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Abstract

Iterative image reconstruction with sparsity-exploiting methods, such as total variation (TV)

minimization, investigated in compressive sensing claim potentially large reductions in sampling

requirements. Quantifying this claim for computed tomography (CT) is nontrivial, because both

full sampling in the discrete-to-discrete imaging model and the reduction in sampling admitted by

sparsity-exploiting methods are ill-defined. The present article proposes definitions of full

sampling by introducing four sufficient-sampling conditions (SSCs). The SSCs are based on the

condition number of the system matrix of a linear imaging model and address invertibility and

stability. In the example application of breast CT, the SSCs are used as reference points of full

sampling for quantifying the undersampling admitted by reconstruction through TV-minimization.

In numerical simulations, factors affecting admissible undersampling are studied. Differences

between few-view and few-detector bin reconstruction as well as a relation between object

sparsity and admitted undersampling are quantified.

Index Terms

Compressed sensing (CS); computed tomography (CT); data models; image sampling; iterative
methods

I. Introduction

Recently, iterative image reconstruction (IIR) algorithms have been developed for X-ray

tomography [1]–[10] based on the ideas discussed in the field of compressive sensing (CS)

[11]–[14]. These algorithms promise accurate reconstruction from less data than is required
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by standard image reconstruction methods. This is made possible by exploiting sparsity, i.e.,

few nonzeroes in the image or of some transform applied to the image. One can argue about

whether these algorithms are truly novel or not: edge-preserving regularization and

reconstruction based on the total variation (TV) semi-norm [15]–[18] have a clear link to

sparsity in the object gradient and have been considered before the advent of CS, and

algorithms specifically for object sparsity have been developed for blood vessel imaging

with contrast agents [19]. Nevertheless, the interest in CS has broadened the perspective on

applying optimization-based methods for IIR algorithm development for computed

tomography (CT), and it has motivated development of efficient algorithms involving

variants of the ℓ1-norm [10], [20]–[25].

What is seldom discussed, however, is that the theoretical results from CS do not extend to

the CT setting. CS only provides theoretical guarantees of accurate undersampled recovery

for certain classes of random measurement matrices [13], not deterministic matrices such as

CT system matrices. While the mentioned references demonstrate empirically that CS-

inspired methods do indeed allow for undersampled CT reconstruction, there is a

fundamental lack of understanding of why, and the conditions under which, this is the case.

One problem in uncritically applying sparsity-exploiting methods to CT is that there is no

quantitative notion of full sampling.

Most IIR, including sparsity-exploiting, methods employ a discrete-to-discrete (DD)

imaging model1 which requires that the object function be represented by a finite-sized

expansion set and sampling specified over a finite set of transmission rays. This contrasts

with most analysis of CT sampling, which is performed on a continuous-to-discrete (CD)

model. For analyzing analytic algorithms such as filtered back-projection (FBP), a

continuous-to-continuous (CC) model such as the X-ray or Radon transform is chosen, and

discretization of the data space is considered, yielding results for the corresponding CD

model. Analysis of the CD model is performed independent of object expansion. If the

expansion set for the DD model is chosen to be point-like, e.g., pixels/voxels, there may be

similarity between CD and DD models justifying some crossover of intuition on sampling,

but in general sufficient-sampling conditions can be different for the two models. That a

more fine-grained notion of sufficient sampling is needed for the DD model can be seen by

considering the representation of the object function on a 128 × 128 versus a 1024 × 1024

pixel array. Clearly, the latter case requires more samples than the former, but sampling

conditions derived from the CD model cannot make this distinction. Sufficient sampling for

the DD model becomes even less intuitive for nonpoint-like expansion sets such as natural

pixels, wavelets, or harmonic expansions. Yet, to quantify the level of undersampling

admitted by a sparsity-exploiting IIR method, full sampling needs to be defined for the

corresponding DD model, and to that end we introduce several sufficient-sampling

conditions (SSCs).

Specifically, in the present article, SSCs for the DD model are derived from the condition

number of the corresponding system matrix. Multiple SSCs are defined to characterize both

invertibility and stability of the system matrix. To perform the analysis, a class of system

1See [26, Ch. 15] for an overview of different imaging models.
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matrices is defined so that the system matrix depends on few parameters. The class is chosen

so that it has wide enough applicability to cover thoroughly a configuration/expansion

combination of interest, but not so wide as to make the analysis impractical. For the present

study, we select a system matrix class for a 2-D circular fan-beam geometry using a square-

pixel array. The SSCs are chosen so that they provide a useful characterization of any

system matrix class, but the particular values associated with the SSCs in this work apply

only to the narrow system matrix class defined. While the article presents a strategy for

defining full sampling, the analysis must be redone with any alteration to the system matrix

class.

After deriving the SSCs for the particular circular fan-beam CT system matrix class, we

apply sparsity-exploiting IIR in the form of constrained TV-minimization. We consider the

specific application of CT to breast imaging and use a realistic and challenging discrete

phantom. We use the SSCs as reference points of full sampling for quantifying the

undersampling admitted by each of the conducted reconstructions. Specifically, we

demonstrate significant differences in undersampling admitted for reconstruction from few

views compared to few bins. We study how variations to the reconstruction optimization

problem, to the image quality metric, to the discretization method for the system matrix, and

to the sparsity of the phantom image affect the results.

In Section II we describe the CT imaging model and present the particular system matrix

class we employ for circular fan-beam CT reconstruction. In Section III we give a

background on sparsity-exploiting methods. In Section IV the SSCs are presented and their

application is illustrated for the 2-D circular fan-beam case. Finally, Section V illustrates an

example study on quantifying admissible undersampling by constrained TV-minimization

employing the discussed SSCs.

II. Class of System Matrices for the Discrete-to-Discrete Imaging Model

A. The X-Ray Transform

Explicit image reconstruction algorithms such as FBP are based on inversion formulas for

the CC cone-beam or X-ray transform model

(1)

where g, the line integral over the object function f from source location s⃗ in the direction θ⃗,
is considered data. Fan-beam FBP, for example, inverts this model for the case where the

source location s⃗ varies continuously on a circular trajectory surrounding the subject, and at

each s⃗ the ray-direction θ⃗ is varied continuously through the object in the plane of the source

trajectory.

B. The Discrete-to-Discrete Model

For most IIR algorithms, the CC imaging model is discretized by expanding the object

function in a finite expansion set, for example, in pixels/voxels. Furthermore, the discrete

digital sampling of the CT device is accounted for by directly using the sampled data
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without interpolation. The effect of both of these steps is to convert the imaging model to a

discrete-to-discrete (DD) formulation

(2)

where g⃗ represents a finite set of ray-integration samples, f⃗ are coefficients of the object

expansion, and X is the system matrix modeling ray integration. This DD imaging model is

almost always solved implicitly, because the matrix X, even though sparse, is beyond large

for CT applications: X is in the domain of a giga-matrix for 2-D imaging and a tera-matrix

for 3-D imaging.

A central point motivating the strategy of the present work is that the DD imaging model has

a more focused scope than the CD model, because the former can often be derived from the

CD model by expanding the continuous image domain with a finite set of functions. How

the discretization of the CD model is done for CT to achieve the DD imaging model is not

standardized. Many expansion elements have been used in CT studies; in addition to pixels,

for example blobs [27], wavelets [28], [29], and natural pixels [30], [31]. Also, the matrix

elements using only the pixel expansion set can be calculated in different ways that all tend

toward the CC model in the limit of shrinking pixel size and detector bin size. Different

modeling choices will necessarily alter X. This tremendous variation in X means that it is

important to fully specify X for each study, and it is important to recharacterize X for any

change in the model. For example, changing pixel size can have large impact on the null

space of the system matrix in the DD model.

In order to describe precisely and provide a delimitation of the system matrices considered

in the present work, we introduce the notion of a system matrix class. Any given system

matrix depends on numerous model parameters determining the scanning geometry,

sampling and discrete expansion set. A system matrix class consists of the system matrices

arising from fixing a number of these parameters and leaving a subset of the parameters free.

The system matrix class can then be studied by varying these free parameters.

C. The System Matrix Class Used in the Present Study

In CT, projections are acquired from multiple source locations which lie on a curve

trajectory and the source location s ⃗(λ) is specified by the scalar parameter λ. The circular

trajectory is the most common, and is what we use here

where R0 is the distance from the center-of-rotation to the X-ray source, and set to R0 = 40

cm in the present work. The detector bin locations are given by
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where D is the source-to-detector-center distance (D = 80 cm in the present work), and u

specifies a position on the detector. The ray direction for the detector-geometry independent

data function is

The 2π arc is divided into Nviews equally spaced angular intervals, so that the source

parameters follow:

(3)

where

(4)

The detector is subdivided into Nbins

(5)

where DL is the detector length (DL = 41.3 cm), umin = −DL/2, Δu = DL/Nbins, and j ∈ [0,

Nbins − 1]. The detector length is determined by requiring it to detect all rays passing

through the largest circle inscribed within the square N × N image array for which we use

the side length 20 cm. We restrict the unknown pixel values to lie within this circular field-

of-view (FOV), and the number of unknown pixel values Npix is

(6)

where the actual value, which has to be an integer, is given with each simulation below.

Effectively, the dimensions of the projector X are M = Nviews × Nbins rows (number of ray

integrations) and Npix columns (number of variable pixels). To obtain the individual matrix

elements, the line-intersection method is employed, where Xm,n is the intersection length of

the mth ray with the nth pixel. This description completely specifies the system matrix class

for the present circular fan-beam CT study, and the free parameters of this class are N,

Nviews, and Nbins.

III. CT Image Reconstruction by Exploiting Gradient-Magnitude Sparsity

Reconstruction of objects from undersampled data within the DD imaging model

corresponds to a measurement matrix X with fewer rows than columns. The infinitely many

solutions are narrowed down by selecting the sparsest one, i.e., the one that has the fewest

number of nonzeroes, either in the image itself or after some transform has been applied to
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it. Mathematically, the reconstruction can be written as the solution of the constrained

optimization problem

(7)

Here, Ψ is a sparsifying transform, for instance a discrete wavelet transform, and ||·||0 is the

ℓ0-“norm” (although it is in fact not a norm), which computes its argument vector’s sparsity,

that is, counts the number of nonzeroes. The equality constraint restricts image candidates to

those agreeing exactly with the data.

Central results in CS derive conditions on X drawn from certain random system matrix

classes such that f⃗* is exactly equal to the underlying unknown image that gave rise to the

data g⃗. Two key elements are sparsity of Ψ(f⃗) and incoherence of X: exact recovery depends

on the size of g⃗ being larger than some small factor of ||Ψ(f⃗)||0 [13], and the concept of

incoherence is needed to ensure that the few measurements g⃗ available give meaningful

information about the nonzero elements of Ψ(f⃗). Other important results in CS involve the

relaxation of the non-convex ℓ0-“norm” to the convex ℓ1-norm

(8)

In contrast to (7), this convex problem is amenable to solution by a variety of practical

algorithms, although the large scale of CT matrices still presents a challenge for algorithm

development. Another important contribution from CS is the derivation of conditions under

which the solution to (8) is identical to the solution to (7), so that the sparsest solution can be

found by solving (8).

For application to medical imaging, it was suggested in [12] that a potentially useful Ψ
would be to have Ψ compute the discrete gradient magnitude of f⃗, i.e., for the jth pixel

(9)

where Dj computes a finite-difference approximation of the gradient at each pixel j, and the

two-norm also acts pixel-wise on the differences. In CT, for example, the typical image

consists of regions having an approximately constant gray-level value separated by sharp

boundaries between various tissue types. The magnitude of the spatial gradient of such

images is zero within constant regions and nonzero along edges, so the gradient magnitude

image can be sparse. The ℓ1-norm applied to the gradient magnitude image is known as the

total variation (TV) semi-norm
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(10)

and the optimization problem of interest becomes

(11)

However, the theoretical results from CS do not extend to the CT setting. Three properties

that separate CT matrices from typical CS matrices are that CT matrices:

1. are structured and do not belong to random matrix classes for which CS results are

proved [13];

2. can have rank smaller than the number of rows, which means that there exist

vectors g⃗ in the data space that are inconsistent with X, and accordingly the linear

imaging model (2) has no solution;

3. may be numerically ill-conditioned in case of having more rows than columns (data

set size is greater than the image representation).

Nevertheless, it has been demonstrated empirically in extensive numerical studies with

computer phantoms under ideal data conditions as well as with actual scanner data that

highly accurate reconstructed images for “undersampled” projection data can be obtained

from (8) and variants thereof.

It is precisely this last phrase which is of interest in the present paper: what exactly does it

mean to have “undersampled” data for CT? Undersampled data implicitly relies on a certain

level of sampling being sufficient—but no such precise concept exists for CT using the DD

imaging model, to the best of our knowledge. Without a reference point for having sufficient

sampling it is difficult to quantify admissible levels of undersampling. In the present paper,

we aim to provide this reference point. Specifically in Section IV, we propose sufficient-

sampling conditions (SSCs) to be computed for specific system matrix classes, and which

serve as a reference for quantifying the admissible undersampling for sparsity-exploiting

reconstruction. Application of the SSCs is demonstrated with numerical simulations of

breast CT.

IV. Sufficient-Sampling Conditions

In considering sufficient sampling for circular fan-beam CT, the CC model is recast as a CD

model by introducing a discrete sampling operator, usually taken to be evenly distributed

delta functions, on the CT sinogram space. Making the assumption that the underlying

sinogram function is band-limited, many useful and widely applicable results have been

obtained, see for example Sec. 3.3 of [32] and [33]–[35]. Furthermore, for more advanced

scanning geometries and sampling patterns there are available tools for analysis such as

singular value decomposition (SVD), direct analysis of multi-dimensional aliasing, and the

evaluation of the Fourier crosstalk matrix [36]–[38]. These important results, however, do
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not apply directly to IIR, since for the DD model we need to take into account the finite

image expansion set.

We consider an empirical approach for characterizing sufficient sampling within a class of

system matrices. The idea is to fix the image representation, which for the circular fan-beam

system matrix class is the parameter Npix, and then vary the sampling parameters Nviews and

Nbins to ensure accurate determination of the pixel values. This is done by establishing

sufficient-sampling conditions (SSCs) based on matrix properties in the considered system

matrix class. If the system matrix class is altered, the SSC-analysis must be redone.

A. SSC Definitions

The SSCs, we propose, characterize invertibility and ill-conditioning of the system matrix

class. In considering the DD imaging model (2), the data g ⃗ are restricted to the range of X.

This separates out the issue of model inconsistency which does not have direct bearing on

sampling conditions.

We define SSC1 to be sampling such that X has at least as many rows as columns. If there

are fewer rows than columns, X necessarily has a nontrivial null space, and solutions of (2)

will not be unique. Even if the number of rows is equal to or larger than the number of

columns, there may still be a nontrivial null space, because the rows can be linearly

dependent. In addition to SSC1, we define SSC2 to mean that X has a null space consisting

only of the zero image, or equivalently, that the smallest singular value σmin of X is nonzero.

Existence of a unique solution to (2) is ensured by SSC2. Both SSC1 and SSC2 can be

evaluated for any system matrix class.

Neither of SSC1 and SSC2 address numerical instability and to address that, we employ the

condition number of X, the ratio of the largest and smallest singular values

(12)

The condition number κ can be as small as 1 and the larger κ becomes, the more

numerically unstable is solution of X f ⃗ = g⃗. How to use κ to define a SSC requires some

discussion.

Whereas sensing matrix classes studied in CS typically are well-conditioned—for instance

the square discrete Fourier transform (DFT) matrix is orthogonal, thus having a condition

number of 1—the system matrices encountered in X-ray CT can have a relatively large

condition number [32], [39], which leads to numerical instability and thus large sensitivity to

noisy measurements. Even if SSC2 holds, the condition number κ is finite but may still be

large, potentially allowing other images than the desired solution to be numerically close to

satisfying X f⃗ = g⃗. If we fix the image representation, which for the present 2-D circular fan-

beam setup amounts to fixing Npix, and increase the sampling, allowing Nviews and Nbins to

increase toward ∞, the condition number will decrease toward a limiting condition number
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(13)

where the DC subscript refers to the fact that X is limiting to a discrete-to-continuous (DC)

system matrix2. The limiting condition number κDC is the best-case κ for a fixed image

representation, but κDC may still be larger than 1.

For actual CT scanners, it is not practical to allow Nviews and Nbins to increase without

bound, and empirical experience shows diminishing improvements in doing this. To balance

the impracticality of going to continuous sampling on the one hand against the need to

optimize numerical stability on the other, we introduce SSC3 to mean that the condition

number of X satisfies

(14)

where rsamp is a finite ratio parameter greater than 1. The smaller the choice of rsamp, the

closer X is to the DC limit. This SSC can also be generally applied to other system matrix

classes, but the appropriate parameter setting of rsamp will be specific to a particular class.

Finally, we introduce SSC4 specifically for the present 2-D circular fan-beam system matrix

class. This SSC is taken to mean 2N samples in both the view and bin directions, i.e., Nviews

= Nbins = 2N. This SSC is simple to evaluate, and we will demonstrate empirically that it is a

useful condition, which acts as a good approximation for attaining SSC3 with rsamp = 1.5.

This SSC is specific to the system matrix class investigated here. Even slightly different

system matrix classes might not allow for the same SSC4 definition.

Our strategy is similar to analysis presented in early works on CT, such as in [39], but the

point here is not novelty of the analysis; rather we need to establish a reference point by

which to evaluate the sampling reduction admitted by sparsity-exploiting methods.

In what follows, the proposed SSCs are examined for the 2-D circular fan-beam system

matrix class. First, small systems are considered, where X can be explicitly computed and

analyzed so that the full set of singular values of X is attainable. Second, we argue that our

conclusions generalize to larger, more realistic systems, where X is impractical to store in

computer memory and it is only feasible to compute the smallest and largest singular values.

B. SSCs for Small Systems

We consider a small N = 32 image array with Npix = 812, and generate system matrices X for

different numbers of views, Nviews ∈ [8, 128], and detector bins, Nbins ∈ [8, 128]. The

condition number κ(X) is computed through direct SVD of X for all values of Nviews and

Nbins within the specified parameter ranges, and κ(X) as a function of Nviews (for fixed Nbins

= 64) and Nbins (for fixed Nviews = 64) is shown in Fig. 1. The plots show three phases: the

2We conjecture that the limiting condition number is finite and well-defined based on empirically observing convergence to a constant
with increasing Nviews and Nbins for the considered system matrix class.
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left-most part, where the condition number is infinite; the middle, where the condition

number becomes finite and decays slowly; and the right-most part, where it remains

relatively stable. The positions of the different SSCs are shown at the top and bottom, and

they serve as transition points between the three phases.

For varying the number of views, SSC1 occurs at Nviews = 13, where X is of size 832×812.

In fact, also SSC2 occurs here, since κ has become finite. For varying the number of bins,

SSC1 occurs at the same place, but SSC2 needs 14 bins. In general, we have no way to

determine whether SSC1 and SSC2 occur in the same position for the whole system matrix

class, which makes SSC1 less reliable as a general reference of full sampling. On the other

hand, SSC2 is a reliable reference point for full sampling, however, SSC2 requires more

work to determine, because its location can change with a change of system matrix class.

After passing SSC2, the condition number κ decreases. For larger Nviews and Nbins, the

decay becomes slower, and we pick rsamp = 1.5 as a trade-off between a sufficiently small

condition number and a finite number of views. As an approximation of κDC we take the

value of κ at Nviews = Nbins = 4N = 128, yielding κDC = 9.17. Then SSC3 occurs at Nviews =

68 and at Nbins = 68, which suggests a symmetry in Nviews and Nbins. On the other hand, the

decrease in κ during the middle part is not symmetric in the parameters Nviews and Nbins; the

decrease in κ with Nviews is gradual while that of Nbins is step-like at Nbins = 48.

Nevertheless, at the position of SSC3, there is only small further reductions in κ to be gained

by going to larger Nviews and Nbins. The simpler condition SSC4 occurs at Nviews = 64 and

Nbins = 64, and it approximates SSC3 with rsamp = 1.5 closely.

C. Altering the System Matrix Class

Altering the system matrix class will in general alter the SSCs. To demonstrate this effect,

we replace the line-intersection based system matrix class by ray-tracing, using nearest-

neighbor interpolation at the mid-line of each pixel row. The experiment is repeated and the

obtained condition numbers are shown in Fig. 2, along with the ones based on line-

intersection, for comparison. The shown SSCs are for ray-tracing. While the same overall

trends are seen, there are some significant differences. First, for fixed Nviews = 64 we need

Nbins = 16 to obtain SSC2, compared to 14 for line-intersection. This firmly establishes that

SSC1 does not imply SSC2, and that the precise position of SSC2 cannot be inferred from

knowing SSC2 of a similar system matrix. Second, the ray-tracing condition numbers are

smaller than the same for line-intersection, for instance, kDC = 7.23 is 20% lower relative to

the line-intersection version of X. That the ray-tracing condition numbers are lower does not

necessarily mean that this method is “better” than the line-intersection method for real-world

applications, because the other side of the story is model error, which is not considered here.

Finally, the positions of SSC3 are different, for fixed Nbins = 64 coinciding with SSC4,

while for fixed Nviews = 64 occurring at Nbins = 56. Still, for larger Nviews and Nbins there are

only small further reductions in κ to be gained, and SSC4, at rsamp = 1.45, approximates

SSC3 closely.

One could imagine that other system matrix classes such as employing area-weighted

integration instead of the linear integration or different basis functions could alter the

condition numbers of X even more substantially. We do not include results for more system
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matrix classes, as our goal here is not to provide a comprehensive comparison between all

conceivable classes, but merely to stress that different classes can have different SSCs, and

to propose carrying out the same study for gaining insight in the particular system matrix

class at hand.

D. SSCs for Larger Systems

The results shown in Figs. 1 and 2 give a sense about various sampling combinations, but

the system size is unrealistically small. In this section we aim to extend the results to larger

systems. For large X, it is not practical to compute the direct SVD for evaluating κ. Instead,

we seek only to obtain σmin and σmax, which can be accomplished through the power and

inverse power methods [40].

For characterizing the present circular, fan-beam system matrix class, κ(X) is computed for

larger image arrays with sizes N = 32, 64, 128, 256. We focus on sampling conditions where

Nbins = 2N and report the data sampling in views, Nviews, as multiples of N, ranging from 1.0

to 4.0. The left plot in Fig. 3 shows the condition number as a function of N for each

sampling size on a double logarithmic scale. A clear linear trend is seen in all cases and the

best linear fits and their slopes are also shown, in all cases very close to 0.50, and we

conclude that κ scales with . For increasing Nviews, the condition numbers tend towards

the bottom line, note in particular that not much difference is seen between Nviews = 3N and

Nviews = 4N indicating that the limiting κ is approached. We conclude that κDC also scales

with . As a result, it can expected that at SSC4, i.e., Nviews = Nbins = 2N, κ(X)/κDC ≈
1.5, which was the case at N = 32. Hence, SSC4 will continue to approximate SSC3 closely,

when the image size is increased. To further support this conclusion we show in the right

plot of Fig. 3 the ratio rsamp = κ(X)/κDC as function of the number of views (normalized by

N) for each N. The rsamp values are almost identical for all N and intersect the line rsamp =

1.5 very close to Nviews = 2N, which is precisely SSC4.

E. Summary of SSCs

The conditions SSC1 and SSC2 are useful reference points for invertibility of X and can be

computed for any system matrix class. The size of the gap between SSC1, X being square,

and SSC2, X having an empty null space, is governed by inherent linear dependence of the

rows of the system matrix. Because the results show little difference between SSC1 and

SSC2 for the present system matrix class and SSC1 is easier to compute, we use only SSC1

in the simulation studies in Section V.

For system matrix classes representing CT imaging, stability of the system matrix plays an

important role, and accordingly we have introduced SSC3 which also can be computed for

any system matrix class. For the present, circular fan-beam system matrix class, SSC3 at

rsamp = 1.5 is a useful operating point, and this level of sampling is well approximated by

the simple rule, SSC4, where Nviews = Nbins = 2N. We point out that for other system matrix

classes, even those representing circular fan-beam CT, other operating points for SSC3 may

be more appropriate and empirical studies must be performed to see if a simple condition,

such as SSC4, can approximate accurately SSC3.
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In the remaining part of the paper we demonstrate how we can use the SSCs as a reference

for stating admissible undersampling factors in sparsity-exploiting reconstruction.

V. Numerical Experiments With SSCs and Sparsity-Exploiting

Undersampled Reconstruction

In this section we investigate sparsity-exploiting IIR in numerical simulation studies. Our

goal is to numerically demonstrate and quantify the undersampling admitted by sparsity-

exploiting IIR, i.e., at which an accurate reconstruction is obtained. We use numerical

simulation, because we are unaware of any theoretical results establishing undersampling

guarantees for the present system matrix class. We focus here on exploiting gradient-

magnitude sparsity by use of constrained TV-minimization.

Three important factors differentiate the present studies from previous simulation work with

constrained TV-minimization:

1. use of phantoms with realistic complexity;

2. numerically accurate solution to the constrained TV-minimization problem;

3. quantitative references for full sampling—the central topic of the paper.

For each factor, we briefly discuss the significance.

Much simulation work on constrained TV-minimization has used regular, piece-wise

constant phantoms, such as the Shepp–Logan phantom, to demonstrate the promise of the

technique. For that purpose, such unrealistically simple phantoms were fine, and simulations

were generally followed up by demonstration with actual CT projection data. For the present

purpose of quantifying admissible undersampling, we need phantoms with similar

complexity as would be encountered in CT applications, and as an example we focus on

breast CT. The standard measure of complexity employed in CS is the image sparsity, i.e.,

the number of nonzeroes in the image, or in the case of TV-minimization the number of

nonzeroes in the gradient-magnitude image. Accordingly, we choose a digital phantom with

realistic gradient-magnitude sparsity modeling breast anatomic structure [41].

The accuracy requirement on the solver of constrained TV-minimization for the present

study is extremely high. The optimization problems in Section V-B, below, are solved to

high accuracy, which has been made possible only recently for large-scale CT problems

involving the TV-semi-norm through development of advanced first-order methods [21],

[22], [25]. This level of accuracy is necessary, because empirical image error results

obtained by sweeping parameters of the system matrix class will be used for determining

whether a numerically computed solution is close to the original. High-accuracy solutions

remove any doubt about whether the resulting images, and the corresponding quantitative

measures, depend on the algorithm used to solve constrained TV-minimization.

The SSCs defined above provide reference points useful for interpreting the empirical

results of this section and help to quantify undersampling admitted by constrained TV-

minimization.
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A. Breast CT Background

Breast CT [42], [43] is being considered as a possible screening or diagnostic tool for breast

cancer. The system requirements are challenging from an engineering standpoint, because

this type of CT must operate with a total exposure similar to two full-field digital

mammograms (FFDM). FFDMs for a screening exam entail two X-ray projections, while

breast CT acquires on the order of 500 X-ray projections. The exposure previously used for

only two views is now divided up among 250 times more projections. Accordingly, sparsity-

exploiting IIR algorithms for CT may have an impact on the breast CT application. The

potential to reconstruct volumes from fewer views than a typical CT scan might allow an

increased exposure per view.

For the present study, we employ the breast phantom originally described in [41] and

displayed in Fig. 4. It consists of Npix = 51 468 pixels within the circular image region,

contained in a 256 × 256 array. The breast phantom has a small region of interest (ROI)

containing five tiny ellipses which model microcalcifications. The gray values range from

1.0 to 2.3, normalized to the background fat tissue, hence unit-less. The modeled tissues and

corresponding gray values are fat at 1.0, fibroglandular tissue at 1.10, skin at 1.15, and

microcalcifications ranging from 1.9 to 2.3. The sparsity in the gradient magnitude image is

10019, or roughly one fifth of Npix. Because we are investigating the utility of gradient-

magnitude sparsity-exploiting algorithms, it is important that the test phantom have a

realistic sparsity level relative to the actual application.

B. Simulation Optimization Problems and Algorithms

Our goal is to evaluate quantitatively what level of undersampling reconstruction through

(11) allows. Similar to the analysis of the linear imaging model (2), only data g⃗ in the range

of X is considered. Although not a realistic assumption for actual CT data, this “inverse

crime” scenario [44] is appropriate for obtaining a reference of the underlying admissible

undersampling. For the numerical studies, we solve a relaxed form of (11), where the data

equality constraint is replaced by an inequality allowing for a small deviation ε from data as

measured by the distance D between the data g⃗ and the projection X f ⃗ of some image f⃗

(15)

where

Scaling the data error D with Nviews and Nbins is done to enable comparison across images

reconstructed from different view and detector bin numbers. The constrained TV-

minimization problem is
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(16)

Accurate solution of (16) is nontrivial; although the objective is convex, it is not quadratic.

The algorithm employed here solves its Lagrangian using an accelerated first-order method,

using only the objective and its gradient, and is explained in detail in [21]. An important

technical detail for this algorithm is that it requires that the image TV-term be differentiable.

For the algorithm implementation we use a smoothed TV-term, , with a

small smoothing parameter, η = 10−10. One convergence check on the algorithm is

performed by evaluating

(17)

where R(f⃗) denotes a generic regularization term, and for constrained TV-minimization R(f⃗)
= ||f⃗||TV. The conditions for convergence, derived in [4], are that the gradients of the data-

error and regularization terms are back-to-back, cos α = −1, and D(X f ⃗, g⃗) = ε. The latter

condition assumes that the data-error constraint is active, which is the case for all the

simulations performed here. For the present results, iteration is terminated when both

(18)

are satisfied.

C. Admitted Undersampling by ℓ2-TV

We are interested in two separate notions of accurate reconstruction: exact reconstruction

and stable reconstruction. By the former, we mean that the reconstructed image is identical

to the original. Exact reconstruction is only possible when ε = 0, because the regularizing

effect of a nonzero ε introduces a bias relative to the original image. Having ε = 0 is only

relevant for noise-free data, which means that stability is not an issue. Since SSC2 ensures a

unique solution to (2), it can be used as a full sampling reference point for exact

reconstruction. In practice, for the considered system matrix class, we found little difference

in locations of SSC1 and SSC2, and we will therefore use SSC1 as a surrogate for SSC2.

Stable reconstruction is the corresponding concept for fixed, nonzero ε, where we cannot

hope for exact reconstruction. Instead, we are interested in the degree of sampling at which

further increase in sampling leads to no further improvement in the reconstruction. This

point of stable reconstruction can be compared to SSC3, since that is the point where no

further improvement of the system matrix condition number occurs. Since SSC4 was seen to
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approximate SSC3 for the present system matrix class and is simple to determine, it could

also be considered to use SSC4 instead for the reference point.

In the simulations, we take the image array to be the same as that of the breast phantom N =

256. The parameters of the circular, fan-beam system matrix class are varied in a fashion

parallel to the condition number plots of Fig. 1: first, Nbins is fixed at 2N and Nviews is varied

in the range [32, 512]; and second, Nviews is fixed at 2N and Nbins is varied in the range [32,

512].

Computing SSC1 and SSC4 is straightforward and they occur at Nviews = 101 and Nviews =

512, respectively. Computation of SSC3 was performed using the procedure outlined in

Section IV-D. For the fixed-bin case, SSC3 occurs at Nviews = 492, with rsamp = 1.51 and for

the fixed-view case at Nbins = 456.

In order to assess the undersampling with respect to exact reconstruction admitted by

exploiting image gradient-magnitude sparsity, we need access to the solution of ℓ2-TV for a

data-equality constraint, ε = 0. We are unaware of efficient algorithms that make ℓ2-TV with

ε = 0 feasible to solve in acceptable time for systems of realistic size. With the algorithm

described in Section V-B, we can obtain an approximation by solving ℓ2-TV with ε = 10−3,

10−4, and 10−5 and thus study the reconstruction error as ε approaches zero. As an error

measure, we use the root-mean-square-error (RMSE)

(19)

where f⃗* is the solution to ℓ2-TV and f⃗0 is the original phantom.

The computed RMSEs for the results from ℓ2-TV are displayed in Fig. 5. As in Section IV

we show SSC-locations at the top and bottom. The horizontal line shows the minimum gray

level contrast, 0.05, in the test phantom and provides a reference for the RMSE. An image

RMSE much less than the minimum gray-level contrast is an indicator that the reconstructed

image is visually close to the original phantom (barring pathological distributions of the

image error).

For the plots of δ versus Nviews, we note a steep drop in δ as Nviews increases past 40 views

and the drop is increasingly rapid as ε decreases. Based on these curves we extrapolate that

exact reconstruction would be attained for Nviews ≈ 50 at ε = 0. Because SSC1 occurs at

Nviews = 101, we note an admitted undersampling with respect to exact reconstruction of a

factor of 2 for the present simulation. Note that use of SSC1 leads to a conservative

estimate, because SSC2 can only be larger than SSC1.

For the plots of δ versus Nbins, the image RMSE curves drop much more gradually at each

of the ε’s investigated. Based on these curves it is only clear that δ is tending to zero at Nbins

= 190 as function of ε. Comparing to SSC1 at Nbins = 101, we do not observe any level of

admitted undersampling in the bin-direction with respect to exact reconstruction. Extending

the range of ε to smaller values may yield a different conclusion.
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This difference reflects an asymmetry in sampling of the two parameters of X. We note that

the asymmetry was also observed in the condition number dependence on Nviews and Nbins

for the N = 32 simulations in Section IV-B. For the present N = 256 simulations, a relatively

large κ(X) = 3.2 · 104 is seen for Nbins = 128 and Nviews = 512, compared to κ(X) = 1.5 · 103

for Nbins = 512 and Nviews =128. The results demonstrate a larger potential for successful

TV-based reconstruction from few views compared to using few bins.

Regarding stable reconstruction, we note that the curves in Fig. 5 all exhibit a plateau, where

δ levels off with increasing Nviews or Nbins, meaning that no gain in image RMSE is

achieved by increasing sampling. Thus, the left-most point of these plateaus is the point of

stable reconstruction. For the plot varying Nviews, we see that stable reconstruction begins at

Nviews ≈ 80, which is a factor of 6 fewer than SSC3. For the plot varying Nbins, the stable

reconstruction begins at Nbins ≈ 200, a factor of approximately 2 fewer than SSC3.

These results show quantitatively that significant undersampling in Nviews, particularly with

respect to stable reconstruction, is admitted for ℓ2-TV. This conclusion is achieved with a

phantom modeling a realistic level of gradient-magnitude sparsity. We do point out,

however, that these empirical results only apply to the presented simulation. To support the

present conclusion for admitted undersampling, we vary in Section VI different aspects of

the ℓ2-TV study.

D. Altering the Optimization Problem

To support the use of the gradient-magnitude sparsity exploiting ℓ2-TV for admitting

undersampling, we compare results with two other optimization problems

(20)

and

(21)

where ∇ represents a numerical gradient operation and is computed by forward finite-

differencing. The Lagrangian form of these optimizations are two forms of Tikhonov

regularization commonly used for IIR.

The solutions to ℓ2-magnitude and ℓ2-roughness are obtained with linear conjugate gradients

(CG) applied to the Lagrangians of these problems with the multiplier being adjusted until

the data-error constraint holds with equality. The convergence criteria are the same as what

is specified in (18) except that  for ℓ2-magnitude and  for ℓ2-

roughness.
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We focus on the ε = 10−5 case and plot image RMSEs for ℓ2-magnitude, ℓ2-roughness and ℓ2-

TV as function of Nviews for fixed Nbins = 512 in Fig. 6. We note little difference between

results from ℓ2-magnitude and ℓ2-roughness but a large gap between these results and those of

ℓ2-TV. The optimization problems ℓ2-TV and ℓ2-roughness differ only on the norm of the

image-gradient in the regularization term, while ℓ2-roughness and ℓ2-magnitude differ by the

presence of the gradient. It is clear from Fig. 6 that for this simulation, the ℓ1-norm has the

greater impact.

For large Nviews, the ℓ2-TV RMSE is actually slightly larger than that of ℓ2-magnitude. The

reason is the regularizing effect of having a nonzero ε, which causes a small bias of the

solutions compared to the original image. The relative size of the biases are not known in

advance. We conclude that the ℓ2-TV solution is not to prefer over the ℓ2-magnitude and ℓ2-

roughness solutions when Nviews approaches the SSC3 (rsamp = 1.5). Nevertheless, there is a

certain “sampling window,” for the present phantom, approximately for Nviews ∈ [50, 256],

where the TV-solution is superior to Tikhonov regularization in terms of RMSE.

In Fig. 7, we overlay the results of ℓ2-magnitude onto the results of ℓ2-TV from Fig. 5 in

order to investigate possible un-dersampling admitted by ℓ2-magnitude. The results of ℓ2-

roughness are not shown because they are similar to those of ℓ2-magnitude and to prevent

clutter in the figure. Going from left to right, both plots show a gradual decrease of δ for ℓ2-

magnitude as Nviews and Nbins increase with δ leveling off at Nviews ≈ 300 and Nbins ≈ 400.

For the investigated range of ε, ℓ2-magnitude does not admit any undersampling with respect

to exact reconstruction, but does show a marginal undersampling with respect to stable

reconstruction as the corresponding δ-curves reach the plateau before SSC3 and SSC4. In

summary, the un-dersampling admitted by ℓ2-magnitude is substantially less that that

admitted by ℓ2-TV for this simulation; particularly in considering view number

undersampling with respect to stability.

E. Altering the Image Evaluation Metric

Conclusions based on evaluating reconstructed images with a single summarizing metric,

such as the RMSE, can be misleading. While our aim is not a fully realistic image

evaluation, we want to show how the results can potentially change with a change of metric.

For example, with the task of microcalcification detection in mind, one might consider the

RMSE of only the ROI of the microcalcifications displayed in Fig. 4. This RMSE is denoted

δROI. Fig. 8 shows the corresponding plot for δROI. While there are numerical differences

between the δ and δROI plots, the trends are similar, giving us further confidence that the

RMSE of the entire image, δ, can be used for investigating admitted undersampling.

Another way to evaluate images is by visual comparison. The reconstructed images in Fig. 9

are shown for a range in Nviews showing the transition to accurate image reconstruction by

ℓ2-TV. That the ℓ2-magnitude and ℓ2-roughness show strong artifacts for this range is

expected as their corresponding image RMSEs are at the level of the minimum phantom

contrast level. Interestingly, the microcalcifications can be identified and well-characterized

in all reconstructions, although more clearly with more views. It may be argued that, from a

utility point of view, that 32 views would suffice if we are solely interested in the

microcalcifications and disregard the prominent artifacts of the background image. The ROI
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of the ℓ2-TV reconstructed images are shown with a narrow gray scale window in the bottom

row to reveal the high level of accuracy at Nviews = 50. We emphasize that our goal is not a

discussion about different artifacts but simply support our conclusions on undersampling

from Section V-C by illustrating the behavior in the transition region around Nviews = 50.

F. Altering the System Matrix Class

To illustrate the change in results due to change in the system matrix class, the RMSE, δ, is

again computed as function of Nviews for Nbins = 2N = 512 and for ε = 10−3, 10−4, and 10−5

but using a system matrix set up through ray-tracing with nearest-neighbor interpolation at

the mid-line of each pixel row, as in Section IV-C. Results are plotted in Fig. 10. The overall

trends are similar to those for line-intersection, however SSC3 occurs already at Nviews =

408, with rsamp =1.49. By closer comparison with the line-intersection results, it is seen that

the nearest-neighbor RMSEs are smaller than the line-intersection RMSE at the same Nviews.

This example serves to illustrate that the SSCs will change when the system matrix class is

altered.

While the present alteration is relatively minor, it is enough that the approximation SSC4 of

to SSC3 is worse, and larger differences can be expected with more radical changes such as

the use of nonpoint-like image expansion functions.

In terms of admissible undersampling for ℓ2-TV with the altered system matrix class, we see

very similar undersampling factors for both exact and stable reconstruction as for the line-

intersection class.

G. Altering the Phantom Sparsity

The breast phantom study is repeated employing a variation of the FORBILD head phantom

[45] which is highly sparse in the gradient-magnitude image. The present version of the

phantom, which is seen in Fig. 11, does not have the ear objects of the original phantom, and

the contrast levels have been increased so that the minimum gray-level contrast is the same

as for the breast phantom. The gradient magnitude sparsity is 2492, or approximately a

quarter of the breast phantom. In Fig. 11, the obtained δ for ℓ2-magnitude, ℓ2-roughness and

ℓ2-TV are shown as function of Nviews with Nbins = 2N = 512 and ε = 10−5.

The ℓ2-magnitude and ℓ2-roughness curves are almost identical to those of the breast

phantom. The SSCs are unchanged, because the same system matrix class is used. That two

so different looking phantoms show such similar δ-behavior suggests that the reconstruction

quality of ℓ2-magnitude and ℓ2-roughness depend only weakly on the particular phantom.

For ℓ2-TV, on the other hand, the step-like transition occurs already at Nviews = 12, for which

the reconstruction is shown in Fig. 11. We expect that this phantom would be recovered

exactly at Nviews = 12 in the limit ε → 0, leading to an admitted undersampling with respect

to exact reconstruction of a factor of approximately 8. Stable reconstruction occurs at Nviews

≈ 64, i.e., an undersampling also of a factor 8 with respect to stability.

Interestingly, the exact reconstruction result hints at the existence of a simple relation

between sparsity and admitted undersampling. Compared to the breast phantom, there is a
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gain in undersampling by 8/2 = 4. In comparison, we note that the change in gradient

magnitude sparsity relative to the breast phantom is 10019/2492 ≈ 4. That is, reducing the

sparsity by a certain factor leads to an improvement in the admitted undersampling by the

same factor. This result, if shown to hold, could be important for practical application of CS-

inspired sparsity-exploiting methods, since it provides quantitative insight into how many

views would suffice for reconstructing images of given sparsity. Another conclusion that can

be drawn is that simulations with images of too low sparsity compared to a realistic level in

the imaging scenario of interest are bound to yield overoptimistic promises of

undersampling potential. This could have been anticipated but the result establishes this

expectation quantitatively.

We caution, however, that the result is based on only two phantoms and further study is

required. For more robust conclusions, the present studies need to be performed on

ensembles of phantoms in order to verify that admitted undersampling for constrained TV-

minimization depends primarily on the gradient-magnitude image sparsity.

We also note that while we may have exact reconstruction of the head phantom at Nviews =

12 and the reconstructed image at ε = 10−5 appears very accurate in the [0.9, 1.1] gray scale

window, it is in fact not an exact reconstruction. By narrowing the gray scale to [0.99, 1.01],

also shown in Fig. 11, prominent artifacts become visible. This underlines that exact

reconstruction is not the relevant notion for a fixed, nonzero ε. Instead, stable

reconstruction, at Nviews = 64, yields an accurate reconstruction, and for the present case

already at Nviews = 32 (also shown in Fig. 11) the artifacts are reduced to a negligible level

in the [0.99, 1.01] gray scale window.

VI. Summary

We argue that a quantitative notion of a sufficient-sampling condition (SSC) for X-ray CT

using the DD imaging model is necessary in order to provide a reference for evaluating the

undersampling potential of sparsity-exploiting methods. We propose and apply four

different SSCs to a class of system matrices describing circular, fan-beam CT with a pixel

expansion. While SSC1 and SSC2 characterize invertibility of the system matrix, SSC3

characterizes numerical stability for inversion of the system matrix. A simple-to-compute

SSC4 is seen to approximate SSC3 closely for the circular, fan-beam full angular range CT

geometry.

We employ the SSCs as reference points of full sampling to quantify undersampling

admitted by reconstruction through TV-minimization on a breast CT simulation. Relative to

SSC1, we observe some undersampling potential of TV-minimization for exact

reconstruction and large undersampling relative to SSC3 and SSC4 for stable reconstruction.

We find few-view reconstruction to admit larger undersampling than few-detector bin

reconstruction, and we show evidence of a simple quantitative relation between image

sparsity and the admitted undersampling.

More generally, the proposed SSCs can help to engineer and understand other sparsity-

exploiting IIR algorithms by providing full sampling reference points for quantification of

admissible undersampling in other imaging applications of interest. This analysis can guide
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decisions on alternative optimization problems, object representations, sampling

configurations, and integration models.
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Fig. 1.
Condition numbers for system matrices (line-intersection) modeling circular fan-beam

projection data from the 812-pixel circular FOV contained within a 32 × 32 pixel square.

Top: number of bins is fixed at 64. Bottom: the number of views is fixed at 64. Left:

Double-logarithmic plot for overview. Right: Linear plot of details. The abbreviations SSC1,

SSC2, SSC3, and SSC4 are the sufficient-sampling conditions discussed in Section IV-A.
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Fig. 2.
Condition numbers for system matrices (ray-tracing with nearest neighbor interpolation, and

line-intersection for comparison) modeling circular fan-beam projection data from the 812

pixels circular FOV contained within a 32 × 32 pixel square. Top: number of bins is fixed at

64. Bottom: the number of views is fixed at 64. Left: double-logarithmic plot for overview.

Right: linear plot of details. The labels SSC1, SSC2, SSC3, and SSC4 are the sufficient-

sampling conditions, discussed in Section IV-A, for the ray-tracing system matrix.
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Fig. 3.
Left: condition numbers as function of image size. Each symbol represents different number

of views ranging from N to 4N. Circular image arrays are used with sizes given by N = 32,

64, 128, 256. The number of bins is fixed at 2N. With each number of views is also shown

the best linear fit and its slope is given. In all cases the condition number scales with .

Right: same condition numbers normalized by the respective κDC at each N and plotted as

function of view number normalized by image size N. The full line is the point-wise mean

and the dashed line is the position of SSC3 with rsamp = 1.5. Independently of N, SSC3 with

rsamp = 1.5 occurs very close to Nviews = 2N.
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Fig. 4.
Left: 256 × 256 pixelized breast CT phantom used in the present study. Middle: same with

ROI around microcalcifications shown magnified as inset. Right: the gradient magnitude

image, which has a sparsity of 10019 nonzero pixel values.
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Fig. 5.
Image RMSE, δ, for the data distance D(X f ⃗, g⃗) constrained by ε = 10−3, 10−4, and 10−5. The

image size is 256 × 256. Left: fixed Nbins = 2N = 512, as function of Nviews. Right: fixed

Nviews = 2N = 512, as function of Nbins. The labels SSC1, SSC3, and SSC4 are the

sufficient-sampling conditions discussed in Section IV-A.
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Fig. 6.
Image RMSE, δ, for ℓ2-magnitude, ℓ2-roughness, and ℓ2-TV reconstructions as a function of

the number of views for the number of bins fixed at 512, and the data distance D(X f ⃗, g⃗)
constrained by ε = 10−5. The horizontal dashed line shows the level of the minimum gray-

level contrast in the breast phantom. The labels SSC1, SSC3, and SSC4 are the sufficient-

sampling conditions discussed in Section IV-A.
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Fig. 7.
Image RMSE, δ, for ℓ2-magnitude and ℓ2-TV reconstructions and ε = 10−3, 10−4, and 10−5.

Left: fixed Nbins = 2N = 512, as function of Nviews. Right: fixed Nviews = 2N = 512, as

function of Nbins. The horizontal dashed line shows the level of the minimum gray-level

contrast in the breast phantom. The labels SSC1, SSC3, and SSC4 are the sufficient-

sampling conditions discussed in Section IV-A.
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Fig. 8.
Image RMSE as in Fig. 6 but for δROI, i.e., the RMSE restricted to the ROI around the

microcalcifications.
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Fig. 9.
First, second, third, and fourth columns show reconstructions from 32, 40, 48, 64 view data.

The first, second, and third rows show ℓ2-magnitude, ℓ2-roughness, and ℓ2-TV images with ε
= 10−5. The gray scale window is [0.95, 1.20] for the complete image, and [0.9, 1.8] for the

ROI blow-ups. The fourth row shows the ℓ2-TV ROIs enlarged in an extremely narrow gray

scale, [1.09, 1.11], in order to scrutinize the transition to sufficient sampling based on the

object sparsity. These images show that 50 views is sufficient for this system and object.
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Fig. 10.
Image RMSE, δ, for ℓ2-magnitude and ℓ2-TV reconstructions, as in Fig. 6 for varying ε,

computing X with ray-tracing and nearest-neighbor interpolation. Nbins is fixed at 512. The

labels SSC1, SSC3, and SSC4 are the sufficient-sampling conditions discussed in Section

IV-A.
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Fig. 11.
Top: Image RMSE, δ, for ℓ2-magnitude, ℓ2-roughness, and ℓ2-TV reconstructions, as in Fig. 6,

except that the data are generated from the head phantom shown on the right. The labels

SSC1, SSC3, and SSC4 are the sufficient-sampling conditions discussed in Section IV-A.

Bottom: images reconstructed for Nviews = 12 shown in a gray scale window of [0.9, 1.1] on

the left and a narrow gray scale window of [0.99, 1.01] in the middle. On the right is the

reconstructed image for Nviews = 32 in the narrow gray scale window [0.99, 1.01]. At Nviews

= 12 the RMSE is 0.005 resulting in visible artifacts for the image shown in the 1% gray

scale window, while the RMSE is a factor of 10 less for Nviews = 32.
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