of the segmentation-
based approaches, a method to derive substi-
tute CTs from the MR data acquired using two 
DUTE sequences with different flip angles and 
a T2-weighted SPACE sequence was suggested 
[19]. Using a Gaussian mixture regression 
model, the intensities in the MR images were 
linked to the HUs in the corresponding CT imag-
es on a voxel-by-voxel basis. In particular, this 
method relies on similar image values of head 
and brain tissues for different subjects in both 
CT and MRI. While CT quantification is very 
accurate and reproducible due to the nature of 
the Hounsfield units’ definition and the full cali-
bration of the CT scanners, accurate and repro-
ducible image quantification remains still one 
of the main challenges in MRI. While promising 
results have been reported using this method 
[20], further validation is still required.

In this work, a novel combination of segmenta-
tion and atlas-based classifier is derived to 
compute MR-based µ-maps. A probabilistic air/
soft tissue/bone atlas is constructed from CT 
training data and the corresponding DUTE and 
MPRAGE are used to train a classifier that cal-
culates the probability of each class at each 
voxel in the subject of interest. This approach 
incorporates local anatomical information 
through the atlas prior and the likelihood model 
captures global, joint MR intensity properties of 
each class from corresponding T1w MPRAGE 
and DUTE MRI. Results from the classifier show 
local and global improvement over using only 
DUTE for segmentation. The quantitative analy-
sis of the PET data attenuation corrected using 
the different methods suggests the Atlas-T1w-
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DUTE approach could provide results that are 
comparable to those obtained with the seg-
mented CT approach, which was previously pro-
posed as the “silver standard” for segmenta-
tion-based AC methods, producing results that 
are within 5% of those obtained using the 
scaled CT method.

Methods

Data acquisition

MR and CT data from 13 glioblastoma patients 
were used in this work. The study was approved 
by the local Institutional Review Board. The PET 
data were acquired on a prototype MR- 
compatible brain PET scanner (“BrainPET”) 
designed to fit inside the MAGNETOM Trio, a 
total-imaging-matrix (TIM) 3T human MRI scan-
ner (Siemens Healthcare Inc.). BrainPET uses 
magnetic field-insensitive avalanche photodi-
odes as scintillation photon detectors. The 
inner and outer physical diameters of the gan-
try are 35 cm and 60 cm, respectively. The PET 
data processing and image reconstruction 
workflow were previously described [9]. Briefly, 
the emission data were acquired in list-mode 
format, sorted in the line-of-response (LOR) 
space, and compressed axially in the sinogram 
space for fast reconstruction [21]. This axial 
compression (span=9, maximum ring differ-
ence=67) generated 1,399 sinograms, each 
consisting of 256 radial elements and 192 
angular projections. The images were recon-
structed with the ordinary Poisson ordered-
subsets expectation maximization algorithm 
from prompts, variance-reduced random coin-
cidences [23], detector sensitivity (obtained 
from a plane source), scatter [22], and attenua-
tion, the latter two accounting for the head and 
radiofrequency coil. The reconstructed volume 
consisted of 153 slices with 256×256 pixels 
(1.25×1.25×1.25 mm3).

A PET-compatible circularly polarized transmit 
combined with an 8-channel receive radiofre-
quency coil specifically designed for this scan-
ner was used to acquire the MR data. MPRAGE 
and DUTE data were obtained during the PET 
data acquisition. The 3D multi echo MPRAGE 
data were acquired after administration of MR 
contrast agent (Magnevist) with the following 
parameters TE=1.64 ms, TR=1200 ms, matrix 
=256×256, pixel size=1×1 mm2, 256 slices, 
thickness=1 mm. The DUTE sequence used in 
this study had the following parameters: TE1/

TE2=0.07/2.46 ms; TR=200 ms; flip angle=10°; 
radial projections=32,000; bandwidth=1,532 
Hz/pixel; FOV=320 mm; base resolution=192; 
and acquisition time=3:20 min:sec.

CT data for each patient were obtained accord-
ing to the clinical protocol: 140 kVp, 150 mAs, 
512×512 in-plane voxels, with voxel sizes rang-
ing from 0.492×0.492 mm2 to 0.668×0.668 
mm2; the CT spanned 87 to 104 slices, each 
2.5 mm thick. The CT and MR-PET studies were 
performed less than one month apart, and no 
surgical procedures that would alter the mor-
phology of the skull or brain were performed 
between the scans. This is important since vox-
els must belong to the same tissue class (air, 
soft tissue, or bone) in the CT and MR data of 
each subject to ensure accurate training of the 
classifiers. Surgical intervention after the CT 
and before the MR, for example, could result in 
voxels showing intact skull in the CT, but fluid in 
the MR.

Probabilistic atlas construction

Probabilistic atlases were computed from the 
CT data for use in the Atlas-T1w-DUTE-based 
segmentation technique described later in this 
article. First, the structural MRI was intensity 
normalized using FreeSurfer [23], and the nor-
malized data were used for all subsequent reg-
istration and analysis. The CT volume was co-
registered to the corresponding structural MRI 
volume for each subject, using 6 degrees of 
freedom (DOF) and mutual information as the 
cost function. The structural data were then 
registered to a standard space using the 
MNI152T1 atlas as the reference [24], 12 DOF 
and normalized correlation ratio as the cost 
function. Although non-linear registration tech-
niques often provide better results for inter-
subject registration, they can introduce sub-
stantial mis-registration in subjects with 
pathology (i.e. brain tumors). To reduce this 
risk, 12 DOF affine registration was used for 
this step. The resulting transformations were 
applied to the corresponding CT. All registra-
tions in this step were performed using FLIRT, 
which is part of FSL [25, 26]. The transformed 
CT datasets were then segmented into bone 
(300-2,000 HUs [27], soft-tissue (-500 to 300 
HUs), and air cavities (<-500 HUs) to produce 
three binary label maps for each subject.

Probabilistic atlases are often constructed by 
counting the number of occurrences of each 
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tissue class at each voxel and normalizing the 
result to obtain a probability distribution. In the 
three-class situation, this corresponds to maxi-
mum likelihood (ML) estimation of the parame-
ters of a multinomial distribution, i.e., if 
k~Multinomial (n, p), then, the ML estimate of p 
given observed k is p̂ n

k= . Here, n is the num-
ber of trials (i.e. the number of CT observations 
at a given voxel), k is the number of occurrenc-
es of each tissue label (soft tissue, air, or bone) 
at the given voxel, and p is the probability of 
each tissue class that needs to be estimated 
from the observed data. The ML estimates 
were obtained from the binary label maps to 
produce an atlas containing the probability of 
air, soft tissue, and bone at each voxel. Thirteen 
separate atlases were constructed using a 
leave-one-out framework in which one subject 
is withheld as the “test” subject and a corre-
sponding atlas is constructed from the remain-
ing twelve “training” data sets. A fourteenth 
atlas was also constructed from all thirteen 
data sets to be used for generating the µ-maps 
for future subjects.

Attenuation map generation

For each subject, the DUTE volumes (i.e. the 
two volumes acquired at each echo time) were 
first divided by the corresponding smoothed 
volumes obtained after applying a 3D Gaussian 
low pass filter with a 20 mm radius kernel. This 
removed image inhomogeneities due to non-
uniform coil sensitivity [9]. The intensity-nor-
malized DUTE volumes were registered using 
SPM8 to the MPRAGE volumes using 12 DOF 
[28] and normalized mutual information as the 
cost function, to account for any motion 
between the structural and DUTE acquisitions. 
Rather than use simply the smoothed DUTE vol-
ume from the first echo (DUTE1) and the second 
echo (DUTE2), we applied two additional trans-
formations to improve contrast between the 
three tissue classes (air, soft tissue, and bone) 
as described previously [9]. The first trans-
formed DUTE image, DUTEtr1, was computed 
according to (DUTE1-DUTE2)/DUTE2

2 to enhance 
signal from bone voxels. The numerator allows 
identification of voxels with a large signal 
change (i.e. bone), while the denominator iden-
tifies voxels with the lowest signal in the DUTE2 
data (i.e. bone and air). Similarly, the second 
transformed DUTE image, DUTEtr2, was com-
puted to enhance identification of air voxels 
according to (DUTE1+DUTE2)/DUTE1

2. Further- 

more, a mask of the head including voxels from 
all classes was obtained by applying a morpho-
logic closing operation to the MPRAGE data. 
This step was required for excluding the voxels 
outside the subject’s head. The transformed 
DUTE images were then normalized to the maxi-
mum value within the subject’s head and thres-
holded with empirical values of 0.02 and 0.5 
respectively for 3D intensity histogram con-
struction addressed in the following paragraph. 
Each atlas was then registered to the corre-
sponding subject by inverting the previously 
calculated transformations between subject 
space and standard space.

For each subject and each tissue class (air, soft 
tissue, and bone), all voxels belonging to that 
tissue class are identified in the corresponding 
CT training data and a 3D intensity histogram is 
constructed from the corresponding structural 
MRI, DUTEtr1, and DUTEtr2 training data. Each 
location, (Ii, Ij, Ik), in the histogram denotes the 
number of voxels in the class of interest (identi-
fied from CT training data) with the set of bin 
labels {Ii, Ij, Ik}, where Ii is the ith intensity bin in 
the structural MRI, Ij is the jth intensity bin in 
DUTEtr1, and Ik is the kth intensity bin in DUTEtr2. 
Normalizing each 3D intensity histogram by the 
total number of voxels in the histogram gives 
the likelihood terms for each tissue class, P(Ii, Ij, 
Ik|Lm), where Lm is the tissue class label 
obtained from the CT training data with m ∈ 
{air, soft tissue, bone}.

Thus, the likelihood provides the probability of 
observing a voxel with a set of MR intensities 
that fall within bins Ii, Ij, and Ik given it belongs to 
a certain tissue class (e.g. bone).

The prior probabilities of each tissue class, 
P(Lm|Xn), were obtained from the co-registered 
atlas, where Xn, denotes the voxel location. The 
posterior probability of each class at each voxel 
was computed according to:

P(L | I , I , I ) (P (I , I , I | L )P (L | X ))/

(P (I , I , I | L )P (L | X ))
m

m i j k i j k m m n

i j k m m n

=

/

The trained classifier was then applied to seg-
ment the MRI of the subject of interest, provid-
ing a posterior probability of each tissue class 
at each voxel.

Thresholding was performed on the posterior 
probability maps to limit the effects where air or 

(1)
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bone probabilities would dominate over soft tis-
sue; first, voxels were assigned as bone where 
the bone posterior probabilities were greater 
than the other two classes; subsequently an 
empirical threshold of 0.8 was applied as a 
lower bound for assignment of air. The final 
subject-specific µ-map was generated from the 
assigned labels by assigning LACs of 0, 0.096 
and 0.151 cm-1 to air, soft tissue, and bone, 
respectively. Voxels outside the head mask 
were assigned LACs of 0.

Additionally, DUTE-based µ-maps were comput-
ed for comparison to the proposed method. 
Similar to [9], bone LAC (0.151 cm-1) was 
assigned to all voxels in DUTEtr1 volume above 
an empirically determined threshold (0.012) 
and the LAC for air (0 cm-1) was assigned to all 
voxels in DUTEtr2 above a second empirically 
determined threshold (0.14).

For comparison, segmented CT-based µ-maps 
were obtained from each subject’s CT data by 
assigning the appropriate LACs to each voxel 
using the binary label maps computed above.

Quantitative evaluation of the Atlas-T1w-DUTE 
method

Segmentation accuracy: The accuracy of each 
MR-based segmentation approach (Atlas-T1w-
DUTE and DUTE) was evaluated by both visual 

Effect on PET data quantification: PET images 
reconstructed using the MR-based AC methods 
were compared to those obtained using the 
segmented CT-based method. In each case, 
the complete µ-map was obtained by adding 
the µ-map of the head to that of the radiofre-
quency coil. The complete µ-maps were first 
smoothed using a 4 mm FWHM Gaussian filter 
and then forward projected and exponentiated 
to generate the AC factors (ACFs). The PET data 
were reconstructed as described above using 
the ACFs obtained from these µ-maps and the 
results were assessed qualitatively and quanti-
tatively. The relative changes (RC) were com-
puted according to: RC=100×(CMR-Csegmented_CT)/
Csegmented_CT, where Csegmented_CT are the values 
from the PET reconstruction using segmented 
CT for AC and CMR are the values from the PET 
images obtained using the Atlas-T1w-DUTE or 
DUTE methods. The overall accuracy of the PET 
images was quantified by calculation and anal-
ysis of absolute RC values of all brain voxels for 
each patient; the mean and standard deviation 
for each subject were computed.

The gaps between the PET modules in the 
transaxial and axial directions in the case of 
the BrainPET scanner, make it more suscepti-
ble to data inconsistencies that can lead to arti-
facts and mask or amplify the bias introduced 
by inaccurate AC. To demonstrate that the mea-
sured changes are indeed related to differenc-

Figure 1. Representative atlas constructed from CT training 
data. The atlas provides probability maps of soft tissue (A), 
bone (B), and air (not shown), with each voxel taking continu-
ous values between 0 and 1.

comparison to the segmented CT µ-map 
and calculation of the Dice Similarity 
Coefficient (DSC) [29] for each tissue class 
(air, soft tissue, and bone). The DSC is 
defined as the number of intersecting vox-
els divided by the average number of all 
considered voxels, and provides a quantita-
tive measure of the agreement between 
two volume sets. A DSC of 1 indicates that 
the two volumes are exactly the same, 
while a DSC of 0 indicates that the volumes 
have no overlapping voxels. The head mask 
previously computed from each subject’s 
MPRAGE data was selected to provide a 
common region of comparison for the seg-
mentation results. This mask was then 
applied to binary segmentations of each 
tissue class that were obtained from each 
µ-map by thresholding. The DSC was com-
puted from the masked volumes to quanti-
fy agreement between the estimated and 
segmented CT µ-maps.
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es in the µ-maps, simulations were also carried 
out assuming a gapless scanner with the same 
geometry as the BrainPET and ignoring other 
factors such as detector normalization, scatter 
correction, etc., as previously described [9]. 
Briefly, “true” emission sinograms were ob- 
tained by forward projecting volumes in which 
uniform activity is assigned to each subject’s 
brain. Sinograms derived from the segmented 
CT µ-maps were used to attenuate the “true” 
emission sinograms, and then images were 
reconstructed using the ACF obtained from the 
Atlas-T1w-DUTE- and DUTE µ-maps. The RC val-
ues were calculated in a similar fashion to 
those derived from the measured PET data.

The local performance of the MR-based AC 
methods was also examined. 12 brain regions 
of interest were defined using an automated 
anatomical labeling (AAL)-based atlas [30] and 
warped using DARTEL in SPM8 to each individ-
ual patient.

Results

Probabilistic atlas construction

Results of the atlas construction for a repre-
sentative subject are shown in Figure 1. Axial 

and sagittal views of the probability maps of 
soft tissue and bone after co-registration of the 
atlas to subject space are shown in Figure 1A 
and 1B, respectively. The probabilistic atlas 
successfully describes anatomical variability 
among subjects in the training data set. Large 
variability (low probabilities) can be seen in the 
sinuses and other internal air spaces.

Segmentation accuracy

The segmentation results for each method 
were evaluated qualitatively by comparing 
µ-maps from the MR-based methods to those 
obtained from segmented CT images. µ-maps 
for a representative subject are shown in Figure 
2 in the transverse and sagittal orientations. 
The DUTE method (Figure 2B) shows overall 
agreement with segmented CT (Figure 2A), 
especially in the more superior slices, but sub-
stantial errors in the sinus region and more 
inferior regions of the skull can be seen. The 
DUTE method fails to fully segment the internal 
air cavities, overestimating bone and soft tis-
sue, while underestimating air (Figure 2B, bot-
tom row). The Atlas-T1w-DUTE method (Figure 
2C) shows good overall agreement with seg-
mented CT and an improvement over the DUTE 

Figure 2. Representative µ-maps computed with each method for an axial and a sagittal slice. The DUTE method 
(B) shows overall agreement with the segmented CT (A), but substantial errors are still present. The Atlas-T1w-DUTE 
method (C) shows the best overall agreement with the CT-based µ-map and internal air spaces are now clearly vis-
ible.
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method, especially in the sinus region; internal 
air spaces are now clearly visible, giving better 
overall agreement with the µ-map from seg-
mented CT.

DSC values quantifying agreement between 
the Atlas-T1w-DUTE result and CT-based µ-map 
in Figure 2 were 0.85, 0.97, and 0.72, for bone, 
soft tissue, and air, respectively. For all sub-
jects, the Atlas-T1w-DUTE method shows 

improvement over DUTE for each tissue class. 
The mean DSCs for DUTE across all subjects 
were 0.58, 0.92, and 0.55 for bone, soft tissue 
and air, respectively, while the corresponding 
DSCs for Atlas-T1w-DUTE were 0.81, 0.96, and 
0.69. DSC results for all subjects are shown in 
Figure 3. The box plots show the first, second 
and third quartiles and the minimum and maxi-
mum DSC values across all patients for each 
segmentation method and each tissue class 

Figure 3. Dice similarity coefficients (DSC) for all subjects, tissue classes and methods. The atlas-based method 
shows improvement in DSC values for all tissue classes: bone, soft tissue, and air. Median DSC values for Atlas-T1w-
DUTE show substantial improvement over DUTE.

Figure 4. Voxel classification errors for each patient and segmentation method. The percentage of misclassified 
voxels in the estimated DUTE (left bar) and Atlas-T1w-DUTE (right bar) µ-maps are shown for each patient and each 
type of error: Water as Bone, Bone as Water, Bone as Air, Air as Bone, Water as Air, and Air as Water (here “Water” 
refers to “soft tissue”). The Atlas-T1w-DUTE method shows the lowest total percentage of misclassified voxels in all 
subjects. In addition, the Atlas-T1w-DUTE method shows reduction in bone/air and air/bone errors in all subjects 
relative to the DUTE results. This is particularly important given the large difference in LAC values between these 
classes.
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(air, soft tissue, bone). The atlas-based method 
shows improvement over DUTE for each tissue 
class. The median (second quartile) DSCs for 
DUTE across all subjects were 0.58, 0.92, and 
0.55 for bone, soft tissue and air, respectively, 
while the corresponding DSCs for Atlas-T1w-
DUTE were 0.82, 0.96, and 0.72.

The segmentation results were further evaluat-
ed by computing the percentage of misclassi-
fied voxels as shown in Figure 4, where “water” 
refers to soft tissue. This plot shows that the 
Atlas-T1w-DUTE method resulted in the lowest 
total percentage of misclassified voxels in all 
subjects, which agrees with our previous quali-
tative assessment of the segmentation results. 
Misclassification of bone as air and air as bone 
have the greatest impact on the accuracy of 
subsequent PET reconstructions since the dif-
ference between the LACs of these two tissue 
classes is the largest (LACbone-LACair=0.151 
cm-1). The sum of these two errors is reduced in 
the Atlas-T1w-DUTE method relative to the 
DUTE method in all subjects.

Effects on PET data quantification

PET images were reconstructed as described 
above using µ-maps computed with the MR- 
and segmented CT-based AC methods. PET 

images for a representative subject are shown 
in the top row of Figure 5. The Atlas-T1w-DUTE-
based (Figure 5C) and DUTE-based corrected 
images (Figure 5B) show strong qualitative 
agreement with those based on the segmented 
CT (Figure 5A).

The RC maps for the same subject are shown in 
the bottom row of Figure 5. The Atlas-T1w-DUTE 
method shows smaller RC in many brain regions 
relative to the DUTE RC map, which shows 
regions with RC values near ± 20%. For this 
subject, an average of 2.02% and 0.94% was 
observed for absolute RC values using the 
DUTE and AtlasT1-DUTE methods, respectively. 
The standard deviation was 2.30% and 1.24% 
for the DUTE and Atlas-T1w-DUTE methods, 
respectively. This suggests a global improve-
ment in RC values for the Atlas-T1w-DUTE meth-
od in this subject. Across all subjects, the mean 
of the absolute RC values was 3.24% for the 
DUTE method, versus 1.75% for Atlas-T1w-
DUTE. The standard deviation of the absolute 
RC values across all subjects was 5.37% and 
2.64% for the DUTE and Atlas-T1w-DUTE meth-
ods, respectively.

Comparable results were obtained from the 
simulated data. Across all subjects, the mean 
of the absolute RC values was 2.84% for the 

Figure 5. Representative PET images from the data reconstructed using the segmented CT (A), DUTE (B), and Atlas-
T1w-DUTE (C) µ-maps from a representative subject are shown in row 1. The corresponding Relative Change maps 
computed using each estimated reconstruction and the CT-based reconstruction (as the “silver standard”) are 
shown in row 2.
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DUTE method, versus 1.82% for Atlas-T1w-
DUTE. The standard deviation of the absolute 
RC values across all subjects was 4.83% and 
2.45% for the DUTE and Atlas-T1w-DUTE meth-
ods, respectively.

For the ROI-based analysis, in all 12 regions 
the mean of the absolute RC values also con-
sistently showed an improvement for the atlas-
based method compared to the DUTE-based 
method (Figure 6). Qualitatively, the larger 
regions had smaller RC values while small 
structures in the limbic system and the cerebel-
lum showed slightly higher RC values and great-
er variability. In addition, gray matter regions 
close to the skull also had higher RC values.

Discussion

Obtaining accurate air/bone segmentations 
from MR data is critical for accurate AC and 
quantitative imaging on integrated PET/MR 
scanners. In this work, we proposed an 
approach combining both segmentation and 
atlas-based techniques in order to improve the 
performance compared to standard segmenta-
tion methods in terms of global and local PET 
data quantification accuracy.

Our goal with the first implementation of the 
DUTE-based AC method [9] was to demonstrate 
that acceptable µ-maps could be obtained from 
DUTE data. Indeed, very accurate segmented 

brain, can lead to large relative errors in the 
PET images. Although several MR sequences 
that provide various types of contrast could be 
used for this purpose, in this work, we proposed 
to use a MPRAGE sequence and probabilistic 
atlas to obtain these data. This MPRAGE 
sequence (or a very similar implementation) is 
used for obtaining high spatial resolution mor-
phological data in virtually all the brain studies 
performed at our center. Furthermore, we have 
recently proposed a method for performing MR 
motion correction for this sequence (currently 
available as a work-in-progress package on the 
Siemens scanners). In combination with the 
MR-assisted PET motion correction implement-
ed for the BrainPET [29], this would eliminate 
the mis-registration between the attenuation 
map and the emission data, which typically 
occurs due to subject motion and produces 
artifacts in the reconstructed images.

Results of the Atlas-T1w-DUTE classifier showed 
improvement over the DUTE method: qualita-
tive comparison to segmented CT µ-maps 
showed excellent agreement, DSC values were 
substantially higher in all tissue classes, and 
the percentage of misclassified voxels due to 
air/bone misclassification errors was also 
reduced in all subjects. The Atlas-T1w-DUTE 
classifier also showed improvement over DUTE 
in terms of PET quantification: the PET images 
demonstrated better agreement to those cor-
rected using the ACFs derived from segmented 

Figure 6. Mean absolute RC values for PET activity, reconstructed with different 
µ-map generation methods, in different regions of the brain.

µ-maps could probably be 
obtained using only the 
data acquired with an ideal 
DUTE sequence (i.e. high 
spatial resolution, high 
SNR at the short echo 
time, no spatial distortion 
between the volumes ob- 
tained at the two echoes, 
etc.). However, the existing 
DUTE sequence is less 
than ideal and additional 
information about the sub-
ject’s anatomy (i.e. from 
additional sequences or 
anatomical priors) is nec-
essary to facilitate the seg-
mentation task. Further- 
more, local misclassifica-
tions due to this method, 
such as erroneous bone or 
air assignments in the 



MR-based PET attenuation correction

169	 Am J Nucl Med Mol Imaging 2014;4(2):160-171

CT µ-maps, mean bias and variability in abso-
lute RC values were substantially reduced. 
More importantly, the local errors in the µ-maps 
generated from the DUTE method were also 
eliminated and this is the main advantage of 
the proposed method.

The mean variability reflects how robust the 
segmentation method is across datasets with 
varying anatomical and image intensity proper-
ties in contrast to the variability in RC values for 
a single subject, which provides a global mea-
sure of the segmentation accuracy across the 
netire volume of interest (i.e. the head). The 
higher variability observed when using the 
DUTE method is likely due to greater variance in 
DUTE intensities across separate acquisitions 
relative to the MPRAGE, which tends to be more 
consistent across sessions. In the atlas-based 
methods, the mean variability also reflects how 
well the trained classifier generalizes to new 
“test subjects”. Anatomical differences be- 
tween the subject and atlas may account for 
some of the variability in the atlas-based 
results, although mean variability is still 
reduced in the Atlas-T1w-DUTE relative to the 
DUTE approach. The generalization of the atlas-
based classifier could be further improved by 
acquiring larger training data sets, normalizing 
DUTE intensities, scaling the “test” data to min-
imize the Kullback-Leibler (KL) divergence 
between the test and training data as described 
in [18], or applying other information theory 
techniques.

While the results of the Atlas-T1w-DUTE meth-
od are encouraging, several factors may reduce 
the accuracy of this approach, and thus merit 
further discussion. While not an issue for the 
data analyzed in this study, distortions in the 
MRI data due to gradient non-linearities or sig-
nal loss due to dental implants may affect the 
accuracy of registration between the distorted 
region(s) and non-distorted data (i.e. MNI atlas). 
However, these errors could be mitigated by 
giving more weight in the registration proce-
dure to those regions that have higher SNR (in 
the case of signal drop out). The MPRAGE data 
in this study were acquired after administration 
of MR contrast agent. Although this changes 
the contrast in some brain regions, it does not 
affect the bone/air segmentation. Accurate 
image coregistration is important for alignment 
of MR and CT data, coregistration of DUTE and 
MPRAGE volumes (to correct for distortions 

that may arise in the two UTE images) and of 
the atlases to each individual subject. Because 
the coregistration accuracy in this study was 
visually assessed, errors could still be present 
and affect the final PET data quantification. To 
minimize such errors, we used high-resolution 
CT scans, confirmed that no surgical proce-
dures were carried out between the CT and 
MR-PET scans of each patient, and used a 
12-DOF affine transformation for image regis-
tration. The µ-maps derived from the segment-
ed CT data were used as the “silver standard” 
for evaluating the proposed MR-based AC 
methods. Although we have previously shown 
that compared to the AC method that uses 
scaled CT data this introduces minimal errors 
in the final reconstructed PET images [9], we 
are currently investigating methods for generat-
ing continuous-valued µ-maps from the MR 
data.

One common limitation of atlas-based 
approaches is that the modified anatomy in 
certain patient populations could introduce 
bias. This is less of an issue for our method 
compared to pure atlas-based methods 
because it does not rely exclusively on the atlas 
information. Instead, we use a probabilistic 
approach that allows global intensity proper-
ties of DUTEtr1, DUTEtr2 and MPRAGE data for 
each tissue class to be modeled, reducing the 
strong reliance on local information found in 
previous atlas-based techniques. As a proof, 
µ-maps for newly diagnosed glioblastoma 
patients post-surgical intervention were suc-
cessfully generated in this work.

Although the Atlas-T1w-DUTE method was 
developed and tested using data acquired on 
the BrainPET prototype, it is relatively straight-
forward to implement on other integrated PET/
MR scanners (e.g. the whole-body Biograph 
mMR from Siemens Healthcare, Inc. or the 
Ingenuity TF PET/MR from Philips Healthcare). 
In this case, a new training data set will likely be 
required to account for software (e.g. MR 
sequence and acquisition parameters) and 
hardware (e.g. RF coil sensitivity, longer axial 
field of view) differences between the two 
scanners.

Conclusion

AC is critical for accurate quantification of 
radiotracer concentration and clinical assess-
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ment of PET images. The recent development 
of integrated PET/MR systems that lack a 
transmission system or integrated CT has 
greatly increased the need for an MR-based AC 
technique. In this work, such an approach for 
deriving segmented µ-maps from DUTE and 
MPRAGE data by combining segmentation and 
atlas-based techniques was presented. The 
qualitative and quantitative analysis of the 
µ-maps and the corresponding PET images 
attenuation corrected based on these µ-maps 
demonstrated the Atlas-T1w-DUTE is substan-
tially superior to the previously implemented 
DUTE-based approach, both in terms of global 
and local accuracy. In sum, these experiments 
suggest that the Atlas-T1w-DUTE method could 
be a viable option for AC in integrated PET/MR 
scanners, its performance being comparable to 
the segmented CT-based approach. Imple- 
mentation of an accurate MR-based AC tech-
nique is essential for the widespread adoption 
of integrated PET/MR scanners, which have the 
potential to substantially advance our under-
standing of neurological diseases by simultane-
ously leveraging the technological strengths of 
both modalities.
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