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Simple alkyl thiols such as methanethiol (CH3SH) are widely spec-
ulated to form in seafloor hot spring fluids. Putative CH3SH syn-
thesis by abiotic (nonbiological) reduction of inorganic carbon (CO2

or CO) has been invoked as an initiation reaction for the emer-
gence of protometabolism andmicrobial life in primordial hydrother-
mal settings. Thiols are also presumptive ligands for hydrothermal
trace metals and potential fuels for associated microbial communi-
ties. In an effort to constrain sources and sinks of CH3SH in seafloor
hydrothermal systems, we determined for the first time its abun-
dance in diverse hydrothermal fluids emanating from ultramafic,
mafic, and sediment-coveredmidocean ridge settings. Our data dem-
onstrate that the distribution of CH3SH is inconsistent with meta-
stable equilibrium with inorganic carbon, indicating that production
by abiotic carbon reduction is more limited than previously pro-
posed. CH3SH concentrations are uniformly low (∼10−8 M) in high-
temperature fluids (>200 °C) from all unsedimented systems and,
in many cases, suggestive of metastable equilibrium with CH4 in-
stead. Associated low-temperature fluids (<200 °C) formed by
admixing of seawater, however, are invariably enriched in CH3SH
(up to ∼10−6 M) along with NH+

4 and low-molecular-weight hydro-
carbons relative to high-temperature source fluids, resembling our
observations from a sediment-hosted system. This strongly impli-
cates thermogenic interactions between upwelling fluids and mi-
crobial biomass or associated dissolved organic matter during
subsurface mixing in crustal aquifers. Widespread thermal degra-
dation of subsurface organic matter may be an important source
of organic production in unsedimented hydrothermal systems and
may influence microbial metabolic strategies in cooler near-sea-
floor and plume habitats.
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Since their discovery in 1977, seafloor hot spring fluids have
been widely proposed as a potential source of organic mol-

ecules necessary for early life to emerge and thrive on a Hadean–
Archaean Earth (1–5), and for metabolic energy and fixed
carbon in modern hydrothermal systems (6, 7). Abiotic (non-
biological) reduction of inorganic carbon (CO2 or CO) to meth-
anethiol (methyl mercaptan, CH3SH) is considered a crucial first
step in the putative transition from prebiotic to primitive meta-
bolic chemistry, leading to the emergence of hyperthermophilic
microbial life (8–13). Specifically, methanethiol is the pre-
sumptive abiotic precursor of acetyl thioester (8, 12, 13)—the
functional moiety of the Acetyl-CoA coenzyme central to many
ancient metabolic pathways—and a sustainable abiotic source
of acetyl thioesters is a key feature of models proposing the
emergence of primordial metabolism in hydrothermal settings
(5). Alkyl thiols are additionally implicated in the synthesis of the
key metabolite pyruvate (10), which is speculated to have led to
a primordial protometabolic network in a hydrothermal setting
(14). In modern hot spring environments, hydrothermally pro-
duced thiols could constitute metabolic energy and carbon
sources (15) for mesophilic and thermophilic microorganisms in
subseafloor, near-vent, and plume settings given that such com-
pounds are intensively cycled in sedimentary microbial habitats
(16). Moreover, due to their strong metal-binding abilities, thiol

functional groups are also increasingly implicated in the com-
plexation and delivery of hydrothermally derived metals such as
Fe and Cu to the deep ocean (17–19).
Abiotic reduction of inorganic carbon to CH3SH has been

shown to occur under experimental hydrothermal conditions
(8, 20, 21), and thermodynamic considerations indicate that the
abundance of CH3SH in metastable equilibrium with inorganic
carbon sources should increase strongly with dissolved hydrogen
(H2) abundance (22). This has led to the assumption that CH3SH
should be enriched in H2-rich fluids emanating from serpentin-
ite-hosted hydrothermal settings, such as the Lost City hydro-
thermal field (13). Without evidence from analogous modern
hydrothermal fluids, however, the assumption of widespread thiol
production by inorganic carbon reduction in prebiotic seafloor hot
springs lacks support.
It is generally assumed that low-molecular-weight organic

compounds in hydrothermal fluids emanating from settings
lacking significant sedimentary organic matter (unsedimented
systems) are primarily derived from inorganic carbon (e.g.,
mantle-derived CO2) via abiotic reduction reactions, either by
homogeneous reduction or involving heterogeneous mineral
catalysts (23). CH4, C2+ hydrocarbons, and formate, for example,
are postulated to be the products of abiotic carbon reduction in
Lost City vent fluids (24, 25). However, potential contributions of
thermogenic (i.e., derived from abiotic thermal decomposition
of either preexisting biomass or biologically derived compounds)
or biogenic (i.e., derived from metabolic activities of viable
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organisms) carbon compounds to hydrothermal fluids are poorly
constrained at present (7, 26).
The fundamental physicochemical processes governing the

formation of hydrothermal fluids and the abundances of pre-
sumptive inorganic substrates for abiotic synthesis (CO2/CO, H2,
and H2S) have likely persisted through geologic time (3); hence,
diverse modern analogs present an opportunity to assess the
potential for abiotic synthesis of CH3SH on early Earth. There-
fore, to clarify its production and origin, we investigated the dis-
tribution of CH3SH in 38 hot spring fluids from diverse geologic
environments throughout the global midocean ridge system that
span a range of temperatures and redox states. Isobaric gas-tight
fluid samplers (27) were used to collect the hydrothermal fluids,
and the citations for each system included here provide the most
relevant or recent reported fluid compositions. Samples were
taken from four unsedimented hydrothermal vent fields hosted in
basaltic rock: Lucky Strike (28) and TAG (29) on the Mid-Atlantic
Ridge (MAR), 9°50′N (30) on the East Pacific Rise, and Piccard
(31, 32) on the Mid-Cayman Rise (MCR). Three diverse unsedi-
mented vent fields where serpentinization of ultramafic rock is
postulated to influence fluid compositions were sampled: Von
Damm (33) on the MCR, and Lost City (24) and Rainbow (34) on
the MAR. Fluids were also collected from the sediment-hosted
Guaymas Basin vent field in the Gulf of California (35, 36), where
extensive hydrothermal alteration of organic-rich sediment over-
burden is occurring. Our results indicate that production of abiotic
CH3SH from inorganic carbon is not occurring to a significant
extent and that abiotic degradation of preexisting organic matter
may instead be the dominant source. The widespread production
we observe during crustal mixing of hydrothermal fluids has
numerous implications for the biogeochemistry of seafloor hy-
drothermal systems, which we discuss here.

Results and Discussion
Measured CH3SH concentrations vary from ∼10−9 to 10−6 M in
unsedimented hydrothermal systems (Dataset S1). In general,
low-temperature (<200 °C) fluids formed by subsurface mixing
of high-temperature endmember fluids with seawater (see End-
member and Mixed Vent Fluid Compositions) are most enriched.
For example, CH3SH concentrations in mixed fluids at Piccard
are above 10−6 M, whereas associated endmember sources
are ∼10−8 M. Cooler endmember fluids at the sediment-hosted
Guaymas Basin system contain over 10−5 M CH3SH—the highest
concentrations observed—whereas nearby hotter endmember
fluids have abundances similar to most endmember fluids from
unsedimented systems (∼10−8 M). Concentrations are lowest in
endmember fluids (94–96 °C) of the Lost City hydrothermal
field (1.4–1.9 × 10−9 M).

Thermodynamic Evaluation of CH3SH Abundances. The abiotic pro-
duction of CH3SH in hydrothermal solutions is typically de-
scribed (13, 22) by the overall reaction of CO2, H2, and H2S
according to the relationship

CO2ðaqÞ +H2SðaqÞ + 3H2ðaqÞ =CH3SHðaqÞ + 2H2O: [1]

Although CO is also considered a possible substrate for re-
duction (12, 13, 22), it does not provide an alternate pathway to
CH3SH that is independent of CO2 reduction in fluids emanating
from unsedimented systems. CO is predicted to be maintained at
very low abundances due to rapid equilibrium with CO2 and H2
(37). Equilibrium between CO2 and CO is confirmed by calcu-
lated chemical affinities near zero for the high-temperature vent
fluids from unsedimented systems presented in this study (see
Assessment of Metastable Equilibrium Using Chemical Affinities and
Widespread CO2-H2-CO Equilibrium in Unsedimented Systems and
Eqs. S1 and S2). The stoichiometry of reaction 1 indicates that for
a given temperature and pressure, CH3SH abundance at meta-
stable equilibrium should be highly sensitive to variations in

dissolved H2 due to the third-power H2 dependence of the asso-
ciated mass action expression. Using measured concentrations of
CO2, H2, and H2S and thermodynamic data (22) for reaction 1 at
measured vent temperatures and pressures, CH3SH abundances
in unsedimented hydrothermal fluids are predicted to vary by
over ten orders of magnitude for metastable chemical equilib-
rium (see Fig. 1 and Thermodynamic Prediction of Metastable
CH3SH Abundances). Aqueous H2 concentrations that vary by
almost three orders of magnitude notwithstanding, observed con-
centrations of CH3SH are relatively uniform (∼10−8 M) in high-
temperature endmember fluids regardless of the geologic setting
(Fig. 1 and Dataset S1). Although CH3SH concentrations below
predicted values might suggest kinetic inhibition of reaction 1 in
high-H2 fluids (e.g., at Rainbow, Piccard, and Von Damm), this
does not explain the strongly enriched nature of very H2-poor
fluids relative to predictions (e.g., TAG and Lucky Strike). It is
possible that endmember fluids may cool during ascent from
higher temperature and pressure subsurface reaction zones,
where equilibrium according to reaction 1 might regulate CH3SH
abundances. Such a scenario is unlikely, however, because predicted
metastable equilibrium concentrations according to reaction 1
decrease strongly with increasing temperature (22), which would
result in the apparent enrichments in low-H2 fluids becoming even
more pronounced. Collectively, these observations suggest that
CH3SH, CO2, H2S, H2, and H2O do not attain a state of metastable
equilibrium at the diverse conditions encountered by fluids in
modern hydrothermal systems. This implies that abiotic synthe-
sis of CH3SH from inorganic carbon is unlikely and incapable of
sustaining metastable equilibrium abundances.
The relative uniformity of endmember abundances shown in

Fig. 1, despite widely differing H2 abundances, suggests that CO2
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Fig. 1. Plot of predicted concentrations (mMethanethiol, mol/kg H2O) of meth-
anethiol (CH3SH) in metastable equilibrium with CO2, H2, and H2S according to
reaction 1 versus observed concentrations (MMethanethiol, mol/L fluid) for end-
member (black symbols) and mixed (colored symbols) hydrothermal fluids
emanating from unsedimented mafic and ultramafic geologic settings, with
respective ranges of dissolved H2 concentration shown in the legend (see
Endmember and Mixed Vent Fluid Compositions and Thermodynamic Pre-
diction of Metastable CH3SH Abundances, for further details). Predicted values
were calculated assuming ideal behavior of neutral aqueous species. Observed
concentrations of CH3SH in fluids with low dissolved H2 are in excess of pre-
dicted values and, conversely, are below predicted values in high-H2 fluids.
Highest observed concentrations of CH3SH are in low-temperature mixed
fluids at Piccard, Von Damm, and Rainbow (see text). The apparent trend of
predicted and observed values at Piccard is a consequence of covarying H2 and
CH3SH during subsurface mixing with seawater.
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reduction is not responsible for the production of CH3SH in
high-temperature endmember fluids. Aside from CO2, CH4 is
invariably the next largest stable pool of dissolved carbon in hy-
drothermal solutions, with all other aqueous single carbon species
representing metastable states (7, 26). Indeed, models that pro-
pose reaction 1 as the source of CH3SH in hydrothermal fluids (5,
13, 22) inherently assume that metastable CH3SH is kinetically
inhibited from destruction by further reduction to CH4. For many
high-temperature endmember fluids presented here, however,
calculated chemical affinities (see Assessment of Metastable Equi-
librium Using Chemical Affinities and Eq. S1) show CH3SH is in-
deed at or close to metastable equilibrium with CH4 according to
the reaction

CH3SHðaqÞ +H2ðaqÞ =CH4ðaqÞ +H2SðaqÞ: [2]

For example, affinities for reaction 2 for all Rainbow endmem-
ber fluids (−3.8 to +0.5 kJ/mol) are within typical uncertainties
of equilibrium at conditions of venting (see Assessment of Meta-
stable Equilibrium Using Chemical Affinities). At Piccard (+6.4 to
+14.6 kJ/mol) and Lucky Strike (−4.7 to −12.8 kJ/mol), end-
members are also close to equilibrium in several cases, as are
some vents at 9°50′N (e.g., Tica, +5.5 kJ/mol). Thus, in contrast
to reaction 1, measured CH3SH concentrations in endmember
fluids are more consistent with predicted values according to
reaction 2. Although we cannot exclude that the reverse of re-
action 2 is occurring, there is to date no evidence to suggest that
aqueous CH4 can react with H2S under hydrothermal conditions.
On the contrary, CH3SH was observed to react to form small
quantities of CH4 at 100 °C in the thioester synthesis experiments
of Huber and Wächterhäuser (8). Thermodynamic data (22) in-
dicate that reaction 2 would maintain CH3SH at low levels with
respect to CH4 for most hydrothermal fluid compositions, with
an inverse dependence on H2 abundance. This is incompatible
with the notion of greater abiotic CH3SH production with in-
creasing H2 abundance, as invoked in scenarios for prebiotic
hydrothermal thioester production (8, 12, 13). Regardless of
whether or not CH3SH forms by inorganic carbon reduction (re-
action 1) or other biogenic or thermogenic processes during
hydrothermal fluid circulation, the data presented here strongly
suggest that metastable equilibrium with CH4 at high temper-
atures is sufficiently fast that it regulates CH3SH abundances in
endmember fluids according to reaction 2.

Thermogenic CH3SH Production. The highest CH3SH concen-
trations were observed in endmember vent fluids from the sedi-
ment-covered Guaymas Basin rift zone, where the influence of
hydrothermal alteration of immature organic matter and biomass
is readily apparent (Fig. 2). At Guaymas Basin, basaltic dikes and
sills intrude into 0.5-km-thick organic-rich diatomaceous ooze
overlaying the ridge axis, resulting in rapid and widespread hy-
drothermal alteration of immature sedimentary organic matter
and expulsion of hydrothermal petroleum at the seafloor (36, 38).
In addition to abundant NH+

4 and dissolved CO2, multiple classes
of thermogenic organic compounds are added to circulating fluids
during this process (35, 36, 39). Alkyl thiols are considered to form
predominantly at low thermal maturities during petroleum gen-
eration in slowly subsiding sedimentary basins (40), and their
production in this setting is therefore not surprising. Cyclic poly-
sulfide organosulfur compounds (thiolanes, thianes, and thie-
panes) have previously been reported in fragments of an active
smoker chimney from Guaymas Basin, indicating organosulfur
production during hydrothermal petroleum generation (38). Pro-
duction of CH3SH during hydrothermal alteration of sedimentary
organic matter could reflect the removal of organosulfur moieties
from macromolecular organic structures or the secondary reaction
of thermogenic products such as CO. Indeed, fluids with abundant
CH3SH at Guaymas also have excess CO relative to equilibrium

with CO2 and H2 (see Dataset S1 and Widespread CO2-H2-CO
Equilibrium in Unsedimented Systems).
The abundance of CH3SH in fluids at Guaymas Basin is char-

acterized by a bimodal distribution, with cooler endmember fluids
being most enriched and hotter endmember fluids having similarly
low abundances to fluids in unsedimented systems. CH3SH-
depleted Rebecca’s Roost and Toadstool fluids (288–299 °C; Fig.
2) have substantially higher C1/(C2+C3) ratios (124–132 versus
55–60) than the CH3SH-rich cooler fluids (172–251 °C), sug-
gesting higher thermal maturity in the hotter fluids and the
conversion of longer-chain alkanes to shorter chains (39). These
observations suggest that abundant CH3SH is produced pre-
dominantly during early hydrothermal alteration of immature
organic matter, consistent with observations from conventional
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petroleum-producing systems (40). In a similar manner to C2+
hydrocarbons, but unlike NH+

4 , CH3SH may have decomposed
(e.g., by reaction 2) at the higher thermal stress of Rebecca’s
Roost and Toadstool fluids before venting.
Although sedimentary organic matter is lacking at unsedi-

mented spreading centers, the potential still exists for thermogenic
production of thiols due to the presence of a putative subsur-
face biosphere and vent-associated biomass (26, 41–43). In
low-temperature hydrothermal fluids (<200 °C) from numerous
unsedimented settings, there is substantial evidence to support
CH3SH production during mixing of endmember fluids with
seawater within hydrothermal upflow zones or crustal aquifers.
Linear mixing relationships between measured Cl and Mg con-
centrations for fluids sampled at Rainbow, Von Damm, and
Piccard indicate that a common source fluid at each vent field
feeds all of the overlying vents (Fig. 3A). That many of the
replicate fluid samples collected at the low-temperature vents
are characterized by nearly identical Mg concentrations implies
that mixing of Mg-depleted endmember hydrothermal fluids with
Mg-rich seawater occurred in the subsurface before sampling
because stochastic admixing of ambient seawater during fluid
collection at vent orifices would likely result in highly variable
Mg concentrations (see Endmember and Mixed Vent Fluid
Compositions). In contrast to the conservative behavior that
characterizes Cl abundances during mixing, CH3SH concen-
trations in mixed fluids are all substantially greater than expected
for conservative dilution of the associated high-temperature
endmember (Fig. 3B and Fig. S1). Such enrichments require
production of CH3SH during subsurface mixing and associated
cooling. Although we cannot completely exclude that some
component of the CH3SH in mixed fluids is derived from CO2
reduction or abiotic formation from other metastable inter-
mediates, CH3SH abundances are far below values predicted for
metastable equilibrium with respect to CO2, H2S, H2, and H2O
(Fig. 1). It is difficult to argue that reaction 1 should only
proceed at the lower temperatures and H2 abundances of mixed
fluids, given the complete lack of evidence that inorganic carbon
reduction is responsible for CH3SH production in endmember
fluids, where substantially faster reaction rates would be expec-
ted due to higher temperatures and reactant concentrations.
Elevated concentrations of other organically derived aqueous

species in these low-temperature mixed fluids provide compelling
support for thermogenic CH3SH production during mixing. As is
evident at Guaymas, short-chain hydrocarbons and NH+

4 are typi-
cally produced simultaneously during hydrothermal alteration of
organic matter (35, 36, 39, 44). High CH3SH concentrations in
mixed fluids at Piccard, Von Damm, Rainbow, and 9°50′N are as-
sociated with excess NH+

4 (Fig. 3C and Fig. S1) and, in some cases,
low-molecular-weight hydrocarbon (methane, ethane, and propane)
enrichments relative to conservative dilution of precursor end-
member fluids. For example, the low-temperature Hot Chimlet #1
vent at Piccard is enriched by more than 25% in NH+

4 and CH4
relative to conservative dilution of high-temperature endmember
concentrations, and the low-temperature Ecurie vent at Rain-
bow is also enriched in both species (Dataset S1). Ethane and
propane are substantially enriched in mixed fluids at Piccard,*
with concentrations as high as 90 nmol/kg ethane and 60 nmol/kg
propane in the mixed fluids Hot Chimlet #1 and Hot Chimlet #2,
whereas associated endmember fluids have much lower C2+
hydrocarbon concentrations [8–20 nmol/kg ethane and pro-
pane <10 nmol/kg (below detection)].
Abiotic N2 reduction is unlikely to be responsible for the NH+

4
enrichment in mixed fluids, given that it is only thought to occur
under high-temperature reaction zone conditions (42, 44).
Admixing and abiotic reduction of seawater nitrate (NO3

−) may
be an alternate possible source of NH+

4 to mixed fluids because

experiments suggest that metal catalysts (e.g., Fe–Ni alloy) could
mediate such reduction at low temperatures (45, 46), but this
does not appear to be an important process in low-temperature
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Fig. 3. Plots of measured concentrations of chloride (Cl; A), methanethiol
(CH3SH; B), and ammonium (NH+

4 ; C) versus Mg in fluid samples from three
unsedimented hydrothermal vent fields. Mg is used as an index of mixing
between seawater and vent fluid (see Endmember and Mixed Vent Fluid
Compositions for further details). Low-Mg samples from high-temperature
endmember fluids (open symbols) and higher-Mg samples from low-tempera-
ture fluids (half filled/solid symbols) at each field all lie on common mixing lines
with respect to Cl, indicating single common source fluids at each site. At all vent
fields, the higher Mg, low-temperature fluids formed by predominantly sub-
surface mixing with seawater (dashed lines) are enriched in CH3SH and NH+

4 (and
low-molecular-weight alkanes; see text) relative to conservative dilution of
endmember fluids (solid lines) with seawater. Uncertainties (2s) not shown are
smaller than the data symbols.

*McDermott JM, et al., AGU Fall Meeting, December 3–7, 2012, San Francisco, CA, abstr.
OS22B-07.
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(∼150 °C) mixed fluids from other mafic-hosted hydrothermal
systems based on N-isotope measurements (42). Thermal deg-
radation of dissolved organic nitrogen (DON) from admixed
ambient deep ocean seawater is also an unlikely source of NH+

4 .
Some mixed fluids are enriched in NH+

4 above conservative
endmember dilution by up to 4 μM (Fig. 3C), exceeding what
might reasonably be expected for entrainment and complete N
release from typical deep-ocean DON concentrations [<3 μM (47)].
Although microbially mediated nitrogen transformations can in-
crease the abundance of NH+

4 in very low-temperature/diffuse fluids
(42), most large NH+

4 and CH3SH enrichments observed during this
study (e.g., Hot Chimlet #1) are in mixed fluids hotter than the
122 °C limit for microbial life (48), suggesting that microbial ac-
tivity is not responsible for production of either NH+

4 or CH3SH.
It is widely proposed that the permeable and porous upper

oceanic crust (Layer 2A)—where mixing predominantly occurs—
harbors microbial communities that constitute a deep biosphere
(41–43). Given that CH3SH in low-temperature mixed fluids is
consistently associated with thermogenic indicators (Fig. 3 and
Fig. S1) in systems free of sedimentary influence, we propose
that entrainment and thermal alteration of microbial biomass,
and/or associated dissolved organic matter (DOM), are re-
sponsible for production of CH3SH within subsurface zones of
mixing between high-temperature fluids and seawater. Previous
observations of organic compounds derived from microbial bio-
mass pyrolysis in low-temperature fluids support this possibility.
Brault et al. (49) first described the presence of nonvolatile
hydrocarbons in a diffuse (∼15 °C) and a high-temperature
(>250 °C) vent from 13°N, East Pacific Rise, and found strong
enrichments of microbial lipid residues in the cooler vent. More
recent work also suggests that dissolved organic carbon (DOC) is
enriched in low-temperature fluids relative to both endmember
precursors and ambient seawater, for example, and correlates
with microbial cell counts (50). Although these observations
could reflect active microbial processes, our results suggest that
higher-temperature portions of subsurface mixing zones gener-
ate dissolved organic compounds through abiotic thermal deg-
radation. Fluids in the temperature range presented here (e.g.,
126–191 °C) have rarely been reported but provide key insights
into processes occurring within crustal hydrothermal aquifers
beyond the known 122 °C (48) temperature limit of life.
The ubiquitous and uniformly low levels of CH3SH (∼10−8 M)

in endmember fluids from unsedimented systems, despite the
broad range of temperature, salinity, and H2 concentrations, may
be a remnant of pyrolysis of trace organic matter at high tem-
peratures. Brault et al. (49) noted minor quantities of thermally
mature hopanes in a hot fluid (>250 °C) from 13°N, suggesting
that entrainment and rapid pyrolysis of biomass to a high extent of
maturity occurs during fluid venting at the seafloor. Endmember
fluids are also known to be depleted in DOC relative to ambient
seawater (50), implying thermal decomposition. A thermogenic
carbon source would provide an explanation for the presence of
CH3SH in fluids with no thermodynamic drive to create it from
CO2. In a similar manner to the hotter endmember fluids at
Guaymas Basin, consumption of CH3SH by reaction 2 in high-
temperature fluids could therefore represent the high maturity
stage of much more limited organic matter pyrolysis during hy-
drothermal circulation or venting that produces insignificant
changes in the abundance of major species like CH4. Lost City
endmember fluids, despite quite low vent temperatures (94–96 °C;
Dataset S1), are also consistent with this explanation. Several lines
of evidence from the inorganic (51) and organic (52) compositions
of endmember fluids there point to substantial conductive cooling
and much higher temperatures (likely in excess of 250 °C) in the
subsurface reaction zone. Collectively, our data therefore imply
that the distribution of methanethiol in seafloor hydrothermal
fluids is largely controlled by thermal maturation of preexisting
biological organic matter, with endmember and mixed vent fluids
representing higher and lower thermal maturities, respectively.

Implications. Despite the diversity of geologic settings and po-
tential catalytic minerals present in hydrothermal reaction zones,
our results show no evidence for abiotic methanethiol synthesis
from the inorganic precursors CO2, H2, and H2S in modern
hydrothermal fluids. This suggests that analogous hydrothermal
systems on early Earth may not represent an abundant source of
abiotic CH3SH necessary for thioester production (4, 8, 12). The
production of thermogenic organic compounds in crustal mixing
zones, however, has numerous interesting biogeochemical implica-
tions for modern seafloor hydrothermal systems. Not only does
widespread pyrolysis of subsurface organic matter provide further
indirect support for a putative deep biosphere in unsedimented hy-
drothermal aquifers, it implies that such carbon may be recycled and
returned to cooler near-surface environments by subsurface mixing
processes. Production of methylated organic compounds by sub-
surface pyrolysis raises diverse possibilities for microbial organo-
trophic metabolisms (e.g., methylotrophy) in hydrothermal systems
traditionally considered to have limited available organic compounds.
A predominance of thermogenic products in low-temperature fluids
could support larger populations of organotrophic microbes in these
mixing zones relative to those immediately surrounding high-tem-
perature vent structures, for example. Given that thiol functional
groups are hypothesized to play a significant role in the complexation
and delivery of hydrothermal trace metals (e.g., Fe and Cu) to the
deep ocean (17–19), thermogenic production of organosulfur com-
pounds with a high affinity for metals may constitute a key mecha-
nism for this process in unsedimented hydrothermal systems.

Materials and Methods
All fluid samples were collected using isobaric gas-tight (IGT) samplers (27) during
cruises to theMid-Atlantic Ridge, Guaymas Basin, and East Pacific Rise in 2008 and
Mid-Cayman Rise in 2012, using either ROV Jason or HOV Alvin. In most cases
a minimum of two IGT samples were taken from each vent. Reported vent
temperatures are themaximummeasured in real time during fluid collection (27).

Dissolved CH3SH concentrations were determined at sea upon sampler
recovery by purge-and-trap gas chromatography (GC) with flame ionization
detection (FID). FID, unlike sulfur-specific detection, is insensitive to the ex-
tremely high H2S concentrations in vent fluids. Gas-tight fluid aliquots
(<4 mL) were acidified with ∼1 mL of 25 wt % phosphoric acid, and CH3SH
was sparged with He gas (30 mL/min for 10 min) and cryofocused on an
n-octane–coated silica trap (−78 °C), then thermally desorbed (145 °C)
directly onto a Carbograph 1SC packed GC column (30 mL/min He, 40 °C
isothermal). To limit potential losses of gaseous CH3SH during sparging
(53, 54), deactivated glass and polytetrafluoroethylene tubing were used
wherever possible in the purge-and-trap system. Sparging was assumed
to be quantitative given the long sparge time and volatility of CH3SH,
and resparging tests on samples revealed no significant evidence of in-
complete removal. Before calibration and between samples, the trap
was heated at >145 °C with He flowing (30 mL/min) for a minimum of 10
min to completely eliminate carryover of any residual CH3SH remaining
in the trap (typically <1%) from previous analyses. In almost all cases,
resulting CH3SH concentrations from separate discrete samples of the
same vent yield mixing lines between bottom seawater (no detectable
CH3SH) and a hydrothermal endmember or mixed fluid composition
when plotted against Mg (see Endmember and Mixed Vent Fluid Compo-
sitions for further details). This indicates not only that methanethiol is
conservative with respect to accidental seawater entrainment during sample
collection but that any losses or additions of CH3SH due to the analytical
method are not significant. Reported uncertainties (2s) for CH3SH
(Dataset S1) are the larger of either the error of reproducibility or the un-
certainty of the commercial gas standard used (±5%).

H2 and COwere analyzed at sea by a headspace extraction GC technique, using
thermal conductivity and helium ionization detection, respectively (37, 39). H2S
(total dissolved, ΣH2S) was determined either gravimetrically by precipitation as
Ag2S (55) or at sea by electrochemical (28, 34) or iodometric titration. pH(25 °C)
was determined at sea by electrode (28, 34, 55). Aliquots for dissolved inorganic
carbon (ΣCO2, abbreviated as CO2), CH4, and C2+ hydrocarbons were stored in
evacuated glass serum vials (poisoned with HgCl2) for headspace gas GC analysis
(28, 55). Cl was determined by ion chromatography [IC, ±5% (55)] or electro-
chemical titration [±0.5% (28, 34)], and Mg was determined by either IC or in-
ductively coupled plasma methods (28, 34, 55, 56). NH+

4 was determined by either
flow injection analysis (57) for unsedimented systems or IC (Guaymas Basin), with
reported errors representing the larger of either error of reproducibility (2s) or the
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typical ±5% reproducibility of prepared standards. Analytical uncertainties (2s)
are ±0.05 for pH(25 °C); ±10% for H2S, CO, H2, and C2+ hydrocarbon concen-
trations; and ±5% for Mg, ΣCO2, and CH4 concentrations (28, 39, 55).
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