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The polyamines norspermidine and spermidine are among the environmental signals that regulate

Vibrio cholerae biofilm formation. The effects of these polyamines are mediated by NspS, a

member of the bacterial periplasmic solute binding protein superfamily. Almost all members of this

superfamily characterized to date are components of ATP-binding cassette-type transporters

involved in nutrient uptake. Consequently, in the current annotation of the V. cholerae genome,

NspS has been assigned a function in transport. The objective of this study was to further

characterize NspS and investigate its potential role in transport. Our results support a role for

NspS in signal transduction in response to norspermidine and spermidine, but not their transport.

In addition, we provide evidence that these polyamine signals are processed by c-di-GMP

signalling networks in the cell. Furthermore, we present comparative genomics analyses which

reveal the presence of NspS-like proteins in a variety of bacteria, suggesting that periplasmic

ligand binding proteins may be widely utilized for sensory transduction.

INTRODUCTION

Periplasmic solute binding proteins (PBPs) comprise a large
family of proteins found in the periplasmic space of Gram-
negative bacteria and are generally involved in nutrient
import as components of ATP-binding cassette (ABC)
transporters. These proteins bind a variety of ligands with
high affinity, including polyamines, sugars, amino acids,
oligopeptides, metals, iron–siderophore complexes and

vitamins (Davidson et al., 2008). In most cases, binding of
the ligand leads to association of the PBPs with the permease
complexes of the ABC transporter located in the cytoplasmic
membrane. The ligand is then released and transported into
the cytoplasm in a process driven by ATP hydrolysis
catalysed by the ATPase component of the transporter
(Davidson et al., 2008).

We have previously reported the initial characterization of
NspS, a protein in the PBP family that is an activator of
biofilm formation in the pathogenic bacterium Vibrio
cholerae (Karatan et al., 2005). NspS belongs to the bacterial
extracellular solute-binding protein family 1, which includes
PBPs associated with ABC transporters for polyamines
(http://www.ebi.ac.uk/Tools/InterProScan/). Polyamines are
short hydrocarbon chains containing two or more amine

3These authors contributed equally to this work.

Abbreviations: ABC transporter, ATP-binding cassette transporter; MBP,
maltose binding protein; PBP, periplasmic binding protein; TSA, thermal
shift assay.
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groups that are positively charged at physiological pH. They
are found in virtually all cells in millimolar quantities and are
essential for normal growth of most prokaryotes and
eukaryotes (Tabor & Tabor, 1984). In addition to their role
in maintaining normal cell growth the polyamines putres-
cine, spermidine, norspermidine and spermine have been
reported to influence biofilm formation in a number of
bacteria (Burrell et al., 2010; Goytia et al., 2013; Karatan et al.,
2005; Kolodkin-Gal et al., 2012; Lee et al., 2009; McGinnis
et al., 2009; Patel et al., 2006).

NspS is a homologue of PotD and PotF, the PBPs of
the well-characterized spermidine and putrescine uptake
systems, respectively, in Escherichia coli. Due to its simi-
larity to PotD and PotF, NspS was initially annotated as a
putative spermidine/putrescine ABC transporter binding
protein. In recently sequenced genomes, NspS homologues
continue to be annotated as having a function in transport
in various genome databases. Despite its similarity to the
PBPs of transport systems, we hypothesize that NspS is not
involved in transport but rather in signal transduction for
the following reasons. In many cases, genes encoding
components of ABC transporters are found adjacent to
each other in an operon. For example, the V. cholerae
genome contains two nspS homologues, potD1 and potD2,
found adjacent to the potA, potB and potC genes, encoding
the ATPase and permease components of the ABC
transporter. PotD1 is responsible for spermidine import
while the role of PotD2 has not yet been established
(McGinnis et al., 2009). In contrast, the nspS gene is
adjacent to and has overlapping reading frames with the
mbaA gene, which encodes a protein that is likely to be
involved in signal transduction. MbaA is a putative integral
membrane protein containing GGDEF and EAL domains,
which are found in enzymes that synthesize or degrade the
ubiquitous bacterial secondary messenger cyclic-di-guany-
late monophosphate (c-di-GMP). MbaA is also a repressor
of V. cholerae biofilm formation (Bomchil et al., 2003;
Karatan et al., 2005). Therefore, NspS and MbaA have
opposite effects on V. cholerae biofilms. In addition, the
polyamine norspermidine significantly enhances biofilm
formation and expression of the vps genes, which encode
proteins responsible for synthesis of the biofilm polysac-
charide in V. cholerae (Karatan, et al., 2005). This effect is
mediated by the protein NspS, as DnspS mutants do not
respond to norspermidine addition. DmbaA mutants also
do not respond to norspermidine, suggesting that MbaA
plays a role in detecting and processing the norspermidine
signal in the environment as well. Additionally, spermi-
dine, a polyamine that is one methylene group longer than
norspermidine, inhibits V. cholerae biofilm formation also
in an NspS- and MbaA-dependent manner (McGinnis
et al., 2009).

The proximity of the nspS and mbaA genes, their predicted
cellular locations and their effect on biofilm formation has
led to the hypothesis that NspS and MbaA make up a
signalling complex that regulates V. cholerae biofilm
formation in response to the presence of norspermidine

and spermidine in the environment. Our current working
model for this signalling system is depicted in Fig. 1. In
the absence of norspermidine or spermidine, NspS inter-
acts with MbaA and downregulates its enzymic activity,
allowing for intermediate c-di-GMP levels, vps gene
expression and propensity to form biofilms (Fig. 1a).
Binding of norspermidine to NspS increases the inhibitory
effect of NspS on MbaA, leading to an increase in biofilm
formation (Fig. 1b). In contrast, binding of spermidine to
NspS inhibits its interaction with MbaA, allowing maximal
MbaA activity, which decreases c-di-GMP levels and
hinders biofilm formation (Fig. 1c).

In this study, our objective was to provide support for our
hypothesis that NspS is a signalling protein that commu-
nicates polyamine signals to the cell without mediating
their transport and to determine whether NspS and MbaA
serve as a new paradigm in c-di-GMP signalling.

METHODS

Bacterial strains, plasmids and media. The V. cholerae strain used

was O139 MO10; more information on the bacterial strains and

plasmids used in this study can be found in Table 1. Primers are listed

in Table S1 (available in the online Supplementary Material). All

experiments were done in Luria–Bertani broth (LB). Primer synthesis

and DNA sequencing were performed by Eurofins MWG Operon and

the Biotechnology Resource Center at Cornell University, respectively.

Construction of the nspS expression vector and purification of

NspS. The signal peptide in NspS was predicted to be amino acids 1–

33 with the Signal 4.1 Server (http://www.cbs.dtu.dk/services/SignalP/)

using the default D cut-off values. The portion of the nspS gene

downstream of this sequence was amplified from chromosomal DNA

in two separate reactions using primer pairs P228/P231 (reaction 1)

and P229/P230 (reaction 2). The amplified products were denatured

at 98 uC for 5 min, combined and left to anneal by slow cooling to

room temperature to yield sticky ends, as described by Ulijasz et al.

(1996). These were cloned into NcoI/XhoI-digested cytoplasmic

expression vector pET28b, in-frame with the plasmid encoded C

terminus 66 histine tag yielding pNP37. Correct construction and

sequence was verified by restriction digests followed by sequencing

of several clones. pNP37 was transformed into Shuffle T7 Express

cells (New England Biolabs), which are optimized for cytoplasmic

production of periplasmic proteins. For protein production, cells

were induced at mid-exponential phase with 0.1 mM IPTG and

incubated for an additional 18 h at 30 uC. NspS was purified using

metal affinity chromatography with a cobalt resin (Thermo

Scientific).

Construction of the mbaA expression vector and mbaAE553A

point mutant, and purification of MbaA. To avoid complications

resulting from solubility issues with membrane proteins, we chose to

assess the enzymic activity of the cytoplasmic portion of MbaA

containing the GGDEF and EAL domains (C-terminal 509 residues).

The portion of the mbaA gene encoding the predicted cytoplasmic

residues was amplified from chromosomal DNA using primers PA211

and PA212 which added 59 NdeI and 39 BamHI sites to the fragment,

respectively. The amplified gene fragment was digested with NdeI and

BamHI and cloned into NdeI/BamHI-digested pMAL-c5x (New

England Biolabs) downstream of a gene encoding the maltose binding

protein (MBP), generating pRC1. Presence of the fusion partner

substantially increased the solubility of MbaA as expression of the
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same fragment using pET28b previously had resulted in the majority

of the protein accumulating in inclusion bodies. pRC1 was

transformed into NEB express cells (New England Biolabs), and

correct construction and sequence was verified by colony PCR

followed by sequencing of several clones. To produce the MBP–MbaA

fusion protein, 1 litre cultures grown in LB with 0.2 % glucose were

induced at mid-exponential phase with 0.3 mM IPTG and incubated

for an additional 18 h at 30 uC. MBP–MbaA was affinity purified
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Fig. 1. Working model of the NspS–MbaA signalling complex. Environmental inputs are communicated to the interior of the cell
as a change in the enzymic activity of MbaA. This change is reflected in the c-di-GMP levels, which in turn influence vps gene
expression and biofilm formation. (a) In the absence of a ligand. (b) With norspermidine. (c) With spermidine. Thin, thicker and
thickest arrows correlate with low, medium and high c-di-GMP levels, vps gene expression, and biofilm formation. Short and
long zigzag lines bound to NspS represent norspermidine and spermidine, respectively. IM, inner membrane; OM, outer
membrane.

Table 1. Bacterial strains and plasmids

Strain/plasmid Genotype Reference/source

E. coli

SM10lpir thi thr leu tonA lacY supE recA : : RP4-2-Tc : : MulpirR6K;Kmr Miller & Mekalanos (1988)

SHuffle T7 Express fhuA2 lacZ : : T7 gene1 [lon] ompT ahpC gal latt : : pNEB3-r1-cDsbC (SpecR, lacIq)

DtrxB sulA11 R(mcr-73 : : miniTn10–TetS)2 [dcm] R(zgb-210 : : Tn10–TetS)

endA1 Dgor D(mcrC-mrr)114 : : IS10

New England Biolabs

NEB express fhuA2 [lon] ompT gal sulA11 R(mcr-73 : : miniTn10–TetS)2 [dcm] R(zgb-

210 : : Tn10–TetS) endA1 D(mcrC-mrr)114 : : IS10

New England Biolabs

V. cholerae

PW249 MO10, clinical isolate of V. cholerae O139 from India, SmR Waldor & Mekalanos (1994)

PW357 MO10 lacZ : : vpsLpAlacZ, SmR Haugo & Watnick (2002)

AK314 MO10 nspC : : kan, KanR, SmR This study

AK317 MO10 nspC : : kan, DpotD1, KanR, SmR This study

AK160 MO10 lacZ : : vpsLpAlacZ, DpotD1, SmR This study

Plasmid

pWM91 oriR6KmobRP4 lacI pTac tnp miniTn10Km; KmR, ApR Metcalf et al. (1996)

pET28b KanR Novagen

pMAL-c5x AmpR New England Biolabs

pAR17 pWM91 carrying an internal 981 bp fragment of nspC replaced with kanamycin

acetyltransferase gene

This study

pRC1 pMAL-c5x : : mbaA This study

pRC2 pMAL-c5x : : mbaAE553A This study

pNP37 pET28b : : nspS This study
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using an amylose resin (New England Biolabs). To generate a mutant
in which the putative catalytic glutamate was changed to alanine,
mbaA was first amplified in two fragments: the ‘up’ fragment was
amplified using PA211 and PA216 that coded for an A to C nucleotide
substitution; the ‘down’ fragment was amplified using PA215, which
was complementary to PA216, and PA212. The up and down
fragments were spliced together using overlap extension PCR
(splicing by overlap extension) (Ho et al., 1989) and cloned into
pMAL-c5x to generate pRC2, which was sequenced to verify the
presence of the intended mutation and absence of other mutations.

Thermal shift assay. To determine the binding ability of NspS to
various ligands, a thermal shift assay (TSA) was performed essentially
as previously described (Giuliani et al., 2008; Niesen et al., 2007). TSA
relies on the principle that a protein bound to a ligand has a higher
thermal stability than the ligand-free protein. The extent of
denaturation is measured using the fluorescent protein-binding dye
SYPRO Orange, the fluorescence of which is quenched in aqueous
environments. As the protein denatures, more SYPRO Orange binds
the protein, resulting in increased fluorescence. This assay has
previously been used to identify ligands for ABC-type transporters
(Giuliani et al., 2008; Tan et al., 2013). The TSA reaction mixtures
contained 20 mM NspS alone or with polyamines in TSA buffer
(100 mM HEPES, 150 mM NaCl, pH 7.5). SYPRO Orange
(Invitrogen) was used at a concentration of 56. The reactions were
transferred to an Optical 96-well reaction plate, covered with an
optical adhesive cover, and analysed in an Applied Biosystems 7300
real-time PCR system using the detection filter for the TAMRA dye.
The instrument was set to increase the temperature from 25 to 95 uC
in increments of 1 uC min21. The binding assays were performed in
triplicate with multiple biological replicates. Negative controls
contained SYPRO Orange, assay buffer and polyamines to ensure
no reactions were occurring between the polyamines and SYPRO
Orange indicator. Data were analysed in SigmaPlot, where the first
derivative of the raw fluorescence values was taken and plotted
graphically using Microsoft Excel. The peak is the maximal rate of
change of the fluorescence intensity, which is referred to as the
melting point (Tm) and is a measure of the thermal stability of the
protein. Therefore, an upward shift in Tm shows increased thermal
stability and indicates a binding event.

Phosphodiesterase assay. MBP–MbaA or MBP–MbaAE553A

(2.5 mM) was mixed with 100 mM c-di-GMP or c-di-AMP (Biolog)
and 2 mM MnCl2 in 50 mM Tris, pH 8.5, at a final volume of 100 ml
and incubated for 2.5 h at 37 uC. After incubation, reactions were
boiled for 5 min and centrifuged through a Nanosep 10 kDa Omega
filter for 2 min at 14 000 g. The reaction products were separated
using a SUPELCOSIL LC-18 column with a Waters 1525 Binary
HPLC pump and were analysed using a Waters 2487 dual l

absorbance detector as described by Ryjenkov et al. (2005).

Construction of nspC : :kan, nspC : :kanDpotD1 and DnspSDpotD1

mutants. Multiple attempts to make a markerless in-frame deletion
in nspC, which encodes the last enzyme in the norspermidine
biosynthesis pathway, failed. Therefore, we generated an nspC
mutant by replacing 981 bp of the 1164 bp coding sequence with
a kanamycin resistance cassette. The kanamycin aceytltransferase
gene was amplified from pKD4 (Datsenko & Wanner, 2000) using
primers PA207 and PA208. A 371 bp fragment containing a short 59

portion of nspC and the upstream sequence was amplified using
primers P328 and P329. Similarly, a 468 bp fragment containing a
short 39 portion of nspC and the downstream sequence was
amplified using primers P330 and P331. Primers P329 and P330
contained complementary regions to PA207 and PA208, respectively.
The three PCR products were then joined together by splicing by
overlap extension. After adding adenines, this product was cloned
into pCR2.1-TOPO, and the sequence was verified. This insert was

then excised using XhoI and SpeI, ligated into pWM91 linearized
with the same enzymes generating pAR17, and transformed into E.
coli SM10lpir. E. coli SM10lpir containing pAR17 or pMM9
(McGinnis et al., 2009) were mated with wild-type V. cholerae, the
DpotD1 mutant or the DnspS mutant to generate nspC : : kan,
nspC : : kanDpotD1 and DnspSDpotD1 mutants, respectively, via
double homologous recombination with sucrose selection as

described by Metcalf et al. (1996).

Extraction, benzoylation and detection of polyamines. Bacteria
were grown at 27 uC to mid-exponential phase, pelleted, washed with
16 PBS and resuspended in 10 ml water per milligram wet cell

weight. Then, 250 ml of the cell suspension corresponding to 25 mg of
cells was lysed using sonication and the cell debris was removed by
centrifugation. Cellular proteins were precipitated with 50 % (w/v)
trichloroacetic acid and centrifuged, leaving the supernatant contain-
ing the polyamines. This supernatant was removed and benzoylated as
described previously (McGinnis et al., 2009). Briefly, samples were
extracted twice with chloroform, evaporated to dryness and dissolved
in 100 ml of 60 % methanol in water. A standard mix containing
0.1 mM of each polyamine was also prepared and benzoylated each
time. The resulting set of benzoylated polyamine samples were
separated using a Phenomenex Sphereclone ODS column (5 mm,

25064.6 mm) that was fitted with a 4.063.0 mm guard cartridge
with the system described above. The runs were performed using a
gradient of 45–60 % methanol in water for 30 min with a 10 min
isocratic equilibration of 45 % methanol in water.

Biofilm assays. Bacteria were diluted in 0.3 ml LB at an OD595 of

0.02 taken using a Bio-Rad MicroPlate Reader model 680 and
incubated in borosilicate test tubes for 18 h at 27 uC. After 18 h,
planktonic cells were removed. The biofilm was washed once with
0.3 ml of 16 PBS, mechanically disrupted in 0.3 ml of 16 PBS by
vortexing with glass beads, and the cell density was measured at
OD595. All experiments were performed in triplicate and repeated
multiple times to confirm reproducibility.

RNA extraction, cDNA synthesis and RT-PCR. Total RNA was
extracted from 5 ml of cells grown to mid-exponential phase using
the Ambion RiboPure-Bacteria kit and treated with DNase I for 2 h at
37 uC. One microgram of this RNA was reverse transcribed with
random primers using the Protoscript First Strand cDNA Synthesis
kit (New England Biolabs). Negative controls were also performed
without reverse transcriptase to ensure a lack of genomic DNA
contamination. The cDNA was then used in a PCR with gene-specific

primers designed to amplify approximately 300 bp regions.

Bioinformatics. To determine if nspS and mbaA genes were conserved
in other members of the genus Vibrio, we utilized the Pathosystems
Resource Integration Center (PATRIC) website (http://patricbrc.org/
portal/portal/patric/Home; last accessed 4 October 2013) (Gillespie

et al., 2011). To determine if nspS-like/mbaA-like gene pairs were
present in genomes of other bacteria in a different genomic context, we
performed a preliminary genome region comparison analysis using the
672 bacterial genomes available in the Comprehensive Microbial
Resource (J. Craig Venter Institute; http://cmr.jcvi.org/cgi-bin/CMR/
CmrHomePage.cgi; last accessed 24 September 2013).

RESULTS

NspS interacts with norspermidine and
spermidine

To determine if norspermidine and spermidine mediate
their effect on V. cholerae biofilms by directly interacting

NspS mediates polyamine sensing but not transport
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with NspS, we evaluated the ability of NspS to bind these
polyamines using a TSA. This assay operates on the
principle that a ligand binding protein will be more
thermally stable when bound to its ligand and thus will
have a higher Tm. In the ligand-free state, NspS had a Tm of
approximately 47 uC (Fig. 2). Presence of norspermidine
and spermidine increased the melting point of NspS by
approximately 10 uC, indicating a binding event (Fig. 2).
The NspS homologue PotD has been shown to bind the
diamine putrescine in addition to the triamine spermidine,
albeit with less affinity (Kashiwagi et al., 1990, 1996). To
determine if NspS is also capable of interacting with
putrescine, we performed the binding assay with this
polyamine as well as another diamine, cadaverine.
Putrescine and cadaverine did not increase the thermal
stability of NspS when used at the same concentration,
indicating the increase in Tm was polyamine specific (Fig.
2). These results indicate that the triamines norspermidine
and spermidine can interact with NspS whereas the
diamines putrescine and cadaverine cannot.

The presence of norspermidine and spermidine in the culture
medium leads to enhanced and hindered accumulation in

biofilms, respectively, as previously reported (Fig. S1)
(Karatan et al., 2005; McGinnis et al., 2009). The results of
the binding assays suggested that putrescine and cadaverine
should not affect V. cholerae biofilm formation. To test this
prediction, biofilm assays were conducted in the presence of
putrescine and cadaverine. Consistent with the results of the
TSA, the presence of these two polyamines did not affect
biofilm formation (Fig. S1). These results support the
hypothesis that the effect of norspermidine and spermidine
on biofilms is the result of direct binding to NspS.

The nspS and mbaA genes are in an operon

In bacteria, genes functioning in the same pathway are
often found in operons. Therefore, we wanted to determine
whether nspS and mbaA are co-transcribed to add weight
to our hypothesis that NspS is a sensor and MbaA is a
signal transducer, which interact to regulate biofilm
formation. We reverse-transcribed the RNA extracted from
wild-type V. cholerae cells and amplified the junctions
between nspS/mbaA and mbaA/VC0702 using primers that
annealed to adjacent genes (Fig. 3). We have previously
shown that the deletion of VC0702, the third gene in the
predicted operon, does not affect biofilm formation under
the conditions where deletion of nspS or mbaA has
pronounced effects on biofilms (Karatan et al., 2005).
The protein encoded by VC0702 was later shown to be an
NTPase capable of cleaving dITP and dUTP (Ni et al.,
2006). However, the role of VC0702 in V. cholerae
physiology remains unknown. We detected products for
all of the junctions, indicating that nspS, mbaA and
VC0702 reside in an operon. Because proteins encoded by
genes in an operon interact and/or work together in the
same pathway, this result lends support to the hypothesis
that NspS and MbaA work together to regulate biofilm
formation.

MbaA is a c-di-GMP phoshpodiesterase

Our working model predicts that NspS and MbaA work
together to regulate c-di-GMP levels in V. cholerae. MbaA
is predicted to be a phosphodiesterase because the
canonical GGDEF motif in this protein is altered to
SGDEF, suggesting the GGDEF domain is not likely to have
diguanylate cyclase activity. In addition, the increased
propensity of mbaA mutants to accumulate in a biofilm is
consistent with phenotypes of phosphodiesterase mutants,
which have local or global increases in c-di-GMP levels
(Römling et al., 2013). To confirm that MbaA could indeed
contribute to c-di-GMP signalling by hydrolysing this
molecule, we performed c-di-GMP phosphodiesterase
assays with purified MbaA. We separated the reaction
products by HPLC and compared the HPLC traces with c-
di-GMP and pGpG standards to identify peaks (Fig. 4a).
MbaA was able to break down c-di-GMP to pGpG,
confirming that it is a phosphodiesterase (Fig. 4b). To
ensure the phosphodiesterase activity was associated with
the EAL domain, we constructed a mutant, MbaAE553A, in

NspS only

NspS+nspdNspS+nspd

NpsS+spd

NspS+put

NpsS+cad
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Fig. 2. Binding of polyamines to NspS. TSAs were conducted in
the presence or absence of polyamines. Denaturation profile of
NspS without polyamines (NspS only) and with norspermidine
(nspd), spermidine (spd), putrescine (put) and cadaverine (cad)
are shown. The y-axis f9(I) is the rate of change of total
fluorescence intensity (I). Peaks of the curve represent Tm, melting
temperature, which was used to compare the stability of NspS
under the assay conditions. Assays were performed in triplicate
and means were plotted. Assays were repeated at least twice with
protein purified from different cultures to ensure reproducibility; a
representative graph is shown. Chemical formulas of the poly-
amines used are presented below the graph.
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which the catalytic glutamate residue was changed to an
alanine. As expected, this altered protein was incapable
of degrading c-di-GMP to pGpG (Fig. 4c). We also tested
the activity of MbaA against c-di-AMP, another cyclic
dinucleotide utilized by bacteria. MbaA was not able to
break down c-di-AMP, indicating it is a c-di-GMP-specific
phosphodiesterase (Fig. 4d).

NspS is not involved in spermidine transport

If NspS is a sensor that communicates extracellular levels of
polyamines to MbaA, then it may not be involved in
transport. Alternatively, it may be a bi-functional protein
involved in both signalling and transport. To distinguish
between these two possibilities, we investigated the role of
NspS in polyamine transport, starting with spermidine
uptake. We have previously shown that PotD1, a protein
that has 66 % amino acid identity to E. coli PotD, is respon-
sible for spermidine import in V. cholerae (McGinnis et al.,
2009). In the absence of PotD1, NspS cannot support
spermidine uptake at low concentrations of spermidine
(10–40 mM in different batches of LB broth used),
indicating that it does not play a role in high-affinity
spermidine transport. However, these results do not
preclude the possibility that NspS is part of a low-affinity
transport system for spermidine. To test this hypothesis,
we analysed the polyamine content of the DpotD1 strain
grown in high concentrations of spermidine (1 mM). The
presence of 1 mM spermidine in the culture medium
resulted in accumulation of a small amount of spermidine
in the cell, suggesting that NspS could indeed be a low-
affinity binding protein utilized for spermidine import

(data not shown). To test this hypothesis, we constructed a
DnspSDpotD1 double mutant and assessed its ability to
uptake spermidine. In the absence of additional spermidine
in the growth medium, this mutant contained putrescine,
diaminopropane, cadaverine and norspermidine (Fig. 5a).
All of these polyamines can be produced by V. cholerae, but
spermidine has to be imported from the culture medium
under the conditions of this experiment. (Lee et al., 2009;
McGinnis et al., 2009). Growing this mutant in the
presence of 1 mM spermidine still led to accumulation of
spermidine in the cell (Fig. 5b). These results indicate that
NspS is not responsible for spermidine transport. It is
possible, however, that V. cholerae has a second protein in
addition to PotD1 that is capable of mediating spermidine
transport at high concentrations of this molecule.

PotD1, but not NspS, is responsible for
norspermidine import

Next, to rule out the involvement of NspS in norspermi-
dine transport, we first eliminated norspermidine synthesis
in the cell. We disrupted the nspC gene, which codes for
the enzyme that catalyses the last step of norspermidine
synthesis. As expected, this mutant was not able to produce
norspermidine (Fig. 5c). Addition of norspermidine to the
growth medium of this mutant restored the presence of
norspermidine in the cell, indicating that the norspermidine
uptake system was intact (Fig. 5d). Exogenous norspermi-
dine also eliminated spermidine uptake, corroborating the
results previously reported by us and others (Lee et al., 2009;
McGinnis et al., 2009). The competition between spermi-
dine and norspermidine transport suggested that PotD1
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nspS VC0702

vpsL/vpsM nspS/mbaA mbaA/ VC0702

nspS/mbaA mbaA/ VC0702

mbaA

VC0701VC0705

Fig. 3. nspS/mbaA/VC0702 are co-transcribed: gene junctions between nspS/mbaA, mbaA/VC0702 and vpsL/vpsM (control)
were amplified from cDNA reverse-transcribed from V. cholerae total RNA. The vpsL and vpsM genes are the first two genes of
the vpsII (or vpsL) operon encoding proteins responsible for synthesis and transport of the biofilm exopolysaccharide. Lane 1,
ladder; lanes 2 and 3, intergenic region between vpsL/vpsM amplified using PA108 and PA109; lanes 4 and 5, intergenic
region between nspS/mbaA amplified using PA 112 and PA113; lanes 6 and 7, intergenic region between mbaA/VC0702
amplified with PA110 and PA111.+/”, Presence or absence, respectively, of reverse transcriptase in the cDNA synthesis
reactions. Amplified regions are shown as black bars under the cartoon of the chromosomal region. The vpsL/vpsM region is not
shown. The image was taken using Alpha Imager and reversed with the program software for better resolution.
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may be responsible for norspermidine uptake as well. To
investigate this possibility, we constructed a double mutant,
nspC : : kanDpotD1, which synthesized putrescine, diamino-
propane and cadaverine and was unable to import
spermidine (Fig. 5e). The addition of norspermidine to
the growth medium did not restore norspermidine levels
in the cell, indicating that this mutant cannot import
norspermidine (Fig. 5f). This result shows that PotD1 is
the sole protein responsible for norspermidine uptake under
the conditions of our experiment. In addition, because the
nspS gene remains intact in this mutant our results also
confirm that NspS does not play a role in norspermidine
import.

The nspS and mbaA genes are conserved in a
subset of vibrios

The presence of norspermidine signal detection systems
have not been reported in other microbes. To determine
if norspermidine-responsive signal transduction systems
might be utilized by other members of the genus Vibrio, we
searched for nspS and mbaA in the genomes of other
vibrios. We found that nspS and mbaA were conserved in
almost all V. cholerae isolates as well as many other
members of this genus (Fig. S2). In these genomes, the gene
identity and gene order upstream and downstream of the

nspS and mbaA gene pair were also completely conserved.
The gene upstream of nspS is annotated as chorismate
mutase/prephenate dehydratase; the genes downstream of
mbaA are annotated as inosine/xanthosine triphosphatase
(VC0702), putative trp operon repressor (VC0701) and
soluble lytic murein transglycosylase (VC0700), respect-
ively. Several species contained the mbaA gene but not the
nspS gene while retaining the synteny downstream and
upstream of mbaA. Others did not harbour either nspS or
mbaA; however, again the gene identity and gene order
upstream and downstream of this region were completely
conserved. Our results indicate that nspS and mbaA are not
conserved in all members of the genus Vibrio; however,
approximately 50 % of species of the genus Vibrio whose
genomes have been sequenced should have the ability to
respond to norspermidine using the NspS/MbaA system.
Conversely, absence of nspS and mbaA from a significant
number of vibrios suggests that these organisms may not
have a need for detecting these polyamines in their
environment.

nspS-like/mbaA-like gene pairs are present in the
genomes of diverse Proteobacteria

Conservation of the nspS/mbaA gene pair in a number
of Vibrio genomes prompted us to investigate whether
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potential signalling systems composed of periplasmic
solute binding proteins and integral membrane proteins
containing GGDEF/EAL domains could be a paradigm in
bacterial signalling. Genome region comparisons were
performed using the sequenced bacterial genomes available
in the Comprehensive Microbial Resource database (http://
cmr.jcvi.org/cgi-bin/CMR/CmrHomePage.cgi). This pre-
liminary analysis produced 13 different species belonging
to Proteobacteria that contain genes encoding PBPs
adjacent to predicted integral membrane proteins contain-
ing GGDEF/EAL domains (Table 2). The predicted ligands
for the PBPs as determined by the annotations available on
the genome pages included putrescine, spermidine, phos-
phate, phosphonate, nitrate, sulphonate and bicarbonate
for more detailed annotations as well as anions, amino
acids, peptides, and amines for less detailed annotations. In
all cases, the gene encoding the PBP was followed by
another gene encoding a GGDEF/EAL domain protein that
either had overlapping reading frames with the first gene or
was only a few base pairs (3–13) downstream of this gene,
an arrangement consistent with an operon structure.

DISCUSSION

The second messenger c-di-GMP is extensively utilized in
bacteria to regulate cellular physiology in response to

external or internal signals. The V. cholerae genome
encodes more than 60 proteins that potentially contribute
to the c-di-GMP pools in the cell. Yet, the signals detected
directly or indirectly by these proteins remain largely
unknown. Our previous work had shown that norspermi-
dine and spermidine are two exogenous signals that are
likely to influence cellular c-di-GMP levels in V. cholerae as
a result of their interaction with the putative NspS/MbaA
signalling system (Karatan et al., 2005; McGinnis et al.,
2009). In this study, we demonstrate that both norspermi-
dine and spermidine bind NspS. Other spermidine-binding
PBPs have been reported; however, to our knowledge
NspS is the first norspermidine-binding PBP that has
been identified. Norspermidine greatly stimulates biofilm
formation whereas spermidine has the opposite effect;
therefore, these polyamines are antagonistic signals both of
which are detected by NspS. We have also shown that the
nspS and mbaA genes constitute an operon, providing
evidence for the hypothesis that NspS and MbaA work
together to process these signals. How NspS mediates the
response to norspermidine and spermidine and whether
this involves a direct interaction with MbaA is currently
under investigation in our laboratory.

The ability of V. cholerae to both synthesize and detect
norspermidine leads to the intriguing possibility that this
molecule could be used in quorum sensing. This would
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require the cells to export norspermidine into the envir-
onment. We have previously investigated this possibility;
however, we did not detect norspermidine in the spent
culture media of cells grown in a variety of conditions
(Parker et al., 2012). Therefore, norspermidine does not
appear to be exported by V. cholerae in its unmodified form.
In many cases, polyamines are modified by acetylation prior
to being exported (Igarashi & Kashiwagi, 2010). Polyamine
acetylation has not been studied in V. cholerae; however, the
presence of acetyl-norspermidine has been reported in
Vibrio parahaemolyticus (Yamamoto et al., 1989). It is
possible that acetyl-norspermidine is indeed synthesized and
exported by V. cholerae and detected by NspS to serve as a
measure of cell density.

In this study, we have also shown that PotD1 is responsible
for norspermidine import in V. cholerae. To our know-
ledge, this is the first identification of a PBP responsible for
norspermidine import in bacteria. The ability to synthesize
norspermidine de novo as well as to import it from the
environment implies that this polyamine plays an import-
ant role in V. cholerae physiology. Norspermidine forms
the backbone of the V. cholerae siderophore vibriobactin,
implicating its importance especially in iron-limited
environments (Keating et al., 2000). In addition, deletion
of the nspC gene reduces the growth rate in this organism,
indicating norspermidine synthesis is required for normal
growth (Lee et al., 2009). Whether this molecule plays
other roles in V. cholerae physiology in addition to its effect
on growth, biofilm formation and iron acquisition remains
to be studied.

The nspS and mbaA genes are conserved in a number
of species in the genus Vibrio, indicating they should have
the ability to respond to norspermidine and spermidine
using the NspS/MbaA system. Being able to detect these
polyamines is likely to be important for these organisms
and may give insight into their interactions with other
organisms in their environment. Norspermidine and

spermidine are both produced by prokaryotes and
eukaryotes. Norspermidine is made by many Vibrio species
as well as other bacteria and archaea (Christensen et al.,
2012; Hamana, 1997; Hamana & Itoh, 2001; Hamana et al.,
2001). It is also the major polyamine found in aquatic
invertebrates such as sea urchins, sea cucumbers and
bivalves, as well as some aquatic plants and algae (Hamana
et al., 1991, 1998, 2004). Spermidine is a common
polyamine synthesized by many different bacteria and
almost all eukaryotes (Tabor & Tabor, 1984). Therefore,
norspermidine and spermidine may mediate interactions
of some members of the genus Vibrio with other organisms
containing these polyamines.

Because of its similarity to PotD and PotF, the PBPs of the
E. coli ABC transporters for spermidine and putrescine,
NspS has been annotated as having a function in
polyamine transport. We have conclusively demonstrated
that NspS does not play a role in the import of
norspermidine or spermidine. Hence, NspS appears to be
primarily used in signal transduction. Our results also
underline the importance of consideration of genomic
context in addition to sequence similarity to provide more
accurate annotations for genes whose functions have not
yet been studied.

Although rare, examples of PBPs involved in signal
processing have been reported. A number of PBPs that
are part of ABC transporters also play a role in sensory
transduction by directly associating with membrane-bound
components of signalling complexes. In E. coli, maltose,
ribose and glucose binding proteins, which are involved in
the transport of these sugars, also bind distinct chemotaxis
receptors when complexed with their respective sugars
(Eym et al., 1996; Gardina et al., 1992; Shilton et al., 1996).
In Agrobacterium tumefaciens, ChvE, the sugar binding
protein of the MmsAB transporter, also regulates virulence
by interacting with the sensor kinase VirA (Hu et al., 2013;
Zhao & Binns, 2011). Thus, these bi-functional PBPs

Table 2. nspS/mbaA-like gene pairs in other bacteria

Organism PBP Predicted ligand GGDEF/EAL Proximity

Vibrio cholerae nspS Norspermidine/spermidine mbaA Overlap

Psychromonas ingrahamii Ping_1238 Spermidine/putrescine Ping_1239 8

Hahella chejuensis HCH_06688 Spermidine/putrescine HCH_06689 4

Shewanella sediminis Ssed_2394 Spermidine/putrescine Ssed_2393 Overlap

Pseudomonas stutzeri PST_0371 Spermidine/putrescine PST_0370 13

Sinorhizobium meliloti SMc_00991 Putrescine SMc_00991 3

Magnetospirillum magneticum amb_1105 Phosphate/phosphonate amb_1104 3

Nitratiruptor sp. SB155-21 NIS_1757 Nitrate/sulphonate/bicarbonate NIS_1758 Overlap

Thiomicrospira crunogena Tcr_1221 Phosphonate Tcr_1222 Overlap

Vibrio parahaemolyticus VPA_1753 Alkylphosphonate VPA_1754 Overlap

Vibrio parahaemolyticus VPA_1512 (ScrB) S-signal VPA_1511 (ScrC) Overlap

Shewanella paeleanna Spea_3650 ESBF-3 Spea_3649 13

Xanthomonas oryzae pv. oryzae X000RF_2004 Phosphate X000RF_2004 Overlap

Xanthomonas campestris

pv. campestris

xcc-b100_1903 Anions xcc-b100_1904 3
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coordinate nutrient uptake with cellular responses such as
chemotaxis and virulence. In Vibrio harveyi, the PBP LuxP
directly associates with the membrane-bound two-com-
ponent sensor kinase LuxQ to communicate information
about cell density (Neiditch et al., 2005). Binding of
autoinducer-2 to LuxP affects its interaction with LuxQ,
which in turn changes from a kinase to a phosphatase. In
this case, LuxP is involved in sensing of autoinducer-2, but
not its transport.

Our genomic analyses identified additional periplasmic
binding proteins that are likely to be involved in signal
transduction. The genes encoding these proteins were
always adjacent to mbaA-like genes, suggesting that they
are likely to be co-regulated. One of these gene pairs
encode ScrB and ScrC of the V. parahaemolyticus ScrABC
system that has been recently characterized (Trimble
& McCarter, 2011). In this system, ScrA, a putative
periplasmic enzyme, is thought to process an autoinducer
signal termed the S-signal, which can interact with the
periplasmic solute binding protein of the system, ScrB.
ScrB is then thought to interact with ScrC, a membrane-
bound GGDEF/EAL protein, to regulate c-di-GMP levels
and swarming in response to cell density. NspS, ScrB and
the other periplasmic solute binding proteins may
constitute a subfamily of PBPs that are either utilized in

signal transduction only or are bi-functional proteins
utilized in signalling as well as transport. Distinguishing
between these possibilities will have to await more in-depth
characterization of these proteins.

Our results suggest that a variety of environmental signals
can be processed by NspS/MbaA-like sensor/transducer
pairs. The resulting information can feed into c-di-GMP
regulatory networks to influence c-di-GMP-regulated
phenotypes in diverse bacteria (Fig. 6). We propose these
NspS-like sensors and MbaA-like transducers constitute a
new paradigm in bacterial signalling.
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protein from Vibrio cholerae. Proteins 63, 733–741.

Niesen, F. H., Berglund, H. & Vedadi, M. (2007). The use of

differential scanning fluorimetry to detect ligand interactions that

promote protein stability. Nat Protoc 2, 2212–2221.

Parker, Z. M., Pendergraft, S. S., Sobieraj, J., McGinnis, M. M. &
Karatan, E. (2012). Elevated levels of the norspermidine synthesis

enzyme NspC enhance Vibrio cholerae biofilm formation without

affecting intracellular norspermidine concentrations. FEMS Microbiol

Lett 329, 18–27.

Patel, C. N., Wortham, B. W., Lines, J. L., Fetherston, J. D., Perry, R. D.
& Oliveira, M. A. (2006). Polyamines are essential for the formation of

plague biofilm. J Bacteriol 188, 2355–2363.
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