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Abstract

Our capacity to sequence human genomes has exceeded our ability to interpret genetic variation. 

Current genomic annotations tend to exploit a single information type (e.g. conservation) and/or 

are restricted in scope (e.g. to missense changes). Here, we describe Combined Annotation 

Dependent Depletion (CADD), a framework that objectively integrates many diverse annotations 

into a single, quantitative score. We implement CADD as a support vector machine trained to 

differentiate 14.7 million high-frequency human derived alleles from 14.7 million simulated 

variants. We pre-compute “C-scores” for all 8.6 billion possible human single nucleotide variants 

and enable scoring of short insertions/deletions. C-scores correlate with allelic diversity, 

annotations of functionality, pathogenicity, disease severity, experimentally measured regulatory 

effects, and complex trait associations, and highly rank known pathogenic variants within 

individual genomes. The ability of CADD to prioritize functional, deleterious, and pathogenic 

variants across many functional categories, effect sizes and genetic architectures is unmatched by 

any current annotation.

Technical Report

A strength of genomic approaches to study disease is the replacement of informed but biased 

hypotheses with unbiased but generic ones, like the “equal treatment” of all genetic variants 

in genome-wide association studies (GWAS). However, for both rare variants of large effect 

and common variants of weak effect, the use of prior knowledge can be critical for disease 
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gene discovery1–4. For example, exome sequencing is an effective discovery strategy 

because it focuses on protein-altering variation, which is enriched for causal effects5.

While many existing annotations are useful for prioritizing causal variants to boost 

discovery power (e.g. PolyPhen6, SIFT7, and GERP8), current approaches tend to suffer 

from one or more of four major limitations. First, annotations vary widely with respect to 

both inputs and outputs. For example, conservation metrics8–10 are defined genome-wide 

but do not use functional information and are not allele-specific, while protein-based 

metrics6,7 apply only to coding, and often only to missense, variants, thereby excluding 

>99% of human genetic variation. Second, each annotation has its own metric and these 

metrics are rarely comparable, making it difficult to evaluate the relative importance of 

distinct variant categories or annotations. Third, annotations trained on known pathogenic 

mutations are subject to major ascertainment biases and may not generalize. Fourth, it is a 

major practical challenge to obtain, let alone to objectively evaluate or combine, the existing 

panoply of partially correlated and partially overlapping annotations; this challenge will only 

magnify as large-scale projects like ENCODE11 continually increase the amount of relevant 

data available. The net result of these limitations is that many potentially relevant 

annotations are ignored, while the subset that are used are applied and combined in ad hoc 

and subjective ways that undermine their utility.

Here, we describe a general framework, Combined Annotation Dependent Depletion 

(CADD), for integrating diverse genome annotations and scoring any possible human single 

nucleotide variant (SNV) or small insertion/deletion (indel) event. The basis of CADD is to 

contrast the annotations of fixed or nearly fixed derived alleles in humans relative to 

simulated variants. Deleterious variants – that is, variants that reduce organismal fitness – 

are depleted by natural selection in fixed but not simulated variation. CADD therefore 

measures deleteriousness, a property that strongly correlates with both molecular 

functionality and pathogenicity12. Importantly, metrics of deleteriousness, in contrast with 

pathogenicity or molecular functionality, have major advantages. Whereas the latter are 

limited in scope to a small set of genetically or experimentally well-characterized mutations 

and subject to major ascertainment biases, deleteriousness can be measured systematically 

across the genome assembly (see refs 8, 9, 10 and below). Further, selective constraint on 

genetic variants is related to the totality of their phenotype-relevant effects rather than any 

individual molecular or phenotypic consequence. Measures of deleteriousness can therefore 

provide, in principle, a genome-wide, data-rich, functionally generic, and organismally 

relevant estimate of variant impact.

We identified differences between human genomes and the inferred human-chimpanzee 

ancestral genome13 where humans carry a derived allele with a frequency of at least 95% 

(14.9 million SNVs and 1.7 million indels). Nearly all of these events are fully fixed in the 

human lineage, with fewer than 5% appearing as nearly fixed polymorphisms in the 1000 

Genomes Project14 variant catalog (derived allele frequency (DAF) ≥ 95%). To simulate an 

equivalent number of de novo mutations, we used an empirical model of sequence evolution 

with CpG dinucleotide-specific rates and mutation rates locally estimated at a 1 megabase 

(Mb) scale (Supplementary Note). Mutation rate parameters as well as the size distribution 

of indels were estimated from six-way primate genome alignments15.
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To generate annotations, we used the Ensembl Variant Effect Predictor16 (VEP), data from 

the ENCODE project11 and information from UCSC genome browser tracks17 

(Supplementary Table 1). The annotations span a range of data types including conservation 

metrics like GERP8, phastCons9, and phyloP10; regulatory information11 like genomic 

regions of DNase hypersensitivity18 and transcription factor binding19; transcript 

information like distance to exon-intron boundaries or expression levels in commonly 

studied cell lines11; and protein-level scores like Grantham20, SIFT7, and PolyPhen6. The 

resulting variant-by-annotation matrix contained 29.4 million variants (half fixed or nearly 

fixed human derived alleles (“observed”), half simulated de novo mutations (“simulated”)) 

and 63 distinct annotations, some of which are composites that summarize many underlying 

annotations (Supplementary Note, Supplementary Tables 1–2).

We first assessed the validity of our general approach by constructing a series of univariate 

models that contrast observed and simulated variants using each of the 63 annotations as 

individual predictors (Supplementary Note). Nearly all models were highly significant 

(Supplementary Tables 3–5) and consistent with expectation. For example, we find a nearly 

20-fold depletion of nonsense variants, a 2-fold depletion of missense variants, and no 

depletion of intergenic or upstream/downstream variants (Supplementary Table 6). 

Nonsense and missense mutations that occur near the starts of cDNAs were more depleted 

than those occurring near the ends (Supplementary Table 7), and variants within 20, and 

especially within 2, nucleotides of splice junctions were also depleted (Supplementary Fig. 

1). The best performing individual annotations were protein-level metrics such as PolyPhen6 

and SIFT7, but these evaluated only missense variants (0.63% of all variants in the training 

data are missense; of these, 88% had defined PolyPhen values and 90% had defined SIFT 

values). Conservation metrics were the strongest individual genome-wide annotations 

(Supplementary Table 3).

We also examined correlations between annotations (Supplementary Fig. 2) and the value of 

adding interaction terms between annotations (Supplementary Fig. 3). Many annotations 

were correlated and many interactions were statistically significant, but only a handful of 

interacting pairs meaningfully improved a simple additive model. Overall, these analyses 

demonstrate that substantial biological differences are present between the observed and 

simulated variants with respect to the 63 annotations, and that linear models capture much of 

this information.

We next trained a support vector machine21 (SVM) with a linear kernel on features derived 

from the 63 annotations, supplemented by a limited number of interaction terms 

(Supplementary Note, Supplementary Tables 1–2, Supplementary Fig. 4). Ten models, 

independently trained on observed variants and different samples of simulated variants, were 

highly correlated (all pairwise Spearman rank correlations >0.99; Supplementary Fig. 5). An 

average of these models was applied to score all 8.6 billion possible SNVs of the human 

reference genome (GRCh37). To simplify interpretation in some contexts, we also defined 

phred-like22 scores (“scaled C-scores”) based on the rank of the C-score of each variant 

relative to all 8.6 billion possible SNVs, ranging from 1 to 99 (Supplementary Note). For 

example, substitutions with the highest 10% (10−1) of all scores - that is, least likely to be 

observed human alleles under our model - were assigned values of 10 or greater (“≥C10”), 
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while variants in the highest 1% (10−2), 0.1% (10−3), etc. were assigned scores ≥C20, ≥C30, 

etc.

We first calculated the proportion of all possible substitutions with a given scaled C-score 

having specific functional consequences (Fig. 1; Supplementary Table 8). Although trained 

solely on the difference between observed and simulated variants, rather than on sets of 

known disease causing variants that might introduce ascertainment bias, the C-scores of 

potential nonsense variants are highest (median 37), followed by missense and canonical 

splice site variants (median 15) and with intergenic variants comprising the bottom of the 

list (median 2). At the same time, 76% of potential SNVs with ≥C20 are non-coding (i.e. 

categories other than missense, nonsense, canonical splice or stop loss), while 74% of 

potential missense and 18% of potential nonsense SNVs are below C20. Further, within each 

functional class there are distinctions that are biologically relevant and likely predictively 

useful. For example, potential nonsense variants – often treated as a homogeneous group in 

disease studies – in olfactory receptors score lower than in other genes, while potential 

nonsense variants in genes found previously to be “essential”23 score higher (Fig. 1 lower 

panel, Supplementary Fig. 6). C-scores thus capture considerable information both between 

and within functional categories. Of note, these same distinctions are absent or muted with 

other measures, either due to missingness (e.g., for missense-only measures) or lack of 

functional awareness (e.g., conservation measures cannot distinguish between a nonsense 

and missense allele at a given position).

We next compared scaled C-scores with levels of genetic diversity, finding that C-scores are 

negatively correlated with the DAF of variants identified in the 1000 Genomes Project14 or 

the Exome Sequencing Project24 (ESP) (Fig. 2a; Supplementary Figs. 7–9), depletion of 

human genetic variation from the 1000 Genomes Project catalog (Fig. 2b), and depletion of 

chimp-derived variants (Fig. 2c). Importantly, these validation datasets have minimal 

overlap with the “observed” subset of the training data, which consists only of fixed or 

nearly fixed (>95% DAF) human derived alleles. Furthermore, although we cannot fully 

eliminate confounding by these factors, the negative correlation between C-scores and the 

DAF of standing variation is robust to controlling for variation in background selection, 

local GC content, local CpG density, and site-based conservation (Supplementary Fig. 9).

We next sought to assess the utility of CADD to prioritize functional and disease-relevant 

variation within five distinct contexts.

First, for MLL2, the gene mutated in Kabuki syndrome, C-scores enable discrimination of a 

diverse set of disease-associated alleles25 versus rare, likely benign variants from ESP24 

(Wilcoxon rank sum test p = 9.9 × 10−94; n = 210/679). Other metrics were markedly 

inferior in terms of accuracy or comprehensiveness (Supplementary Fig. 10).

Second, for HBB, the gene mutated in beta-thalassemia, C-scores of disease-associated 

alleles26 – a set of indels (n=93) and SNVs (n=119) with regulatory/upstream (n=54), 

splicing (n=37), missense (n=22), nonsense (n=18) and other effects – are significantly, and 

more strongly than other measures, correlated with three levels of phenotypic severity 

(Kruskal-Wallis rank sum test p = 2.4 × 10−7; n = 48/65/99, Supplementary Fig. 11).
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Third, pathogenic variants curated by the NIH ClinVar database27 are well separated from 

likely benign alleles (ESP24 DAF ≥ 5%) matched to the same categorical consequences 

(Wilcoxon rank sum test p < 10−300, n = 8174/8174, Fig. 3; Supplementary Figs. 12–16). 

We note that there is substantial overlap between ClinVar and the training data underlying 

PolyPhen. When these sites are excluded from the test dataset, or when PolyPhen is 

excluded as a training feature from CADD, C-scores continue to outperform all or nearly all 

missense-only metrics and conservation measures (Supplementary Fig. 12).

Fourth, C-scores strongly correlate with the number of observations for somatic cancer 

mutations in p53 reported to the International Agency for Research on Cancer (Spearman 

rank correlation 0.38, p = 6 × 10−73, n = 2068, Supplementary Note).

Fifth, we examined two enhancers28 and one promoter29 in which we previously performed 

saturation mutagenesis. C-scores are significantly correlated, and overall more so than 

measures of sequence conservation, with the experimentally measured absolute expression 

fold change of individual variants (Spearman rank correlation of combined data = 0.31, p = 

1.9 × 10−65, n = 2847; Supplementary Fig. 17).

Collectively, these analyses demonstrate that CADD is quantitatively predictive of 

deleteriousness, pathogenicity, and molecular functionality, both protein-altering and 

regulatory, in a variety of experimental and disease contexts. Within each of these contexts, 

CADD’s predictive utility is much better than measures of sequence conservation, the only 

comprehensive type of variant score, and also tends to be better, in most cases substantially 

so, than function-specific metrics when restricted to the appropriate variant subsets.

We next considered how CADD may be useful in evaluating candidate variation within 

exome or genome-wide studies.

First, we analyzed de novo exome variants (SNVs and indels) identified in children with 

autism spectrum disorders30–34 (ASD) and intellectual disability35,36 (ID) along with 

unaffected siblings or controls, including 88 nonsense, 1,015 missense, 359 synonymous, 32 

canonical splice site, and 150 other variants, including indels. Variants in affected children 

are significantly more deleterious than those in unaffected siblings/controls, considering 

each disease separately (Supplementary Table 9) or combined (ASD+ID Wilcoxon rank sum 

test p = 2.0 × 10−4, n = 1130/514). Additionally, de novo variants in ID probands are 

significantly more deleterious than those of ASD probands (p = 4.7 × 10−5, n=170/960), 

suggesting a more deleterious global mutation burden in ID, consistent with the observation 

of increased sizes and numbers of copy number variants in ID relative to ASD37.

Second, it is well established that annotations like PolyPhen and conservation are valuable 

in the sequencing-based identification of disease-causal genes by virtue of their ability to 

highly rank pathogenic variants1,2,38. We therefore examined the distribution of C-scores in 

the genomes of 11 individuals representing diverse populations39,40, and find that CADD 

highly ranks known disease-causal variants (ClinVar pathogenic) within the complete 

spectrum of variation in personal genomes (Fig. 4; Supplementary Fig. 16 and 

Supplementary Table 10–11). Furthermore, CADD is both more quantitative and 

comprehensive in this task (e.g., ~27% of pathogenic ClinVar SNVs are not scored by 

Kircher et al. Page 5

Nat Genet. Author manuscript; available in PMC 2014 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PolyPhen because of missing values or its restriction to missense variation). Given its 

considerable superiority over the best available protein-based and conservation metrics in 

terms of ranking known pathogenic variants in the complete spectrum of variation within 

personal genomes, it is likely that CADD will improve the power of sequence-based disease 

studies beyond current standard approaches.

Finally, we analyzed CADD scores for single nucleotide polymorphisms (SNPs) identified 

by GWAS of complex traits, contrasting them with nearby control SNPs matched for allele 

frequency and genotyping array availability (Fig. 5, Supplementary Note). We find that lead 

GWAS SNPs have significantly higher C-scores than control SNPs (one-sided Wilcoxon 

rank sum test, p-value = 1.3 × 10−12, n = 5498/5498); nearby SNPs in linkage disequilibrium 

with lead SNPs (“tags”) score lower on average than leads but are also significantly higher 

than their matched controls (p-value = 5.1 × 10−107). C-score differences remain significant 

after controlling for properties like gene-body effect, gene expression level, conservation, 

and regulatory element overlap; each of these are significantly different between associated 

and control SNPs but none can fully explain the C-score discrepancy (Supplementary Note). 

C-scores of trait-associated SNPs furthermore correlate with the size of the underlying 

association study and with statistical significance of the association itself (Fig. 5; 

Supplementary Figure 16; Supplementary Note), likely due to the increased ability of larger 

studies and stronger association statistics to enrich for causal variants. While for the most 

part not causal, our analysis suggests that GWAS-identified SNPs, especially strongly 

associated lead SNPs from large studies, are enriched for causal variants, consistent with 

previously observed GWAS enrichments for individual annotations11,41–44.

With CADD, we describe a generic, expandable framework for integrating information 

contained in diverse annotations of genetic variation to a single score. We demonstrate that 

in a variety of contexts this approach is better, in some cases modestly but in many cases 

dramatically, than other widely used annotations at prioritizing functional and pathogenic 

variants. Further, beyond utility in any one setting, there are practical and conceptual 

advantages to CADD that should prove of major value to genetic studies of human disease. 

First, the information content of many individual annotations is objectively merged into a 

single value, which is far preferable to ad hoc approaches for combining annotations and 

likely to improve performance, consistent with benefits seen for “consensus” methods in 

missense-specific annotation45. Second, CADD can readily incorporate expansions to 

existing annotations and entirely new annotations. The ability to indefinitely and readily 

integrate new information is crucial in light of projects like ENCODE, which are 

continuously and rapidly expanding available annotations11. Third, CADD combines the 

generality of conservation-based metrics with the specificity of subset-relevant functional 

metrics (e.g. PolyPhen), exploiting the advantages of both while attenuating their respective 

disadvantages.

CADD also has a number of limitations which may restrict its utility for certain analyses or 

represent areas for improvement. First, C-scores measure reductions in variation, which 

correlate with deleteriousness but are also affected by local mutation rate, background 

selection, biased gene conversion, and other phenomena, potentially limiting accuracy. 

Second, C-scores reflect the proportion of variants with a given annotation pattern that are 
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visible to selection but may not capture differences in selective intensity; other approaches, 

such as polymorphism-to-divergence comparisons, may be more accurate for estimating 

selective coefficients46. Third, there is a strong need for more “gold standard” data, 

particularly for non-coding regions of the genome, the current paucity of which limits the 

development of better annotations as well as our ability to validate predictions. Fourth, it is 

at present not possible to precisely calibrate the relationship between CADD-estimated 

deleteriousness and the likelihood that a variant is pathogenic. As such, C-scores are best 

interpreted in terms of “likelihood of deleteriousness” rather than “likelihood of 

pathogenicity”, e.g. the quantifiable extent of depletion of a given C-score from chimp-

derived alleles (Fig. 2c, Supplementary Table 11). Especially for discovering causal 

variants, CADD should be treated as one piece of information contributing to the totality of 

evidence for pathogenicity, and evaluated as a supplement, not a replacement, for genetic 

information.

The “one-stop” nature of CADD is likely to be of great practical and conceptual value to 

future sequencing studies. It will minimize the scope and diversity of annotations that have 

to be generated, tracked, and evaluated by a lab or project, and reduce the need for ad hoc 

combinations of filters, scores, and parameters as is now routinely done. For example, an 

oft-used approach in exome studies is to merge missense (with or without an annotation of 

“damage” or given level of conservation), nonsense, and splice-disrupting variants into a 

single, internally unranked list of “protein-altering” variants prior to genetic analysis5. With 

CADD, one might avoid arbitrary filters/thresholds altogether, including both coding and 

non-coding variants on a single, meaningfully ranked list. For example, a recent study of 

recessive, non-syndromic pancreatic agenesis identified 5 causal non-coding variants that 

disrupt function of a distal enhancer of PTF1A47. C-scores for these non-coding, disease-

causal variants (scaled scores between 23.2 and 24.5) rank them above 99.5% of all possible 

human SNVs, above 97% of missense SNVs in a typical exome, and higher than 56% of 

Mendelian pathogenic SNVs in ClinVar27.

Both in research and in the clinic, our capacity to define catalogs of genetic variants exceeds 

our ability to systematically evaluate their potential impacts. This challenge will deepen as 

sequencing accelerates, as genomes displace exomes, and as the array of functional 

categories and annotations expand. A unified, quantitative, and scalable framework capable 

of exploiting many genomic annotations will be essential to meet this challenge. We 

anticipate that the model described here and the accompanying freely available pre-

computed scores for all possible GRCh37/hg19 SNVs (http://cadd.gs.washington.edu/) will 

be broadly useful immediately, and improve over time, enabling better interpretation of 

variants of uncertain significance in a clinical setting and improving discovery power for 

genetic studies of both Mendelian and complex diseases.

Online Methods

Simulated and observed variants

The basis of the CADD framework is to capture correlates of selective constraint as 

manifested in differences between simulated variants and observed human derived changes. 

For the simulated variants, we developed a genome-wide simulator of de novo germline 
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variation. The simulator was motivated by the parameters of the General Time Reversible 

(GTR) model50, but because the standard GTR does not naturally accommodate asymmetric 

CpG-specific mutation rates, we use a fully empirical model of sequence evolution with a 

separate rate for CpG dinucleotides and local adjustment of mutation rates (see 

Supplementary Note). Simulation parameters were obtained from Ensembl Enredo-Pecan-

Ortheus (EPO)13,15 whole genome alignments of six primate species (Ensembl Compara 

release 66). A custom script and the associated rate matrices underlying the genome-wide 

simulator are available as Supplementary File 1. We applied these parameters to simulate 

single nucleotide (SNV) and insertion/deletion (indel) variants based on the human reference 

sequence (GRCh37).

For observed human derived changes, we extracted sites where the human reference genome 

differs from the inferred human-chimp ancestral genome from the Ensembl EPO 6 primate 

alignments defined above, excluding variants in the most recent 1000 Genomes Project14 

data (1000G, variant release 3, 20101123) with a frequency of greater than 5%, and 

including variants where the human reference carries an ancestral allele (i.e. matching the 

inferred human-chimp ancestor sequence) but where the derived allele is observed with 

frequency above 95% in the 1000G data. We identified a total of 14,893,290 SNVs, and 

627,071 insertions and 1,107,414 deletions (less than 50bp in length).

Variant annotation matrix

We used the Ensembl Variant Effect Predictor (VEP, Ensembl Gene annotation v68)16 to 

obtain gene model annotation for single nucleotide and indel variants. For single nucleotide 

variants within coding sequence, we also obtained SIFT7 and PolyPhen-26 scores from VEP. 

We combined output lines describing MotifFeatures with the other annotation lines, 

reformatted it to a pure tabular format and reduced the different Consequence output values 

to 17 levels and implemented a four-level hierarchy in case of overlapping annotations (see 

Supplementary Note). To the 6 VEP input derived columns (chromosome, start, reference 

allele, alternative allele, variant type: SNV/INS/DEL, length) and 26 actual VEP output 

derived columns, we added 56 columns providing diverse annotations (e.g. mapability 

scores and segmental duplication annotation as distributed by UCSC51,52; PhastCons and 

phyloP conservation scores53 for three multi-species alignments9 excluding the human 

reference sequence in score calculation; GERP++ single-nucleotides scores, element scores 

and p-values54, also defined from alignments with the human reference excluded; 

background selection score40,55; expression value, H3K27 acetylation, H3K4 methylation, 

H3K4 trimethylation, nucleosome occupancy and open chromatin tracks provided for 

ENCODE cell lines in the UCSC super tracks52; genomic segment type assignment from 

Segway56; predicted transcription factor binding sites and motifs11; overlapping ENCODE 

ChIP-seq transcription factors11, 1000 Genome variant14 and Exome Sequencing Project57 

variant status and frequencies, Grantham scores20 associated with a reported amino acid 

substitution). The Supplementary Note provides a full description and Supplementary Table 

1 lists all columns of the obtained annotation matrix.

Kircher et al. Page 8

Nat Genet. Author manuscript; available in PMC 2014 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Imputation and final training data set

From the annotations described above, some columns are not useful for model training or 

needed to be excluded from training as they differ between the simulated variants and the 

human-chimpanzee ancestor differences for technical reasons (see Supplementary Note for a 

complete list; note that no allele frequency information was used in model training). In order 

to fit models, we imputed missing values in genome-wide measures by the genome average 

obtained from the simulated data, or set missing values to 0 where appropriate 

(Supplementary Table 2). Further, we created an “undefined” category for the categorical 

annotations in order to accommodate missing values. In order to deal with missing values in 

annotations that are not defined on a subset of variants (e.g. information only available for 

protein-coding genes), we set the missing values to zero and also created indicator variables 

that contain a 1 if the corresponding variant is undefined, and a 0 otherwise. Since insertions 

and deletions may produce arbitrary length Ref/Alt and nAA/oAA columns (and thus not a 

fixed number of categorical levels), these values were set to N for Ref/Alt and set to 

“undefined” for nAA/oAA.

Sites from the simulation were labeled +1 and human derived variants as −1. Only insertions 

and deletions shorter than 50bp were considered for model training and the Length column 

was capped at 49 for the prediction of longer events. The ratio of indel events to SNV events 

obtained for the simulation (1:8.46).

Model training

We generated ten training data sets by sampling an equal number of 13,141,299 SNVs, 

627,071 insertions and 926,968 deletions from both the simulated variant and observed 

variant datasets. In order to train each support vector machine (SVM) model, the processed 

data was converted to a sparse matrix representation after converting all n-level categorical 

values to n individual Boolean flags. 1% of sites (~132,000 SNVs, 6,000 insertions and 

9,000 deletions each) were randomly selected and used as a test data set. All other sites were 

used to train linear SVMs using the LIBOCAS v0.96 library21. The SVM model fits a 

hyperplane as defined below. X1,…,Xn are the 63 annotations described above (which 

expand to 166 features due to the treatment of categorical annotations), W1,…,W11 are the 

Boolean features that indicate whether a given feature (out of cDNApos, relcDNApos, 

CDSpos, relCDSpos, protPos, relProtPos, Grantham, PolyPhenVal, SIFTval, as well as 

Dst2Splice ACCEPTOR and DONOR) is undefined, 1{A} is an indicator variable for 

whether the event A holds, and D is the set of bStatistic, cDNApos, CDSpos, Dst2Splice, 

GerpN, GerpS, mamPhCons, mamPhyloP, minDistTSE, minDistTSS, priPhCons, priPhyloP, 

protPos, relcDNApos, relCDSpos, relProtPos, verPhCons, and verPhyloP. Due to the coding 

of categorical values using Boolean variables, the total number of features in this model is 

949.
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SVM models were trained, using various values for the generalization parameter (C), which 

assigns the cost of misclassifications. Supplementary Fig. 4 shows the model training 

convergence in 2000 iterations (~70h) for different settings of C. These results indicate that 

model training only converges within a reasonable amount of time for C values around 

0.0025 and below. We therefore trained models for all ten training data sets with C=0.0025. 

We determined the average of the model parameters and used the average model.

Model testing and validation

We annotated all 8.6 billion possible substitutions in the human reference genome 

(GRCh37), and applied the model to score all possible substitutions. When scoring sites with 

multiple VEP annotation lines, we score all possible annotations first and then report the one 

with the highest deleteriousness after applying the four hierarchy levels. We mapped the C-

scores to a phred-like scale (“scaled C-scores”) ranging from 1 to 99 based on their rank 

relative to all possible substitutions in the human reference genome, i.e. −10log10(rank/total 

number of substitutions).

We used several datasets extracted from the literature and public databases to look at the 

performance of the model scores (see Supplementary Note for details): (1) C-scores in 

specific gene classes motivated by the analysis performed by Khurana et al.58 (i.e. 

HGMD48, non-immune essential genes described by Liao et al.23, GWAS genes as available 

from the Genome.gov catalog, LoF genes from MacArthur et al.49 and olfactory genes from 

the Ensembl 68 gene build). (2) 210 mutations in MLL2 associated with Kabuki syndrome 

from Makrythanasis et al.25. We complemented those with 679 putatively benign variants 

observed in the Exome Sequencing Project (ESP)57. (3) We downloaded a total of 119 

SNVs, 30 insertions and 63 deletions (all required to be at most 50nt) within or near HBB 

that give rise to thalassemia from HbVar26. Disease categories were used as defined by 

HbVar, except that all types that are not “beta0” or “beta+” were pooled into one category, 

“other”. (4) We obtained the NCBI ClinVar27 data set (release date June 16 2012) and 

extracted variants that were marked “pathogenic” or “non-pathogenic (benign)”. We also 

selected a set of apparently benign (≥5% allele frequency) variants from ESP that were 

matched to the pathogenic ClinVar sites in terms of their Consequence annotations. In 

addition, we generated a data set where we matched ESP and ClinVar frequencies to three 

decimal precisions of the alternative allele frequency. Due to the overlap of ClinVar and 

ESP variants with the PolyPhen training data set, we trained a separate classifier without the 

PolyPhen features and we also checked the performance on the subset of ClinVar and ESP 

variants not used for PolyPhen training. To compare the performance of CADD with other 

publically available missense annotations not used in model training, we downloaded scores 

Kircher et al. Page 10

Nat Genet. Author manuscript; available in PMC 2014 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from dbNSFP 2.059. (5) We combined high confidence de novo mutations from five family 

based autism exome sequencing studies30–34, a total of 948 ASD probands and 590 

unaffected siblings. Further, we obtained the coding variants as described above for two 

family-based intellectual disability (ID) studies35,36, 151 ID and 20 unrelated control 

families. (6) We obtained the expression fold change for each base substitution in ALDOB 

and ECR11 from Patwardhan et al.28. This data set contains a total of 777 variants for 

ALDOB and 1,860 variants for ECR11. Further, we obtained the HBB promoter data of 

Patwardhan et al.29. The promoter data set contains a total of 210 variants associated with an 

expression fold change. (7) We obtained a list of 23,788 single nucleotide somatic cancer 

mutations in p53 which were reported to the International Agency for Research on Cancer 

(IARC). These mutations correspond to 2,068 distinct variants; we recorded the number of 

times that each variant was reported. (8) We obtained GATK VCF variant call files for all 

autosomes and the X chromosome from shotgun sequencing of eleven men originating from 

diverse human populations40. (9) We obtained the NHGRI genome-wide association study 

(GWAS) catalog on December 18, 2012, and obtained 9,977 distinct SNP-trait associations 

spanning 7,531 unique SNPs in 1000 Genomes; these variants are referred to as “lead 

SNPs”. We used the Genome Variation Server (GVS, http://gvs.gs.washington.edu/

GVS137/) to find all SNPs within 100 kb of a lead SNP that have a pairwise correlation of 

R2 >= 0.8 within Utah residents with ancestry from northern and western Europe (CEU). 

This resulted in an additional 56,538 unique SNPs, referred to as “tag SNPs”. We also 

developed “control” SNP sets, selected to match trait-associated SNPs for a variety of 

features that may bias SNPs found by GWAS in the absence of any causal effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Relationship of scaled C-scores and categorical variant consequences. The upper plot shows 

the proportion of substitutions with a specific consequence for each scaled C-score bin, 

while the middle panel shows the proportion of substitutions with a specific consequence 

after first normalizing by the total number of variants observed in that category. The legend 

indicates the median and range of scaled C-score values for each category. Consequences 

are obtained from the Ensembl Variant Effect Predictor16 (Supplementary Note), e.g. 

“noncoding change” refers to changes in annotated non-coding transcripts. Detailed counts 

of functional assignments in each C-score bin are in Supplementary Table 8. The lower 

panel shows violin plots of the median C-scores of potential nonsense (stop-gained) variants 

for genes that: harbor at least 5 known pathogenic mutations48 (“disease”); are predicted to 

be “essential”23; harbor variants associated with complex traits41 (“GWAS”); harbor at least 

2 loss-of-function mutations in 1000 Genomes49 (“LoF”); encode olfactory receptor 

proteins; or are in a random selection of 500 genes (“Other”; see Supplementary Note).
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Figure 2. 
Relationship between scaled C-scores and: the average derived allele frequency (DAF) of 

variants identified in the 1000 Genomes Project14 or ESP24 (upper panel); the under-

representation of polymorphic sites in 1000 Genomes (middle panel); and chimpanzee 

lineage derived variants (lower panel). The dashed lines in the upper plot indicate the mean 

DAF and confidence intervals indicate 1.96x standard errors of the mean (SEM) DAF in 

each bin. Under-representation is defined as the proportion of 1000 Genomes (middle panel) 

or chimpanzee-derived (lower panel) variants in a specific scaled C-score bin divided by the 

frequency with which that scaled C-score is observed for all possible mutations of the 

human reference assembly (10C-score/−10). The stronger under-representation of chimpanzee-

derived variants relative to 1000 Genomes variants is expected given that the former are 

mostly fixed or high-frequency variants (and have survived many generations of purifying 

selection) while the latter are mostly low-frequency variants. Depletion values in both panels 

for C-score bins other than 0 are significantly different from expectation (binomial 

proportion test, all p-values <10−11).
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Figure 3. 
Receiver operating characteristics (ROC) for discriminating curated, pathogenic mutations 

defined by the NIH ClinVar database27 matched to apparently benign ESP alleles (DAF ≥ 

5%)24 with the same categorical consequence. The left panel shows genome-wide variants 

for which GerpS, PhCons, and PhyloP scores are defined (n=16,334), while the middle panel 

limits the analysis to missense changes (n=15,154), with missing values imputed to an upper 

value limit of each score, and right panel to missense changes for which PolyPhen, SIFT and 

Grantham scores are all defined (n=13,358). Versions of the right panel that exclude the 

overlap between PolyPhen training data and the ClinVar database or use a CADD model 

trained without PolyPhen as a feature are shown in Supplementary Fig. 12. Area under the 

curve (AUC) values are provided in the figure legend for each of the scores used.
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Figure 4. 
Ranking of pathogenic ClinVar variants among the variants identified by whole genome 

sequencing of eleven human individuals from diverse populations. Left panel: Cumulative 

distributions of the ranks of 9,831 pathogenic ClinVar variants when “spiked in” to each of 

11 personal genomes. For example, C-scores of ~30% of ClinVar variants rank in the top 

0.1% of all variants within a personal genome, and most rank in the top 1%. About 25% of 

pathogenic ClinVar SNVs are not scored by PolyPhen/SIFT because of missing values or its 

restriction to missense variation; note also that ranks for PolyPhen/SIFT are computed 

among missense variants only and are therefore derived from far fewer total variants (see a 

plot restricted to missense variation in Supplementary Fig. 16). Right panel: A QQ-plot of 

the C-scores of the SNVs identified from the eleven individuals and pathogenic ClinVar 

SNVs. For a given scaled C-score observed in an individual, the fraction of that individual’s 

variants with a C-score at least that large was computed (y-axis). The C-score corresponding 

to this quantile of the distribution of all possible variants is displayed on the x-axis. High C-

scores are underrepresented compared to the set of all possible variants. In contrast, known 

disease-causal variants from ClinVar have large C-scores relative to the set of all possible 

variants. This fact can be exploited to prioritize causal variants identified from whole 

genome sequencing of individual genomes (left panel and Supplementary Tables 10–11).
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Figure 5. 
C-scores for GWAS SNPs are higher than nearby control SNPs and dependent on study 

sample size. The average scaled C-score (y-axis) is plotted for each category of SNP, as 

indicated by color, relative to the sample sizes of the association studies in which the SNPs 

were identified (x-axis). Sample size bins are log2-scaled and mutually exclusive; for 

example, the bin labeled “1024” represents all SNPs from studies with between 512 and 

1024 samples. Error bars are ±1 standard errors of the mean (SEM). Shaded rectangles 

represent the overall, i.e. across all sample sizes, scaled C-score means ±1 SEM for each 

category as indicated by the color.
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