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Abstract

This study investigated cognitive control of social and nonsocial information in autism using

functional magnetic resonance imaging. Individuals with autism spectrum disorders (ASDs) and a

neurotypical control group completed an oddball target detection task where target stimuli were

either faces or nonsocial objects previously shown to be related to circumscribed interests in

autism. The ASD group demonstrated relatively increased activation to social targets in right

insular cortex and in left superior frontal gyrus and relatively decreased activation to nonsocial

targets related to circumscribed interests in multiple frontostriatal brain regions. Findings suggest

that frontostriatal recruitment during cognitive control in ASD is contingent on stimulus type, with

increased activation for social stimuli and decreased activation for nonsocial stimuli related to

circumscribed interests.
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Introduction

Functional magnetic resonance imaging (fMRI) studies of individuals with autism spectrum

disorders (ASDs) have revealed anomalous patterns of frontostriatal brain activation during

cognitive control tasks (for a review, see Dichter, 2012), including hyperactivation in

inferior and orbital frontal gyri during motor and cognitive interference-inhibition (Schmitz,

Rubia, Daly, Smith, Williams et al., 2006; Dichter & Belger, 2007), hyperactivation in
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rostral anterior cingulate cortex during an antisaccade task (Thakkar, Polli, Joseph, Tuch,

Hadjikhani et al., 2008), hypoactivation in anterior prefrontal cortex during a task requiring

overcoming prepotent response tendencies (Solomon, Ozonoff, Ursu, Ravizza, Cummings et

al., 2009), and hyperactivation in dorsomedial prefrontal cortex during social target

detection (Dichter, Felder, & Bodfish, 2009). These findings have been interpreted to reflect

deficits in behavioral inhibition and/or generation of adaptive behaviors linked to the

expression of symptoms of restricted and repetitive behaviors and interests (e.g., South,

Ozonoff, & McMahon, 2007; Lopez, Lincoln, Ozonoff, & Lai, 2005). Although the

direction of effects has varied across studies (i.e., frontostriatal hyperactivation vs

hypoactivation), likely due to differing task demands and analysis methods, anomalous

frontostriatal activation during tasks requiring cognitive control has been a consistent

finding.

In nonclinical contexts, detection of oddball target events evokes activity within

frontostriatal regions, including the striatum, superior, middle, and inferior frontal gyri, and

dorsal medial prefrontal cortex (Kirino, Belger, Goldman-Rakic, & McCarthy, 2000a,

2000b; Huettel, 2004); Kirino et al., 2000). Oddball tasks measure specific aspects of

cognitive control, a construct that subsumes working memory, inhibition, and mental

flexibility abilities that share the purpose of engaging, disengaging, and reengaging with the

environment to guide behavior (Lezak, 1995). In the context of oddball tasks, prefrontal

activation to target events is thought to reflect the context-dependent strategic control of

behavior (Huettel, Misiurek, Jurkowski, & McCarthy, 2004; Casey, Forman, Franzen,

Berkowitz, Braver et al., 2001), dynamic changes in behavioral response strategies (Huettel

& McCarthy, 2004), as well as set shifting and inhibitory control (Rubia, Russell,

Overmeyer, Brammer, Bullmore et al., 2001; Konishi, Nakajima, Uchida, Kikyo,

Kameyama et al., 1999; Rogers, Andrews, Grasby, Brooks, & Robbins, 2000), whereas

striatal (i.e., caudate nucleus and putamen) activation has been implicated in planning and

the execution of self-generated novel actions (Monchi, Petrides, Strafella, Worsley, &

Doyon, 2006).

Our research group has conducted a series of studies examining frontostriatal brain function

during oddball tasks in individuals with ASDs. We demonstrated that individuals with ASDs

were characterized by frontostriatal hypoactivation to geometric shape targets in a manner

that predicted the severity of restricted and repetitive behaviors and interests (Shafritz,

Dichter, Baranek, & Belger, 2008). In a follow-up study, we reported dorsomedial prefrontal

cortex hyperactivation in ASD to oddball targets that were images of faces, and that

activation in dorsal anterior cingulate cortex was inversely correlated with social symptom

severity (Dichter et al., 2009). We interpreted this pattern of frontostriatal hyperactivation to

reflect compensatory mechanisms reflective of cortical inefficiency to respond flexibly to

social targets in ASD (see also Schmitz et al., 2006). This account is consistent with patterns

of increased brain activation in other forms of psychopathology during tasks requiring

cognitive control (e.g., Wagner, Sinsel, Sobanski, Kohler, Marinou et al., 2006; Buchsbaum,

Buchsbaum, Hazlett, Haznedar, Newmark et al., 2007; Manoach, 2003).

The purpose of the present study was to extend this line of research to examine frontostriatal

responses in individuals with ASDs to oddball stimuli selected to be related to restricted and
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repetitive behaviors and interests. This symptom domain is not a unitary construct, and

factor analytic studies have indicated three or more factors, where a factor related to

circumscribed interests has consistently emerged (Lam & Aman, 2007; Honey,

McConachie, Randle, Shearer, & Couteur, 2006; Tadevosyan-Leyfer, Dowd, Mankoski,

Winklosky, Putnam et al., 2003; Lam, Bodfish, & Piven, 2008). This factor reflects the types

of unusual and intense interests, preoccupations, and attachments commonly seen in

individuals with ASD (Kanner, 1968; Turner-Brown, Lam, Holtzclaw, Dichter, & Bodfish,

2011). To date, there has been very little mechanistic research on this unique aspect of

autism, despite the fact that previous phenomenological studies have pointed out that parents

report that this feature of autism is among the most difficult aspects of autism to manage on

a day-today basis (South, Ozonoff, & McMahon, 2005).

Our research group has created a set of 34 images conceptually and empirically related to

circumscribed interests in ASDs. These images, which include trains, electronics, and

vehicles, contain no social content, elicit greater visual attention from individuals with

ASDs (Sasson, Elison, Turner-Brown, Dichter, & Bodfish, 2011; Sasson, Turner-Brown,

Holtzclaw, Lam, & Bodfish, 2008), are more subjectively pleasing to individuals with ASDs

relative to images of other objects and images of people (Sasson, Dichter, & Bodfish, 2012),

and have been shown to differentially activate reward circuitry in individuals with ASDs

(Dichter, Felder, Green, Rittenberg, Sasson et al., 2012). Taken together, these eyetracking,

behavioral, and brain imaging data suggest that these images, referred to here as “High

Autism Interest” (HAI) images, are disproportionately salient and rewarding for individuals

with ASDs.

In the present study, we compared neural responses both to faces and HAI images within the

context of an oddball target detection task. Based on our previous findings (Dichter et al.,

2009), we hypothesized that the ASD group would be characterized by relative frontostriatal

hyperactivation to face targets, reflecting processing inefficiency while responding flexibly

to these social stimuli. Conversely, because HAI images were selected to be salient and

rewarding for individuals with ASDs, we hypothesized that the ASD group would be

characterized by relative frontostriatal hypoactivation to these non-social targets, reflecting

relatively decreased “cognitive effort” to respond flexibly to these stimuli. Finally, we

evaluated relations between neural responses to both classes of target stimuli and autism

symptom severity, and predicted that the magnitude of frontostriatal activation to social and

non-social targets would predict the severity of clinical manifestations of autism within the

autism group.

Methods

Participants

Participants included fifteen individuals with ASDs (thirteen males; mean age (SD): 26.3

(9.4); range: 16.9–45.3, fourteen right handed) and seventeen neurotypical controls (twelve

males; mean age (SD): 24.3 (3.7); range: 20.1–33.3, all right handed). Groups did not differ

in age, t(30)= .80; p>.20, or gender distribution, χ2 (1) = 2.05, p>.10; however, groups did

differ significantly on full-scale IQ as measured by the Wechsler Abbreviated Scale of

Intelligence, t(30)=3.59; p<.01, and thus full-scale IQ was included as a covariate in
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imaging analyses. The ASD group (two diagnosed with Asperger’s syndrome and thirteen

with high functioning autism) were recruited via the Autism Subject Registry maintained

through the Carolina Institute for Developmental Disabilities. Exclusion criteria included a

prior history of gestational age <34 weeks, birth weight <2000 g, intraventricular

hemorrhage, history of known medical conditions associated with autism including Fragile

X Syndrome, tuberous sclerosis, neurofibromatosis, phenylketonuria, epilepsy and gross

brain injury, full scale intelligence score ≤ 75 or MRI contradictions (e.g. presence of metal

in body) as assessed by MRI safety questionnaire. The control group was recruited from lists

maintained by the Duke-UNC Brain Imaging and Analysis Center.

Autism spectrum diagnoses were based on a history of clinical diagnosis informed by scores

on the Autism Diagnostic Observation Schedule (ADOS-G; Lord, Risi, Lambrecht, Cook,

Leventhal et al., 2000) administered by a research reliable assessor and using standard

cutoffs. All participants consented to protocols approved by the Human Investigations

Committees at both UNC-Chapel Hill and Duke University Medical Centers and were paid

$40 for completing the imaging portion of the study. All participants had normal or

corrected-to-normal vision and had either participated in fMRI studies in the past or

completed a mock scan session prior to the fMRI session to acclimate to the scanner

environment.

fMRI task

A visual oddball target detection task similar to that described previously (Dichter et al.,

2009) was used and is illustrated in Figure 1. Briefly, each of 8 runs contained 160 stimuli

presented centrally for 500 ms with an interstimulus interval (ISI) that was jittered between

1000 ms and 2500 ms, during which a fixation cross was presented. Each run lasted 5 min 4

sec, and thus acquisition time for all eight runs was 40 min 32 sec. There were three

stimulus categories, circles of various colors and sizes, pictures of faces, and HAI images.

At the start of each run, participants were instructed both verbally and via an instruction

screen (e.g., “Targets = Faces”) which stimulus category would be targets on that particular

run. Each run included frequent ‘standard’ stimuli (circles) that occurred on 90% of trials,

infrequent ‘novel’ stimuli that occurred on 5% of trials, and infrequent ‘target’ stimuli that

occurred on 5% of trials. On alternating runs, either face or HAI images were targets with

the other category serving as novel stimuli. Participants responded via a right-hand button

box to every stimulus as quickly and as accurately as possible and pressed one button for all

non-target stimuli and an alternate button for all target stimuli. The run type presented first

(i.e., face target or HAI target) was counterbalanced across participants. Stimuli were

presented using CIGAL presentation software (Voyvodic, 1999) and displayed in the

scanner through magnet-compatible goggles (Resonance Technology, Inc., Northridge, CA,

USA).

Face and High Autism Interest (HAI) Stimuli

Face stimuli were neutral closed-mouth images from the NimStim set of facial expressions

(Tottenham, Tanaka, Leon, McCarry, Nurse et al., 2009). As described previously (Dichter,

Felder et al., 2012), the non-social images were systematically derived by our research

group in the following manner. First, a large number of potential nonsocial images was
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selected based on response profiles from semi-structured parent-report interviews about

circumscribed interests in ASDs (e.g., machines, mechanical systems, trains and electronic

devices; Turner-Brown et al., 2011; South et al., 2005; Klin, Danovitch, Merz, & Volkmar,

2007). Next, the visual salience of these images was evaluated via passive-viewing visual

exploration eyetracking studies of individuals with and without ASDs (Sasson et al., 2011;

Sasson et al., 2008). These eyetracking studies identified 34 images without social content

that garnered relatively greater visual attention (i.e., number of fixations and duration of

fixations) in ASD samples. Finally, 56 adults with self-identified ASDs provided

significantly higher valence ratings of these images relative to 213 adults without ASD

(Sasson et al., 2012). These 34 nonsocial images were used in the present study and are

depicted in the Appendix of Dichter et al (2012).

Imaging Methods

Scanning was performed on a General Electric Health Technologies, 3 Tesla Signa Excite

HD scanner system with 50-mT/m gradients (General Electric, Waukesha, Wisconsin,

USA). An eight-channel head coil was used for parallel imaging. Head movement was

restricted using foam cushions and Velcro straps. Sixty-eight high resolution images were

acquired using a 3D fast SPGR pulse sequence (TR = 500 ms; TE = 20 ms; FOV = 24 cm;

image matrix = 2562; voxel size = 0.9375 0.09375 1.9 mm3) and used for coregistration with

the functional data. These structural images were aligned in the near axial plane defined by

the anterior and posterior commissures. Whole brain functional images consisted of 34 slices

parallel to the AC-PC plane using a BOLD-sensitive gradient-echo sequence with spiral-in

k-space sampling and SENSE encoding to take advantage of the 8-channel coil, at TR of

1500 ms (TE= 27 ms; FOV: 25.6 cm; isotropic voxel size: 4.00; SENSE factor= 2). Runs

began with 4 discarded RF excitations to allow for steady state equilibrium.

Imaging Data Analysis

Functional data were preprocessed using FSL version 4.1.4 (Oxford Centre for Functional

Magnetic Resonance Imaging of the Brain (FMRIB), Oxford University, U.K.).

Preprocessing was applied in the following steps: (i) non-brain removal using BET (Smith,

Jenkinson, Woolrich, Beckmann, Behrens et al., 2004), (ii) motion correction using

MCFLIRT (Smith, 2002), (iii) spatial smoothing using a Gaussian kernel of FWHM 5 mm,

(iv) mean-based intensity normalization of all volumes by the same factor, and (v) high-pass

filtering (Jenkinson, Bannister, Brady, & Smith, 2002). Functional images of each

participant were co-registered to structural images in native space, and structural images

were normalized into a standard stereotaxic space (Montreal Neurological Institute) for

intersubject comparison. The same transformation matrices used for structural-to-standard

transformations were then used for functional-to-standard space transformations of co-

registered functional images. All registrations were carried out using an intermodal

registration tool (Jenkinson et al., 2002; Smith et al., 2004). Voxel-wise temporal

autocorrelation was estimated and corrected using FMRIB’s Improved Linear Model

(Jenkinson & Smith, 2001).

Onset times of stimulus presentation were used to model a signal response containing a

regressor for each response type which was convolved with a double-γ function to model
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the hemodynamic response. Model fitting generated whole brain images of parameter

estimates representing average signal change from baseline. Group-wise activation images

were calculated by a mixed effects higher level analysis using Bayesian estimation

techniques, FMRIB Local Analysis of Mixed Effects (FILM, Woolrich, Ripley, Brady, &

Smith, 2001). Consistent with guidelines of Lieberman and Cunningham (2009) for clinical

studies where a balance of Types I and II error probabilities is sought, clusters of ten or

more voxels with Z-values >2.58 (p < 0.005) (FLAME 1+2, Beckmann, Jenkinson, &

Smith, 2003) were classified as significant. We also report whether central findings were

significant with a more conservative FWE-corrected p<.05 significance threshold by using a

small volume correction consisting of the striatum (i.e., caudate nucleus, putamen, and

nucleus accumbens), defined on the basis of the Harvard-Oxford subcortical probabilistic

atlas (Desikan, Segonne, Fischl, Quinn, Dickerson et al., 2006), and the frontal lobes,

defined on the basis of the MNI structural probabilistic atlas (Mazziotta, Toga, Evans, Fox,

Lancaster et al., 2001) thresholded at 25%, binarized, and then combined via fslmaths. The

cluster size for uncorrected statistical thresholds of p<.005 to reflect cluster-corrected p<.05

significance were determined by 1000 Monte Carlo simulations using AlphaSim (Ward,

2000) to be 38.5 voxels (308 mm3) using this frontostriatal small volume correction.

Results

In-scanner participant motion

In-scanner participant motion was extracted with MCFLIRT (FMRIB). Participants did not

differ in deviation of center of mass (in mm), p’s>.15: ASD means (SD): x: 0.024 (0.044); y:

0.019 (0.089); z: 0.050 (0.081); Control means (SD): x: 0.026 (0.016); y: 0.011 (0.026); z:

0.015 (0.046).

In-scanner behavior

A series of 2 (Group: ASD, Control) × 5 (Category: Face Target, HAI Target, Face Novel,

Object Novel, Standard) repeated measures ANOVAs were conducted separately for

accuracy (i.e. percent correct) and latency (i.e. reaction time) data, followed by within-group

and within-condition t-tests.

Accuracy analyses revealed a main effect of Category, multivariate F(4, 120) = 25.25, p<.

001, a main effect of Group, F(1, 30) = 10.55, p<.003, and a Group x Category interaction,

multivariate F(4, 120) = 3.68, p<.007 (see the top left of Figure 2). Between-groups t-tests

revealed that the ASD group was relatively less accurate in response to all stimulus

categories other than standard stimuli, p’s<.05. Within the control group, paired t-tests

indicated greater accuracy to standard stimuli versus other categories, p’s<.01, to face

targets versus HAI targets, p<.02, and to both HAI novels and face novels versus HAI

targets, p’s<.04. Paired t-tests within the ASD group indicated greater accuracy to standard

stimuli versus other categories, p’s<.005. The ASD group was more accurate to face targets

versus HAI targets, p<.005, as well as HAI novels versus HAI targets, p<.001 and face

novels, p<.01. We also compared groups on target discriminability via d′, calculated as |

ZHits−ZFalse Alarms|, with hits reflecting correct responses to targets and the false alarms

reflecting incorrect responses to standards or novels. The top right of Figure 2 illustrates that
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the ASD group was characterized by poorer discriminability to face and HAI targets, p’s<.

0001. In summary, the ASD group was relatively less accurate overall and demonstrated

decreased accuracy to both face and HAI stimuli.

Latency analyses revealed a main effect of Category, multivariate F(4, 120)= 48.35, p<.

0001, but not of Group, multivariate F(1, 30)= 3.53, p>.05, or Group x Category interaction,

F(4, 120)= 2.43, p>.05 (see the bottom of Figure 2). Between-groups t-tests revealed that

groups did not differ in latency across all stimulus categories, p’s>.05. The control group

had shorter reaction times to standard stimuli versus all other categories, p’s<.0001 and

longer reaction times to face targets compared with all other categories, p’s<. 01. The ASD

group had shorter reaction times to standard stimuli versus all other categories, p’s<.005. In

summary, groups did not differ in reaction times across all stimulus categories, and both

groups had quicker responses to standards than other categories.

Imaging Data

Analyses of functional imaging data included all trials and included accuracy, reaction times

for condition-specific responses, and full-scale IQ as covariates. Analyses without these

covariates yielded highly similar results (see Supplementary Figure 1). Primary analyses

included models that directly compared groups (ASD>Control, Control>ASD) within each

target type, followed by results of whole-brain Group (ASD, Control) × Target Type (Face

Target, HAI Target) interaction analyses.

Group Contrasts to Face Targets—The top left of Figure 3 and the top of Table 2

illustrate brain areas showing relatively greater activation in the ASD group than the control

group to face targets (there were no brain areas with relatively decreased activation to face

targets in the ASD group). Brain areas with relatively increased activation to face targets in

the ASD group included clusters within left superior frontal gyrus and the right insular

cortex. Average hemodynamic responses across subjects in the SFG are presented in the top

right of Figure 3 and indicate greater BOLD signal change in the ASD group 6 and 7.5

seconds after face target presentation. The sizes of these clusters (104–128 mm3) were not

large enough to survive more conservative cluster-correction (>308 mm3).

Group Contrasts to HAI Targets—The bottom left of Figure 3 and the bottom of Table

2 illustrate brain areas showing relatively decreased activation in the ASD group than the

control group to HAI targets (there were no brain areas with relatively increased activation

to HAI targets in the ASD group). Brain areas with relatively decreased activation to HAI

targets in the ASD group included a cluster in the left caudate nucleus as well as clusters

within left inferior frontal gyrus, anterior cingulate gyrus, right middle frontal gyrus, and the

left amygdala. Average hemodynamic responses across subjects in the left caudate nucleus

cluster are presented in the bottom right of Figure 3 and indicate decreased BOLD signal

change in the ASD group 6 and 7.5 seconds after HAI target presentation. The size of this

caudate cluster (104 mm3) was not large enough to survive more conservative cluster-

correction (>308 mm3)
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Group × Target Type Interaction—Figure 4 illustrates results of a Group (ASD,

Control) × Target Type (Face Target, HAI Target) fMRI model. This analysis yielded a

midline caudate nucleus cluster which was further queried by analyzing subject- and

condition-specific signal intensities via a mixed repeated measures ANOVA. This analysis

revealed a significant Group x Target Type interaction, multivariate F (1,30)=4.41, p<.05,

but no significant effects of Target Type or Group, p’s>.39. Consistent with findings above,

a follow-up ttest indicated that responses in this caudate cluster to HAI targets were

significantly less in the ASD group, p<.05. The size of this caudate nucleus cluster (648

mm3) was large to survive more conservative cluster-correction (>308 mm3).

Relations to Symptoms—We evaluated whether the magnitude of brain activation in

frontostriatal clusters that differentiated groups in response to social (i.e., left superior

frontal gyrus and right insular cortex) and HAI (left caudate, left inferior frontal gyrus,

anterior cingulate gyrus, and right middle frontal gyrus) targets as well as the caudate

nucleus cluster yielded by the Group × Target Type Interaction model predicted symptom

severity measured by the SRS-SR and the RBS-R within the ASD group. These analyses

revealed that higher RBS-R scores were correlated with decreased left inferior frontal gyrus

activation (r= −0.53, p<.03) and decreased right middle frontal gyrus activation (r= −0.65,

p<.007) to social targets in the ASD group.

Discussion

Previous research has demonstrated that ASD is characterized by aberrant frontostriatal

activation during tasks that require cognitive control. These findings represent a possible

neural mechanism of restricted and repetitive behaviors and interests that are a core feature

of the disorder (Dichter et al., 2009; Schmitz et al., 2006; Thakkar et al., 2008; Solomon et

al., 2009; Shafritz et al., 2008). The aim of the present study was to extend this line of

research to investigate neural correlates of cognitive control of both social stimuli and

nonsocial stimuli related to circumscribed interests in ASD via an oddball target detection

task. This task requires flexible responding and inhibition of prepotent responses and has

been shown to recruit frontostriatal brain regions, including the striatum, superior, middle,

and inferior frontal gyri, and dorsal medial prefrontal cortex (Huettel & McCarthy, 2004;

Kirino et al., 2000). Faces were used as social stimuli given their centrality to social

functioning, and nonsocial images of objects related to circumscribed interests known to be

salient and rewarding to individuals with ASDs were used as nonsocial targets (Dichter,

Felder et al., 2012; Sasson et al., 2011; Sasson et al., 2008).

We found that the ASD group was characterized by relatively increased prefrontal activation

to social targets and by relatively decreased activation to HAI targets in the caudate nucleus

and multiple prefrontal brain regions. Although the localization of these clusters at

uncorrected thresholds suggested to be appropriate in smaller-scale clinical studies

(Lieberman & Cunningham, 2009) are consistent with hypotheses and previous fMRI

research addressing the neural correlates of cognitive control in autism, only the caudate

nucleus cluster yielded by the Group × Target Type interaction model was significant at a

more conservative cluster-corrected threshold.
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Findings in the present study of hyperactivation in a medial aspect of superior frontal gyrus

in the ASD group to face targets are consistent with previous results given the central role

the superior frontal gyrus plays in executive tasks (Fan, McCandliss, Fossella, Flombaum, &

Posner, 2005; MacDonald, Cohen, Stenger, & Carter, 2000). The insular cortex, and the

inferior frontal gyrus more broadly, mediates strategic planning in oddball tasks (Huettel,

2004; Kirino et al., 2000b) and modulates arousal to facilitate selective attention,

particularly in the context of conflict (Eckert, Menon, Walczak, Ahlstrom, Denslow et al.,

2009). Thus, localization of hyperactivation in the superior frontal gyrus and insular cortex

to face targets implicates prefrontal brain areas that mediate flexible patterns of behavioral

responding. Because hyperactivation in prefrontal regions during tasks requiring cognitive

control may reflect compensatory neural mechanisms (Dichter et al, 2009), the ASD group

may have required greater neural resources to respond flexibly to social stimuli requiring

cognitive control. This interpretation is consistent with studies in control samples indicating

that dorsal prefrontal cortical regions play a key role in regulating response selection, goal

maintenance and recall of task-relevant information (Milham, Banich, Claus, & Cohen,

2003; Woodward, Metzak, Meier, & Holroyd, 2008).

The novel finding in the present study was that the ASD group was characterized by

relatively decreased activation to HAI oddball targets in multiple frontostriatal brain regions

that mediate cognitive control, including the caudate nucleus, left inferior frontal gyrus,

anterior cingulate gyrus, and right middle frontal gyrus, (Fan et al., 2005; Kirino et al.,

2000b; Huettel, 2004; Kirino et al., 2000a). We have demonstrated previously with multiple

methodologies (i.e., behavioral ratings (Sasson et al., 2012), eye-tracking (Sasson et al.,

2008; Sasson et al., 2011), and functional brain imaging (Dichter, Felder et al., 2012;

Dichter, Richey, Rittenberg, Sabatino, & Bodfish, 2012; Richey, Rittenberg, Hughes,

Damiano, Sabatino et al., 2013)) that social and HAI stimuli have different motivational

value for individuals with autism. Cognitive control is impacted by the motivational value of

the information being processed (Padmala & Pessoa, 2011, 2010; Krebs, Boehler,

Appelbaum, & Woldorff, 2013). Thus, we interpret the present findings to suggest that

cognitive control is not a pervasive deficit in ASD, but rather that the degree of deficit is

likely impacted by the nature of the information being processed, and that the increased

motivational value associated with processing HAI information may diminish the cognitive

control deficits in ASD.

In-scanner behavioral performance indicated that both diagnostic groups were slower and

less accurate to target stimuli relative to novel and standard images, confirming that target

responses required greater cognitive control. Additionally, the ASD group made slower and

less accurate responses across stimulus categories and were slower and less accurate to both

target categories. This domain-general pattern of impaired performance stands in contrast to

functional brain imaging results indicating activation patterns that were moderated by target

type in the ASD group. Individuals with ASDs have been consistently found to demonstrate

slower reaction times in a range of cognitive control tasks (Geurts, Corbett, & Solomon,

2009; Hill, 2004). As reviewed above, the social and HAI stimulus categories hold

differential motivational value for individuals with ASDs, and motivational properties would

be expected to impact behavioral performance in a conflict paradigm. Thus, we interpret the

present behavioral results to reflect general response slowing characteristic of ASD rather
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than the established motivational differences between these two stimulus categories. Of

central importance, however, is that behavioral responses in the ASD group were apparently

produced via differential patterns of neural activation within the cognitive control network.

This differential pattern of behavioral versus neural results has been found previously in

studies of cognitive control (Botvinick, Braver, Barch, Carter, & Cohen, 2001; Rushworth,

Walton, Kennerley, & Bannerman, 2004), and particularly in autism studies (Agam, Joseph,

Barton, & Manoach, 2010; Dichter et al., 2009). Conflict-related neural hyperactivation in

the context of poorer behavioral performance has been interpreted to reflect neural

inefficiency, differential strategies, and/or overactive performance monitoring, whereas

conflict-related neural hypoactivation may be evident in contexts of relatively decreased

conflict processing or task engagement (Melcher, Falkai, & Gruber, 2008). Thus, it may be

the case that the presence of social versus HAI conflict stimuli exposed different neural

correlates of cognitive control deficits in ASD.

Analyses of relations between neural response and symptom profiles within the ASD group

revealed that activation in two prefrontal clusters to social targets predicted the severity of

repetitive behaviors and restricted interests in the ASD group. This finding provides further

evidence that responses during cognitive control tasks are related to the severity of repetitive

behavior symptoms (e.g., Agam et al., 2010), and in particular during a task that requires

cognitive control of social information, the stimulus condition that would be most likely to

tap cognitive deficits in autism (Ozonoff, 1995).

Limitations of the present study should be addressed in future research. First, all participants

viewed the same set of HAI images. Although this approach provided experimental internal

validity, circumscribed interests in ASD are idiosyncratic and person-specific. In this regard,

HAI images were not used as a proxy for person-specific interests but rather as a ‘press’ to

investigate differences in activation patterns to social and salient non-social images across

both groups. The use of standardized object images is likely a conservative estimate of

patterns of brain activation to person-specific interests, but future research with person-

specific images and other object images not associated with circumscribed interests will be

necessary to address this. Additionally, given that social stimuli were faces with neutral

expressions and that face expression moderates brain activation patterns in ASD (Kleinhans,

Richards, Weaver, Johnson, Greenson et al., 2010), future research should address the

potential moderating effect of face expression on cognitive control in autism. We also note

that social and nonsocial stimuli were not equated with respect to perceptual properties, and

future research that parametrically varies these stimulus properties may evaluate to what

extent these features effect brain activation.

Despite these limitations, the present study extends the extant literature on the neural

mechanisms of cognitive control in ASD and suggests that functioning of cognitive control

systems in ASD is critically dependent on the type of stimulus processed. Specifically,

individuals with ASDs appear to be characterized by frontostriatal hyper- and

hypoactivation to social and nonsocial stimuli related to circumscribed interest, respectively.

The present findings indicate a potential novel neural correlate of circumscribed interests in

individuals with ASDs.
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Figure 1.
The Target Detection Oddball task. Runs alternated between images of faces and High Autism Interest (“HAI”) images as

targets.
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Figure 2.
In-scanner accuracy (top left), d′ (top right), and reaction time (bottom). Errors bars represent group standard errors of the

mean. * p<.05; ** p<.001.
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Figure 3.
Top: Brain areas showing increased activation to face targets in ASD participants relative to controls included two superior

frontal gyrus (SFG) clusters and a cluster within right insular cortex (not shown). Bottom: Brain areas showing decreased

activation to High Autism Interest (“HAI”) targets in ASD participants relative to controls included the left caudate nucleus. p<.

05; Coordinates are in MNI space.

Sabatino et al. Page 17

J Autism Dev Disord. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
Results of the Group (ASD, Neurotypical) × Target Type (Face Target, HAI Target) fMRI model (left) and subject- and

condition-specific signal intensities extracted from the significant midline caudate nucleus cluster. p<.05; Coordinates are in

MNI space.
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Table 1

Means (SDs) of demographic data and symptom profiles.

Autism (n=15) Control (n=17) t (p)

Age 26.3 (9.4) 24.3 (3.7) .24 (.81)

ADOS

 Comm 5.8 (5.3)

 SI 8.7 (2.2)

 SBRI 2.25 (1.8)

WASI †

 Verbal 108.1 (24.9) 128.5 (7.2) −2.68 (.015)

 Performance 109.1 (14.1) 122.2 (7.5) −3.26 (.0039)

 Full 109.9 (20.3) 127.0 (8.1) −3.08 (.0066)

AQ 24.7 (13.1) 12.4 (5.3) 3.55 (.002)

RBS-R 20.8 (24.8) 3.6 (4.7) 4.44 (.0004)

SRS-SR (raw scores) 70.7 (34.3) 33.7 (18.5) 3.89 (0.0008)

†
 WASI missing from 1 autism participant with Leiter IQ score of 121

Abbreviations:
WASI: Wechsler Abbreviated Scale of Intelligence (Weschler, 1999);
ADOS: Autism Diagnostic Observation Scale (Lord et al., 2000); Comm: Communication; SI: Reciprocal Social Interaction; SBRI: Stereotyped
Behaviors and Restricted Interests;
AQ: Autism Spectrum Quotient (Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001); a threshold of 32 or higher suggests cause for
clinical concern in community samples.
RBS-R: Repetitive Behavior Scale-Revised (Bodfish, Symons, & Lewis, 1999).
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