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A fast multilocus test with adaptive SNP selection for
large-scale genetic-association studies

Han Zhang1, Jianxin Shi1, Faming Liang2, William Wheeler3, Rachael Stolzenberg-Solomon1 and Kai Yu*,1

As increasing evidence suggests that multiple correlated genetic variants could jointly influence the outcome, a multilocus test

that aggregates association evidence across multiple genetic markers in a considered gene or a genomic region may be more

powerful than a single-marker test for detecting susceptibility loci. We propose a multilocus test, AdaJoint, which adopts a

variable selection procedure to identify a subset of genetic markers that jointly show the strongest association signal, and

defines the test statistic based on the selected genetic markers. The P-value from the AdaJoint test is evaluated by a

computationally efficient algorithm that effectively adjusts for multiple-comparison, and is hundreds of times faster than the

standard permutation method. Simulation studies demonstrate that AdaJoint has the most robust performance among several

commonly used multilocus tests. We perform multilocus analysis of over 26 000 genes/regions on two genome-wide association

studies of pancreatic cancer. Compared with its competitors, AdaJoint identifies a much stronger association between the gene

CLPTM1L and pancreatic cancer risk (6.0�10�8), with the signal optimally captured by two correlated single-nucleotide

polymorphisms (SNPs). Finally, we show AdaJoint as a powerful tool for mapping cis-regulating methylation quantitative trait

loci on normal breast tissues, and find many CpG sites whose methylation levels are jointly regulated by multiple SNPs nearby.
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INTRODUCTION

Genome-wide association studies (GWAS) have emerged as an
effective approach in identifying susceptibility loci underlying various
complex traits. The single-marker test, which evaluates the association
between the outcome and one genetic marker, that is single-
nucleotide polymorphism (SNP), at a time, is the most commonly
used approach in the search for promising chromosome regions
associated with the outcome. A chromosome region or gene that
contains a SNP exhibiting a strong association signal would be
considered for further study in order to fine-map the functional loci.
Although it is computationally convenient to use, the single-marker
test is not always the most effective approach for the detection of
relevant regions. As demonstrated by Yang et al1 and Ke2, it is likely
that information at a single SNP might not fully capture the
association evidence in the considered region in situations when
there are multiple causal loci in the region, or when the only
functional variant cannot be directly measured and a single SNP is
not its best surrogate. Thus, a multilocus test, which evaluates the
association between the outcome and all SNPs in the gene/region
jointly, can be a valuable alternative to the single-marker approach.

The major challenge facing the construction of a multilocus test is
how to synthesize the information contained in multiple SNPs within
the considered gene. In general, there are three types of approaches to
consider. The first approach designs a test statistic that summarizes all
genetic variation in the region and assesses its association with the
outcome.3–11 The second approach uses an unsupervised dimension

reduction procedure, such as principal component (PC) analysis, to
select a proportion of genetic variation (contained in either a subset
of SNPs or selected PCs) without referring to their association with
the outcome, and then relates the selected components to the
outcome.12–15 The third approach employs a supervised variable
selection (SVS) procedure to identify a subset of variables that are
most relevant to the outcome and then designs a test statistic based
on the selected variables.16,17

For the first and second approaches, it is possible to design a test
statistic with a known asymptotic distribution. As a result, its
significant level can be easily obtained and thus the method is
suitable for large-scale genome-wide gene-based analysis, where we
typically evaluate over 20 000 genes/regions. But these two approaches
can suffer from major power loss as they tend to include irrelevant
information blindly in the test statistic. Due to the correlation among
SNPs within a gene, some SNPs might not contribute additional
association evidence after conditioning upon genotypes at a set of
SNPs that capture sufficiently all the measured information about the
risk loci. In this regard, the third approach with a SVS procedure is
more appealing, as a sensitive variable selection strategy can help to
maximize the association signal by selecting the most relevant SNPs
while filtering out the redundant ones. One major drawback of the
multilocus testing strategy with a SVS procedure is its high
computational demand. It is well known that supervised variable
selection can lead to various over-fitting problems.18 Thus, it usually
requires a time-consuming resampling-based procedure for evaluating
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the significance level of the final test statistic in an unbiased manner.
The computational burden associated with the SVS approach, such as
the one by Yu et al,17 would become the major hurdle for GWA
studies. Huang et al16 proposed a gene-based test based on a
computationally efficient Bayesian greedy search algorithm. But the
test is only designed for the study of continuous outcomes.

We propose a novel adaptive joint test procedure as a multilocus
test that takes the linkage disequilibrium (LD) structure into account
and adopts a variable selection procedure to maximize the signal-to-
noise ratio. The significance level of the proposed test is evaluated by a
computationally efficient algorithm that can be hundreds of times
faster than the standard permutation-based method. We demonstrate
the advantage of the new procedure through extensive simulation
studies, as well as two real data applications.

METHODS

Adaptive joint test
We will first focus on the binary outcome, e.g. disease status in case-control

study. The extension to continuous outcome will be described later. Suppose

we have n subjects in total. For the ith subject with covariates Xi, let yi and Gi

be its binary outcome and the vector of genotypes on all the testing SNPs in a

gene. Under the null hypothesis that none of the SNPs is associated with the

disease, we fit the reduced logistic regression model,

logit Pðyi ¼ 1 j XiÞ ¼ XT
i a; i ¼ 1; 2; . . . ; n;

and get the maximum likelihood estimate â of a. Define

ŷi ¼ 1
�
ð1þ expð�XT

i âÞÞ and the diagonal matrix A ¼ diagfŷið1� ŷiÞ;
i ¼ 1; 2; . . . ; ng. Let y¼ (y1,y2,y,yn)T, X¼ (X1,X2,y,Xn)T and G¼
(G1,G2,?,Gn)T. Based on the observed data D ¼ fy;X;Gg, we can test any

given set of SNPs with joint genotype G̃ in the gene by the following score test:

TG̃ ¼ ST
G̃

V � 1
G̃

SG̃ ð1Þ

where the score SG̃ ¼ G̃
Tðy� ŷÞ, and the covariance matrix

VG̃ ¼ G̃
T

AG̃� G̃
T

AXðXTAXÞ� 1XTAG̃:19

Yang et al1 and Ke2 demonstrated empirically that joint testing of multiple

SNPs can sometimes detect more association signal than the single-marker

analysis. Here we show in a simplified scenario how the power of single-

marker analysis varies according to an underlying risk model with two

correlated risk factors. We consider a balance case-control study with

a total of n subjects, and a true risk model of the form logit

(P(y¼ 1|G1,G2))¼ aþb1G1þb2G2, with G1 and G2 being the two binary

risk factors with correlation r. Let pi¼P(Gi¼ 1), i¼ 1, 2. Under this risk

model, we derive the power of the single-marker test for H0: b1¼ 0, which is

the score test of the risk factor G1, as a function of n, r, bi and pi, i¼ 1, 2

(see Supplemental Materials). Figure 1 illustrates the case when p1¼ p2¼ 0.4,

n¼ 2000, b2¼ 0.1 with varying r and b1. It is evident from the figure that the

power of the single-marker test for G1 is very sensitive to the correlation level

between the two risk factors. For example, when b1¼ 0.2, the power of the

single-marker test for G1 is 0.79 with r¼ 0.5, and drops to 0.38 with r¼ �0.5.

This illustrates the importance of using the joint test approach when there are

multiple correlated risk SNPs in the gene, as the single-marker analysis can

have much diminished power due to this ‘curse of correlation’.

In a gene or an annotated region with multiple SNPs, a multilocus test using

all SNPs, such as (1), might not be optimal as some SNPs could be

independent of the outcome after conditioning on the relevant SNPs (either

the causal ones, or the ones tagging the ungenotyped functional variants). To

enhance the power of the multilocus test, we use the following supervised

variable selection strategy to identify the most relevant SNPs. We want to find

the optimal risk model Mk with mk SNPs, k¼ 1,y,K, where K and mk are pre-

specified by the user, and define the corresponding joint score test statistic T
ð0Þ
k

based on each identified model. Clearly, we cannot find the optimal risk model

Mk exactly unless mk or the total number of SNPs in the gene is small. Instead,

we propose to use a modified forward stepwise variable selection strategy,

which first finds the optimal one-SNP and two-SNP models with the largest

joint score test statistics, respectively. Starting with the optimal two-SNP

model, the algorithm then sequentially expands the currently identified risk

model by one more SNP in such a way that the resulting risk model has the

largest possible joint score test statistic. As we do not know the size for

the true risk model, we define the final multilocus test statistic as

minfpð0Þk ; k ¼ 1; . . . ;Kg, where p
ð0Þ
k is the significance level of T

ð0Þ
k . Typically

p
ð0Þ
k can be calculated by computationally intensive permutation. The out-

comes are reshuffled many times when computing the joint score statistics

under the null. Note that for large sample size, the computational burden for

calculating the score S ¼ GTðy� ŷÞ can be the bottleneck so that the standard

permutation strategy is infeasible when assessing extremely small P-values. We

adopt the direct simulation approach (DSA) to generate the null score S

through a multivariate normal distribution.20

S ¼ GTðy� ŷÞ � N ð0;VÞ; ð2Þ

where V¼GTAG�GTAX(XTAX)�1XTAG, then the score test statistics under

the null are computed accordingly, along with the variable selection mentioned

before. Here is a brief summary of the basic steps for conducting the

multilocus test, called AdaJoint. More detailed can be found in the

Supplemental Materials.

1. Identify the optimal models with m1,m2,y,mK SNPs by the stepwise

forward selection, and obtain score test statistics T
ð0Þ
1 ;T

ð0Þ
2 ; . . . ;T

ð0Þ
K

accordingly.

2. Compute the empirical P-values p
ð0Þ
k for T

ð0Þ
k by the DSA procedure. Define

p
ð0Þ
0 ¼ minfpð0Þk ; k ¼ 1; 2; . . . Kg as the final multilocus test statistic.

3. Evaluate the significance of p
ð0Þ
0 by the algorithm in Ge et al 21.

As there might not be too many risk variants in a gene or genetic region, we

recommend to set K as a small integer, e.g. 5, and mk¼ k, k¼ 1,2,y,5. Let k*

be the index where p
ð0Þ
k� reaches the minimum level. The identified risk model

consisting of the first mk* selected SNP(s) can be regarded as the most optimal

risk model that shows the strongest association evidence for the gene.

P1 = P2 = 0.4, n = 2000, β2 = 0.1 Power
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Figure 1 The power of marginal score test as a function of regression

coefficient of targeting binary risk factor G1 and its correlation r with the

other risk factor G2. The risk model is assumed as the logistic regression

model with the form logit(P(y¼1|G1,G2))¼ aþ b1G1þ b2G2. The heat map

shows the power for a study with 1000 cases and 1000 controls under

scenarios where b2¼0.1, p1¼ p2¼0.4.
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Extension to continuous outcome
Under the null, the asymptotic normality of the score vectors in (2) still holds

for a continuous outcome y when the linear regression model is assumed,

except that the covariance matrix has a different form

V ¼ ŝ2ðGTG�GTXðXTXÞ� 1XTGÞ; ð3Þ

where ŝ2 is the maximum likelihood estimate of the variance parameter in

linear regression model. The previously described adaptive joint test is then

applicable to the continuous outcomes without other modifications.

Other multilocus tests
There are many multilocus tests proposed in the literature. Here we consider

just the following three representative ones. One is the Min-p test, which

focuses on the SNP with the smallest marginal P-value and uses it as the test

statistic.22 Notice that the Min-p test is a special case of the AdaJoint test, with

K¼ 1 and m1¼ 1. Another multilocus test to consider is the sequence kernel

association test (SKAT23) which is derived from a random-effects model. When

the linear kernel is adopted, the SKAT statistic is essentially a sum of marginal

score test statistics on individual SNPs. The third one is a speeded-up version

of the adaptive rank truncated product (ARTP) method,24 which combines the

marginal P-values on a set of selected SNPs. In this improved version, we

replace the time-consuming resampling-based procedure used in the original

algorithm with the DSA described above.

RESULTS

Application to GWAS of pancreatic cancer
We demonstrated the application of the proposed method by
applying it on two GWAS of pancreatic cancer. We downloaded
the two GWAS data sets from the Database of Genotypes and
Phenotypes.25 The first GWAS (PanScan I) genotyped about
550 000 SNPs from 1896 individuals with pancreatic cancer and
1939 controls drawn from 12 prospective cohorts and one hospital-
based case-control study.26 The second GWAS (PanScan II)
genotyped about 620 000 SNPs in 1679 cases and 1725 controls
from seven case-control studies.27 The downloaded PanScan II GWAS
did not include the 546 subjects from the PACIFIC study. For our
analysis, we focused on people primarily of European ancestry,
i.e. people with their European admixture coefficient larger than

0.85 estimated by STRUCTURE.28 There were 3275 cases and 3376
controls left for the multilocus analysis. We conducted a multilocus
analysis on a total of 26 247 genes or annotated regions extracted by
the software GLU (http://code.google.com/p/glu-genetics/). We
extracted SNPs within 20 kb upstream and 10 kb downstream of a
gene or annotated region. We set the threshold for genome-wide
significance at 2.0� 10�6 (E0.05/26247) according to the Bonferroni
correction for all 26 247 gene-based tests.

Multilocus analysis. The logistic regression model was adjusted for
study, age, sex and the 10 PCs (five from each of the two GWAS) for
the adjustment of population stratification. The genotype at each SNP
was coded as 0, 1 or 2, according to the number of minor alleles. The
SNPs with missing rate larger than 2%, or minor allele frequencies
(MAFs) less than 0.02 were excluded from the analysis. Missing
genotypes of the remaining SNPs were simply imputed as the
population average. Given the low missing rate of genotyping, the
results were not sensitive to the way how we imputed the genotype.
For two SNPs with pairwise LD coefficient r2 larger than 0.99, the one
with a smaller MAF was discarded. This can avoid the occurrence of a
singular matrix when calculating the inversion. When applying the
AdaJoint test, we chose K¼ 5, with mk¼ k, k¼ 1, 2, y,5 and used
106 direct simulation steps to evaluate the significance level. For genes
with estimated P-values less than 10�4, we further refined their P-
value estimates with 109 direct simulation steps.

Table 1 lists the multilocus analysis results for genes and annotated
regions that had multilocus P-value less than 10�4 by at least one of
four considered tests, including AdaJoint, ARTP, Min-p and SKAT.
Among the three established genes, CLPTM1L, NR5A2 and ABO,
AdaJoint can detect two (CLPTM1L and NR5A2) with P-values below
the threshold 2.0� 10�6, whereas failed to identify ABO (P¼ 7.3
� 10�6, which was close to global significance level). ARTP, Min-p
and SKAT each detected one but missed two genes. Notice that the
sample size used in this analysis was smaller than the original two
GWAS combined, as we focused on people with European ancestry
and did not include subjects from the PACIFIC study.

Table 1 Testing results for top 17 genes. These are genes on which at least one of the four considered tests produce a P-value no more than

1.04�10�4

Gene Location AdaJoint ARTP Min-p SKAT

P-value Rank P-value Rank P-value Rank P-value Rank

CLPTM1L 5p15.33 6.0�10�8 1 4.4�10�6 3 1.1�10�5 3 7.3�10�7 1

NR5A2 1q32.1 7.9�10�7 2 4.1�10�7 1 3.2�10�7 1 4.0�10�4 9

ABO 9q34.2 7.3�10�6 3 3.5�10�6 2 2.6�10�6 2 1.4�10�5 2

CTRB2 16q23.1 1.6�10�5 4 3.2�10�4 15 1.5�10�4 15 8.9�10�4 11

HNF1A 12q24.31 5.5�10�5 6 4.2�10�5 6 2.2�10�5 5 7.4�10�5 3

C12orf27 12q24.31 5.5�10�5 6 3.6�10�5 5 2.1�10�5 4 1.2�10�4 6

LOC100131601 16q23.1 5.8�10�5 7 8.1�10�5 8 4.0�10�5 7 5.4�10�4 10

TERT 5q15.33 6.9�10�5 8 3.2�10�5 4 4.5�10�5 8 8.0�10�5 4

SMTN 22q12.2 8.0�10�5 10 1.0�10�4 12 4.0�10�5 7 3.2�10�3 14

LOC387646 10p12.1 8.0�10�5 10 8.3�10�5 9 5.5�10�5 10 2.4�10�4 7

LOC100130177 5q33.3 1.0�10�4 14 9.0�10�3 16 3.7�10�2 16 1.1�10�2 15

LOC442426 9q21.32 1.0�10�4 14 6.6�10�2 17 9.1�10�2 17 6.1�10�2 17

TMEM213 7q34 1.0�10�4 14 1.1�10�4 13 5.0�10�5 9 1.6�10�3 12

CTRB1 16q23.1 1.0�10�4 14 2.5�10�4 14 1.2�10�4 14 2.5�10�4 8

BCAR1 16q23.1 1.2�10�4 15 1.0�10�4 12 6.0�10�5 11 2.0�10�3 13

ANKRD12 18p11.22 2.0�10�4 16 1.0�10�4 12 1.0�10�4 13 1.7�10�2 16

SHH 7q36.3 2.4�10�4 17 5.5�10�5 7 9.8�10�5 12 1.2�10�4 6
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The advantage of the AdaJoint is most evident when applying to
the gene CLPTM1L (Table 2). The most significant SNP (rs401681) in
the gene had a marginal P-value of 1.8� 10�6 and an adjusted P-
value of 1.1� 10�5 after accounting for multiple comparisons within
the gene, suggesting that this locus cannot be identified by a single-
marker analysis. AdaJoint yielded a more significant gene-level P-
value (P¼ 6.0� 10�8) by identifying a risk model consisting of two
moderately correlated SNPs rs401681 and rs10073340 with r2¼ 0.26.
Even though rs10073340 showed no marginal effect (P¼ 0.14), it
turned out to carry substantial association signal after conditioning
on rs401681 (P¼ 7.0� 10�6). Although the conditional P-value is
biased because of variable selection, the result from AdaJoint indicates
that the joint test of rs401681 and rs10073340 indeed enhances the
power. The weakened marginal signal of the SNP rs10073340 is due to
the ‘curse of correlation’,1 a phenomenon illustrated in Figure 1.
In this example, AdaJoint achieved a net gain of power after paying
for the penalty of multiple-comparison occurred during the search for
the best risk model.

Application to methylation QTL data
Identifying genetic variants contributing to the variation of site-
specific methylation levels is crucial to understand the genetic control
of epigenetic regulation. The standard approach for detecting methyla-
tion quantitative trait loci (meQTLs) is based on single-marker
analysis.29–31 Here, we demonstrated that multiple SNPs may jointly
regulate the methylation at a CpG site, and that the joint analysis, such
as AdaJoint can improve the power of detecting meQTLs.

We applied AdaJoint for continuous outcome to identify meQTLs
in 67 normal breast tissue samples from The Cancer Genome Atlas.32

For each sample, the levels of methylation for 485 511 CpG cites
were measured using the Illumina Infinium HumanMethylation450
BeadChip array, whereas approximately 900 000 SNPs were genotyped
using the Genome-Wide Human SNP Array 6.0. As a demonstration,
we only analyzed the 163 CpG sites that had the largest methylation
variation among subjects. Each methylation trait was transformed to
follow the standard normal distribution. We focused on identifying
cis-regulating SNPs, i.e. SNPs within 100 kb from the target CpG site.
The SNPs with missing rate larger than 2%, or MAFs less than 0.1
(due to the small sample size) were excluded from the analysis. For
two SNPs with pairwise LD coefficient r2 larger than 0.9, the one
with a smaller MAF was discarded. Genetic-association testing was
adjusted for three PC vectors based on PC analysis of GWAS SNPs to
correct for potential population stratification, and further adjusted for
three PC vectors based on PC analysis of 485 511 methylation traits to
remove potential systematic methylation measurement bias.29 Out of
the 163 CpG sites, there were 14 sites with Bonferroni corrected
P-values less than 1.0� 10�6, therefore were not considered for
further analysis.

Due to the limited sample size, the covariance approximation in (3)
that was adopted in AdaJoint, ARTP, and Min-p may not be
appropriate, especially when evaluating small P-values. We therefore
performed AdaJoint, ARTP and Min-p by 109 replicates of permuta-
tion in which the genotypes were shuffled while maintaining the
relationship between methylation traits and the covariates. We
searched for the best risk models with up to three SNPs when
applying AdaJoint and ARTP.

We applied AdaJoint, ARTP, Min-p and SKAT to the remaining 149
sites, and compared their P-values in Figure 2. AdaJoint identified a
single-marker model as the best risk model for 58 CpG sites (shown
as blue solid circles in Figure 2), and a multi-marker model as the best
risk model for the other 91 CpG sites (shown as red solid circles and
triangles in Figure 2). In Table 3, we listed CpG sites where there were
multiple nearby SNPs jointly influencing the methylation level
(Pr1.0� 10�5 ). It is clear from Figure 2 that AdaJoint is more
powerful than other considered methods for detecting cis-acting
meQTLs.

Simulation studies
We conducted extensive simulation studies to compare performances
among AdaJoint, Min-p, ARTP and SKAT. We used genotypes
generated by the two pancreatic cancer GWAS as a template for the

Table 2 Results of marginal tests and joint score tests for the top five

SNPs selected by AdaJoint in gene CLPTM1L

Selected SNP

Marginal

P-value

Joint test

P-valuea

Adjusted joint test

P valueb

rs401681 1.8�10�6 1.7�10�6 1.1�10�5

rs10073340 0.14 4.4�10�10 3.0�10�8

rs27061 1.5�10�3 1.1�10�9 4.0�10�8

rs4635969 5.9�10�6 3.3�10�9 5.0�10�8

rs4975616 1.9�10�5 7.2�10�9 4.0�10�8

aUnadjusted P-values of the joint score test on the set of selected SNPs.
bAdjusted P-values for the joint score test accounting for model selection (defined as p

ð0Þ
k in

the text).
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Figure 2 Comparison of the five tests when applied to meQTLs data. The P-values of AdaJoint, ARTP and Min-p were calculated from 109 replicates of

permutation. For each methylation trait, we tested its association with the SNPs within 100kb from the target CpG site. The blue solid circles represent the

CpG sites where AdaJoint identified a single-marker model as the best risk model. The red solid circles and triangles represent the CpG sites where

AdaJoint identified a best risk model with multiple SNPs. The red solid triangles represent the seven CpG sites where AdaJoint identified a best model with

multiple SNPs and had the P-value less than 1.0�10�5. More results about these seven CpG sites are given in Table 3.
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simulation. We first focused on selected genes with different sizes,
RP11-35N6.1 with 57 SNPs, and ADAMTS12 with 108 SNPs. For each
gene, we considered a variety of scenarios for the underlying risk
models, which are summarized in Supplementary Table 1. Each
simulated data set consisted of 3000 cases and 3000 controls. The log
odds ratio for each scenario was chosen such that the powers of the
considered tests were reasonably large. Genotypes for controls were
directly sampled from the GWAS with their LD pattern maintained.
For cases, their genotypes at the considered gene were assigned by
sampling from the same data set with weights specified by the risk
model (see Yu et al 17 for more details on how the genotypes were
assigned). In Table 4, we investigated the empirical type I errors of the
five tests at the level a¼ 0.05 and a¼ 1.0� 10�4 based on 106

replicated null data sets. All tests appeared to have proper type I
error under the level 0.05. However, SKAT had some inflation under
the level a¼ 1.0� 10�4 while the other four tests still maintaining the
expected type I error.

The power simulations were summarized based on 1000 replicated
data sets at the nominal level of 0.05. The empirical powers at the
gene RP11-35N6.1 are summarized in Figure 3 (a). All tests had
comparable powers under scenarios 1–4. However, when there were
two causal SNPs (with r2¼ 0.54) and their minor alleles affected the
disease risk in opposite directions, the power advantage of the
AdaJoint test was obvious (with power of 0.92, 0.34, 0.34 and 0.25
for AdaJoint, Min-p, ARTP and SKAT, respectively).

We also compared the performance of those five tests at the larger
gene ADAMTS12, where the signal-to-noise ratio can be very low if
there are just one or two causal SNPs. The results are summarized in
Figure 3 (b). The aggregation approach used by SKAT did not
perform well in all considered scenarios as it included too many
irrelevant SNPs. AdaJoint, Min-p, and ARTP had similar performance
under scenario 1–4. But once again, under scenario 5, when the
minor allele for one of two causal SNPs was protective and the other
was deleterious, AdaJoint showed a clear advantage over the remain-
ing tests (with power of 0.92, 0.55, 0.55 and 0.19 for AdaJoint, Min-p,
ARTP and SKAT, respectively).

Finally, we compared the power of the four tests using a simulation
study design similar to that in Wu et al 23. We focused on the gene
MYO9B, with 25 relatively common SNPs (MAFs 0.079–0.49). In this
simulation, we considered 25 scenarios. Under each scenario, one of
the 25 SNPs was designated as the causal SNP, with its genotype not
available for analysis. We generated 1000 data sets, each consisting of
3000 cases and 3000 controls. Genotypes at 24 SNPs (excluding the
one chosen as the causal SNP) were available for the gene-based

analysis. The odds ratio for each causal SNP was chosen such that the
power of the 1-df score test for detecting the causal SNP was 0.9
under the type I error rate of 0.05, given the minor allele frequency
(MAF) of the causal SNP and the sample sizes. Figure 4 illustrated the
powers of the five considered tests for each of 25 scenarios. In the
figure, these 25 scenarios were arranged on the horizontal axis
according to the mean of the top five r2’s measured between the
designated causal SNP and each of the other 24 SNPs. We can see
from the figure that no method can completely dominate the others.
The SKAT test showed some advantages when the unmeasured causal
SNP was in high LD with the other measured SNPs (the mean of the
top five r2 is over 0.4), but the AdaJoint test was more favorable in
other cases.

Overall, we demonstrated that the AdaJoint test has the most
robust performance over other considered methods, especially
in situations where there were multiple correlated causal SNPs in
the considered gene or region.

Computational efficiency
The proposed AdaJoint test benefits from several computationally
efficient algorithms and it is suitable for genome-wide gene-based
analysis. We showed in Supplementary Table 2 (Supplemental
Materials) the running time of the AdaJoint test with two different
simulation strategies, the DSA and the standard permutation proce-
dure, for the evaluation of P-value. For each gene, the simulated data
set included 3000 cases and 3000 controls. The experiment was
carried out on a 2.8 GHz Xeon CPU Linux machine, with 105

iterations for each simulation strategy. At each of the iterations,
calculating the sum of scores over individuals takes time O(n)

Table 3 Summary of the most significant loci in the methylation QTLs data

P-valuesb

chr Location (bp) # of SNPsa Best risk model detected by AdaJoint AdaJoint ARTP Min-p SKAT

5 179740914 47 rs2112594, rs2386854, rs10479572 1.6�10�8 1.2�10�5 1.1�10�5 4.0�10�6

5 179741104 47 rs2112594, rs2386854, rs17080199 2.8�10�8 1.0�10�5 2.3�10�5 5.1�10�6

5 179740743 47 rs6879260, rs2892152, rs10479573 2.0�10�8 6.6�10�5 3.5�10�4 9.6�10�6

6 32551749 7 rs9272346, rs9272535, rs9271720 1.8�10�8 3.2�10�6 1.6�10�6 2.0�10�3

12 740100 48 rs10849372, rs2075032, rs11063749 5.0�10�8 1.1�10�5 3.0�10�5 5.2�10�4

16 419975 24 rs11649268, rs8063821, rs4984666 6.3�10�6 4.7�10�6 1.0�10�5 4.6�10�5

21 43528205 63 rs11701371, rs220110, rs220120 8.1�10�7 7.6�10�5 9.4�10�5 1.2�10�3

aThe number of SNPs involved in final analysis, which are less than 100 kb from the target probe. The SNPs with missing rate larger than 2%, or the minor allele frequencies (MAFs) less than
0.1 were excluded from the analysis. For two SNPs with r2 larger than 0.9, the one with a smaller MAF is discarded.
bThe P-values of AdaJoint, ARTP and Min-p were calculated based on 109 replicates of permutation.

Table 4 Empirical type I errors based on 106 replicates of simulation

conducted at gene RP11-35N6.1 and ADAMTS12.

Level AdaJoint ARTP SKAT Min-p

RP11-35N6.1

0.05 0.049 0.051 0.047 0.051

1.0 �10�4 1.0�10�4 9.8�10�5 1.6�10�4 8.3�10�5

ADAMTS12

0.05 0.049 0.047 0.047 0.049

1.0�10�4 9.2�10�5 9.6�10�5 2.2�10�4 1.2�10�4
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(n is the sample size), which is time consuming. This is the main reason
why the standard permutation procedure is much slower, compared
with the DSA. With 104 iterations, AdaJoint took less than 36 h to scan
all of the 26 247 genes in the gene-based analysis of the pancreatic cancer
GWAS dataset (3275 cases and 3376 controls). In practice, we can
further save computing time by choosing the number of iterations
adaptively, based on the current estimate of the P-value, as the main
goal is often to identify genes with P-values less than a given threshold.

DISCUSSION

We propose a novel adaptive joint test (AdaJoint) as a multilocus test
that takes the LD structure into account and adopts a proper variable
selection procedure to maximize the association signal. The signifi-
cance of the multilocus test is evaluated by a computationally efficient
algorithm that can be hundreds of times faster than the standard
permutation-based method. We also extended the test to analyze
quantitative outcome. We demonstrate the advantage of the new test
through a large-scale GWAS of pancreatic cancer and a methylation
study on normal breast tissues. Extensive simulation studies are
conducted to further investigate the performance of the test.

When conducting a gene-based test screening for all genes/regions
in the genome, we inevitably will encounter very small P-values, given
that there are usually over 20 000 genes/regions to scan in an agnostic
search throughout the genome, even under the complete null
scenario, i.e. none of the considered genes is related to the outcome.
Assuming a family-wide false-positive rate of 0.05, the P-value
threshold for a gene to reach the global significance level is around
0.05/20 000¼ 2.5� 10�6, which requires about 108 resampling

iterations in order to reach a reasonably accurate estimate.24 Even
with the DSA method, which generates samples directly from a
multivariate normal distribution, it still can be computationally
demanding if the calculation of the test statistic is not
straightforward. We can adopt the recently developed stochastic
approximation Monte Carlo algorithm24,33 to evaluate extremely
small P-values when the DSA method becomes too time consuming.

The idea of the AdaJoint test can be easily extended to pathway
analysis in which multiple genes are considered simultaneously and
the statistical conclusion will be reached via a pathway approach.34

For example, we can use the AdaJoint test statistic as the gene-level
summary in the pathway analysis framework proposed by Yu et al.17

We have created an R package, AdaJoint, for both multilocus test and
pathway analysis using the AdaJoint test (URL: http://dceg.cancer.gov/
bb/tools/AdaJoint).

We used the score test statistic to summarize association signal
from multiple SNPs in the AdaJoint test. The use of the score statistic
is appropriate for SNPs with relatively large MAFs (eg larger than
2%), but is not optimal for studying rare variants, because the
optimality of the score test statistic is not valid anymore when dealing
with nearly independent rare variants. We can replace the score test
statistic with any test statistic targeting rare variants, such as the
burden test,35 and use the same framework as the AdaJoint test does
to study a group of rare variants. A detailed investigation of this
approach and its comparison with existing methods are beyond the
scope of this paper, and would be a future research topic.

GWAS and other genetic studies have created a gold mine of
information that can be explored for deciphering the genetic code
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# of SNPs = 57
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Figure 3 Power comparison based on simulations conducted at gene (a) RP11-35N6.1 with 57 SNPs and (b) ADAMTS12 with 108 SNPs. The risk model

scenarios are summarized in Supplementary Table 1 (Supplemental Materials).
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underlying various traits. So far, the single-marker analysis is still the
more dominant approach for detecting susceptibility loci. As recent
studies have suggested, a joint analysis of multiple loci can uncover
some of the missing heritability; thus it should be considered as a
valuable alternative, complementing the single-marker approach. The
proposed method provides a much needed and powerful tool for such
a purpose.
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