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Patients and Methods—Whole-genome molecular inversion probe arrays were used to
evaluate copy number imbalances (CNIs) in breast tumors from 960 early-stage patients with
information about site of metastasis. The CoxBoost algorithm was used to select metastasis site-
related CNIs and to fit a Cox proportional hazards model.

Results—Gains at 1g41 and 1g42.12 and losses at 1p13.3, 8p22, and Xp11.3 were significantly
associated with bone metastasis. Gains at 2p11.2, 3q21.3-22.2, 3g27.1, 10g23.1, and 14¢13.2-3
and loss at 7g21.11 were associated with non-bone metastasis. To examine the joint effect of CNIs
and clinical predictors, patients were stratified into three risk groups (low, intermediate, and high)
based on the sum of predicted linear hazard ratios (HRs). For bone metastasis, the hazard (95%
confidence interval) for the low-risk group was 0.32 (0.11-0.92) compared to the intermediate-risk
group and 2.99 (1.74-5.11) for the high-risk group. For non-bone metastasis, the hazard for the
low-risk group was 0.34 (0.17-0.66) and 2.33 (1.59-3.43) for the high-risk group. The prognostic
value of loss at 8p22 for bone metastasis and gains at 10g23.1 for non-bone metastasis, and gain at
11913.5 for both bone and non-bone metastases were externally validated in 335 breast tumors
pooled from four independent cohorts.

Conclusions—Distinct CNlIs are independently associated with bone and non-bone metastasis
for early-stage breast cancer patients across cohorts. These data warrant consideration for tailoring
surveillance and management of metastasis risk.

Keywords

Breast cancer; bone metastasis; hon-bone metastasis; copy number imbalances; molecular
inversion probe array

Introduction

Breast cancer is the second most common cause of cancer-related death in women, with a
yearly toll of more than 40,000 deaths in the United States alone [1]. Primary sites of distant
metastasis include bone, lung, liver and brain, with bone being the most common site [2].
The biological mechanisms underlying breast cancer metastasis have been extensively
studied since Paget theorized that metastasis is influenced by both, the “seed” (tumor cells)
and the “soil” (host environment) [3]. However, to date the driver events of site-specific
metastasis in early stage breast cancer remains largely unknown.

Various factors are used to predict risk of metastasis in early stage (I and I1) breast cancer
patients. These include stage, tumor size, histologic grade, lymph node involvement,
hormone receptor status, human epidermal growth factor receptor 2 (HER?2) status, and age
at diagnosis. Of these, estrogen receptor-positive (ER+) status has the strongest association
with bone metastasis [2]. However, other molecular changes are also likely to drive bone-
specific metastasis. Kang and colleagues [4] reported that cell lines that are highly
metastatic to bone appear to lose a 17-gene metastatic signature set previously described by
Ramaswamy et. al., [5]. Kang et al. also identified genes, including DLC1, IL11, CXCR4,
and osteopontin that predict bone metastasis [4]. These findings suggest that multiple
metastatic competency genes are needed for metastasis, and those alterations in tissue-
specific genes may be necessary for tumor cells to grow in a particular “soil”.
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Patient’s age and tumor ER-negative (ER-) status [6], amplification of the ERBB2 gene
coding for the HER2 receptor [7,8], and triple-negative breast cancer (TNBC) tumor status
[9] have emerged as risk factors for breast cancer to metastasize to the brain and/or lung.
Although the molecular mechanisms underlying metastasis to the bone have been
extensively studied and are partially understood, little information is available on the
molecular determinants or molecular drivers of metastasis to non-bone sites. Gene
expression studies have examined genetic markers as prognostic factors in breast cancer
patients with brain [10] and lung [11] metastasis. However, no comprehensive genomic
study characterizing the key aberrations that regulate site-specific bone or non-bone
metastasis of breast cancer has been reported yet.

Although metastatic breast cancer is associated with poor prognosis, new treatment
strategies, including drugs that target transcription factors and specific cellular pathways,
have improved progression-free and overall survival [12]. Somatic alterations, including
copy number imbalances (CNIs) and somatic mutations in the primary tumor, may
determine the propensity of a tumor to metastasize to a specific site. Importantly, while
these targeted genetic abnormalities have a prognostic impact individually or in
combination, high-resolution genome profiles show some indications of the prognostic value
of CNIs. We hypothesized that evaluation of CNIs provide important insights into the
underlying site-specific metastatic propensity of primary early-stage breast cancers, and
have potential clinical utility in discriminating between patients who have high versus low
risk of developing metastasis. We applied the whole-genome molecular inversion probe
(MIP) technique to determine CNIs using DNA from breast tumor tissue from a cohort of
patients with early-stage breast cancer for which long-term follow-up data were available.
Here, we describe the association between specific CNIs and risk of metastasis to bone or
non-bone (lung, liver, brain and others) sites. We then replicated our findings in an external
cohort of 335 early-stage breast cancer patients.

Materials and Methods

Patient population and breast tumor specimens

The Early Stage Breast Cancer Repository (ESBCR) at The University of Texas MD
Anderson Cancer Center (MDACC) comprised 2,409 women diagnosed with American
Joint Committee on Cancer clinical stage | or Il breast cancer, and surgically treated at
MDACC between 1985 and 2000. Criteria for eligibility and cohort details have been
reported previously [13]. From this retrospective cohort study, we identified 1,003 patients
with clinical and follow-up data, and adequate tumor DNA from formalin-fixed, paraffin-
embedded (FFPE) tissue blocks. Clinical information, primary treatment (i.e., surgery,
radiation therapy, chemotherapy, and endocrine therapy), and histopathological information,
including patient’s first site of metastasis and other site of metastasis were obtained from
medical record [14]. Bone metastasis was defined as the first site of metastasis by bone scan
confirmed also by other imaging methods including X-ray, computed tomography (CT), and
magnetic resonance imaging (MRI) scans. Non-bone metastasis was defined as the first site
of metastasis to lung, liver, brain or others as documented by appropriate CT and MRI
scans. The histological type of all tumors was defined according to the WHO classification
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system. Nuclear grade was defined according to the Black’s nuclear grading system with
modification of numbers: 1 represents well-differentiated tumors, and 3 represents poorly
differentiated tumors. This study was approved by the Institutional Review Board of the
MDACC.

Definition of breast tumor subtypes

The four tumor subtypes of luminal A, luminal B, HER2+, and TNBC were approximated
from clinically validated immunohistochemical (IHC) analyses of ER, PR, and Ki67. ER
and PR status were obtained from medical records (primary source) and tissue microarray
studies (secondary source); the agreement in ER and PR status between the two sources was
84.8% and 76.4%, respectively. ER and PR positivity was defined as > 1% staining. ER-
positive/lHER2 negative tumors were subclassified using Ki67 and a clinical threshold of
>17% positivity into LUM A (ER+/Ki67 <17%) and LUM B (ER+/Ki67 =17%). HER2+
tumors were defined as a separate subtype, independent of their hormone receptor status,
because of the prognostic and predictive significance of HER2 amplification for site of
metastasis. Subclassification of HER2+ cases on ER status was explored but did not change
the results (data not shown). In this sample set, defining HER2 status using MIP array-based
ERBB2 copy number and a threshold of 2.8 for ‘copy number gain’ proved equivalent to
IHC area under the curve (AUC) analysis of 0.94 [14]. Copy number thresholds of 2.3, 2.5,
and 2.8 changed the frequency of HER2+ tumors in the sample as follows: 26.9%, 21.0%,
and 16.3%, respectively.

Molecular inversion probe arrays for copy number analysis

Tumor DNA was extracted from FFPE tissue and copy number data were obtained using the
MIP-based, OncoScan FFPE Express (Affymetrix, Santa Clara, CA) as previously described
[14]. Data collected from 129 matched normal lymph node samples were used for
normalizing the CN data; therefore, common germline CNIs have been normalized by
comparing the tumors to this normal set. For each sample, we generated full-genome MIP
quantifications (330K MIPs). In order to reduce the data dimension, we computed the
running median within groups of 25 consecutive MIPs, yielding 13,175 data points per
sample. The Circular Binary Segmentation algorithm was used to convert the data to a list of
segments for each sample. CN differences were analyzed with the R package DNAcopy,
using thresholds of 2.5 for one copy gained and 1.5 for one copy lost. The parameter alpha
(significance level for acceptance of change-points) used in the segmentation algorithm was
set to 0.01. We recombined consecutive segments if their gain/loss calls agreed for at least
99.5% of the samples. This procedure yielded 1,593 segments, representing the entire
genome. Comparisons of CN patterns across different demographic, clinical, and tumor
subtype groups were performed by Fisher’s exact test, chi-square test, or Wilcoxon rank-
sum test, as appropriate, with random permutations of the samples to incorporate an FDR
adjustment for multiple comparisons. These data are available in the Gene Expression
Omnibus (GEO) database accession number GSE31424.
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Patient samples with array comparative genomic hybridization for the validation study

For validation, 361 patients with site of metastasis and whole genome copy number data as
array comparative genomic hybridization (aCGH) determined on Agilent’s 244K Human
Genome CGH collected at different hospitals in Norway and Sweden were pooled from four
independent cohorts. After excluding normal samples (n = 20), lymph node metastases
samples (n= 1), samples with stage 0 (n = 2), stage IV (n = 2), and a lymph node metastases
sample with stage IV (n = 1), we have 335 early-stage breast cancer patients in the analysis:
MDG n =37, MicMan =41, FW n =94, ULL n = 163. This includes 209 cases with
complete stage data (MDG n = 32, MicMa n =40, ULL n = 137) and 126 missing data on
stage. All studies have been approved by the local ethical committee and local authorities.
These data are available in the GEO database accession numbers GSE20394 and GSE32291.

Cox proportional hazards regression

Results

The primary endpoint was time-to-first metastasis to bone or non-bone site, defined as the
time from diagnosis of the primary breast tumor to first documented metastasis to bone or
non-bone sites; only the site of first metastasis was considered. First, a univariate Cox
proportional hazards regression model was used to calculate a hazard ratio (HR) and 95%
confidence interval (ClI) for the association between each established clinical and
pathological characteristic and risk of metastasis to bone or non-bone sites. Second, we
applied the CoxBoost algorithm [15] for fitting a Cox proportional hazards regression model
with high-dimensional covariates to select CNIs associated with bone or non-bone
metastasis using the R package CoxBoost. Further, we conducted multivariate Cox
proportional hazards regression models that included the significant (a < 0.1) clinical,
pathological, and CNIs identified in the first and second steps. Finally, using stepwise
minimization of the Akaike Information Criterion (AIC), we built the most parsimonious
models. To evaluate the predictive accuracy of the model, the concordance-index (C-index)
was used to compare the strengths of the models. C-Index can be interpreted as the
probability of agreement between what the model predicts and the actual observed risk of
breast cancer metastasis. A completely random prediction would have a concordance of 0.5,
a perfect rule a concordance of 1. To identify a set of robust factors for time-to-event, we
calculated the posterior probability of each covariate using the Bayesian model averaging
(BMA) algorithm [16,17]. A higher posterior probability score indicates a stronger effect.
To evaluate the cumulative risk, we used the sum of the predicted linear HRs from the final
multivariate model to stratify patients into three risk groups: high-risk group (the highest
25% of linear HRs), intermediate-risk group (the middle 50% of linear HRs), or low-risk
group (the lowest 25% of linear HRs), denoting poor, intermediate, and good prognosis,
respectively. All analyses were performed using R version 2.12.0 (R Foundation for
Statistical Computing).

Characteristics of the study populations

For the MDACC discovery cohort of 960 early-stage breast cancer patients, 203 (21%)
patients developed a metastasis (Table 1), of which 74 (36%) had first metastasis to the
bone, and 129 (64%) had first metastasis to non-bone sites (59 to lung, 35 to liver, 9 to
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brain, and 26 to others). The median time-to-bone and -non-bone metastasis was 4.6 and 4.7
years, respectively, whereas that for the no-metastasis group was 10.3 years. For the patients
with first metastasis to bone, 36 only had one metastasis record, which was to bone. For 38
patients, there were multiple metastasis records for which 29 of them only had one recorded
location which was bone. The remaining nine had multiple locations for metastasis as site of
first metastasis but were included with first site of metastasis as bone. The median [standard
deviation (SD)] period of multiple conversion (solitary-to-multiple metastatic bone lesion
development) was 0.68 (1.47) years. The median (SD) time of conversion from solitary
metastatic non-bone lesions to multiple lesions was 0.62 (2.00) years for lung, 0.02 (0.62)
years for liver, and 0.04 (0.54) years for brain.

For the validation cohort (Norway data), 77 (23%) patients developed metastasis: 27 (35%)
to be bone and 50 (65%) had first metastasis to non-bone sites. For the 27 patients were
designated as first to bone for which 23 patients only had bone as the first metastasis
location, four patients with multiple first metastasis locations, which included bone.

Clinical factors predicting risk of bone or non-bone metastasis

Compared with patients without metastasis in the discovery dataset (n = 757), patients who
developed metastasis were more likely to have later stage (1), larger tumor size (= 2cm),
and positive lymph node status (Table 2). In addition, when compared with the no-
metastasis group, patients who developed non-bone metastasis were more likely to be
younger than age 50 years at diagnosis, to have higher nuclear grade (grade I11), and to have
undergone chemotherapy, but not endocrine therapy. Further, risk of developing metastasis
to bone or non-bone sites appeared to be subtype-specific. For bone metastasis risk was
highest for patients with luminal B tumors (HR, 1.92; 95% CI, 1.08-3.39) and lowest for
those with TNBC (HR, 0.38; 95% ClI, 0.13-1.11), although is marginally significant. For
non-bone metastasis, the risk was highest for patients with TNBC (HR, 3.00; 95% ClI, 1.81-
4.97).

CNIs predicting risk of bone or non-bone metastasis

Supplemental Figure 1 shows the pattern of CNIs for the three subgroups: no metastasis,
bone metastasis, and non-bone metastasis. Of the 1,593 segments evaluated (representing
the entire genome), we identified five CNIs associated with bone metastasis and six CNIs
associated with non-bone metastasis (Table 3). Specifically, we identified gains at 1941, and
1g42.12 and losses at 1p13.3, 8p22, and Xp11.3 were predictors of bone metastasis, and
gains at 2p11.2, 3q21.3-22.2, 3927.1, 10923.1, and 14g13.2-3 and loss at 7q21.11 were
predictors of non-bone metastasis. Gain at 11g13.5 was selected for both bone and non-bone
metastasis suggesting that 11q13.5 is acting as a general risk factor for metastasis
independent of site. Adjusting the model for HER2 status by different copy number calling
thresholds did not change the association between individual CNIs and first site-of-
metastasis (data not shown). Supplemental Figure 2 shows the time-to-bone- or -non-bone-
metastasis for each individual CNI marker, and the full list of genes in each region is
provided in Supplemental Table 1. Among the non-bone metastasis group, gains at 2p11.2,
3021.3-22.2, 3927.1, 10g23.1, and 14q13.2-3 were significantly associated with lung
metastasis, whereas gain at 2p11.2, 3921.3-22.2, 3927.1, 14913.2-3 and loss at 7g21.11
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were significantly associated with brain metastasis, none of the markers is associated with
liver metastasis (Table 4). Because of the small sample size within subgroups, and risk of
false discovery, these results are highly exploratory, suggesting a role for selective CNIs in
different sites of metastases.

Prediction models of bone or non-bone metastasis

Tumor subtype, tumor size, endocrine therapy, lymph node status, and copy number losses
at 8p22 and Xp11.3 were significantly associated with bone metastasis, whereas tumor
subtype, stage, and copy number loss at 7g21.11 were significantly associated with non-
bone metastasis (Table 5). The strongest determinant of bone metastasis was copy number
loss at 8p22 (posterior probability = 100%; Table 5). The strongest determinants of non-
bone metastasis were tumor subtype and stage (both posterior probabilities = 100%). Among
the non-bone metastasis group, tumor subtype, stage, and gains at 3g21.3-22.2, 10g23.1, and
14913.2-3 and loss at 7g21.11 were significantly associated with lung metastasis; stage was
significantly associated with liver metastasis (Table 6).

To assess the independent prognostic performance of the CNIs for risk of metastasis, we
compared the CNIs only, clinical only, and both clinical and CNIs models. The full model
incorporating the clinical and CNIs performed the best, C-index were 0.750 and 0.712, for
bone and non-bone metastasis, respectively. For risk of bone metastasis, the clinical only
model (C-index = 0.711) is better than the CNIs only model (C-index = 0.627), and
similarly, the clinical factors is stronger (C-index = 0.699) than the CNIs only model (C-
index = 0.548) for the non-bone metastasis.

Since subtypes are strongly associated with site-specific metastasis, we repeated the same
analyses within each subtype. While some of the markers are more common within
particular subtypes, CNIs largely occur independently of the defined subtype (Supplemental
Table 2). Further, to assess the potential effect of changes in treatment, we conducted
sensitivity analyses, stratifying the cohort by time (before/after year 1994). We see no
evidence that change in treatment practice modified the association between specific CNIs
and risk for first site of metastasis (Supplemental Tables 3 and 4), suggesting that these
findings are relevant to contemporary treatment. We also assessed the sensitivity of our
models to patients with site of first metastasis versus ‘multiple site of metastasis’ by
excluding them from the bone as first as well as including them in the non-bone as first site
and found no effect on the performance of either model.

Cumulative risk prediction of bone or non-bone metastasis

To evaluate joint effects of CNIs and clinical covariates on risk of bone or non-bone
metastasis, we used the sum of the predicted linear HRs from the final multivariate model to
stratify patients into three risk groups: high-risk group (the highest 25% of linear HRs),
intermediate-risk group (the middle 50% of linear HRs), or low-risk group (the lowest 25%
of linear HRs), denoting poor, intermediate, and good prognosis, respectively. The
difference in risk of bone (Figure 1A) or non-bone metastasis (Figure 1B) among the three
groups was highly significant (log-rank test, P = 1.35x1078 and 1.61x10712 for bone and
non-bone metastasis, respectively). In particular, the 15-year probability of bone metastasis-
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free survival in the low-, intermediate-, and high-risk group was 97.3%, 92.2%, and 78.6%,
respectively; for non-bone, survival probability in the low-, intermediate-, and high-risk
group was 95.2%, 79.8%, and 66.4%, respectively. When we used the intermediate-risk
group as reference, the HR for bone metastasis was 0.32 (0.11-0.92) for the low-risk group
and 2.99 (1.74-5.11) for the high-risk group; for non-bone metastasis, the HR was 0.34
(0.17-0.66) for the low-risk group and 2.33 (1.59-3.43) for the high-risk group.

In the external validation dataset, compared to patients with no metastasis (n = 259), patients
who developed metastasis had later stage disease, size = 2 cm, and positive lymph node
status (Table 2). Of the 12 CNIs selected in the discovery, and loss at 8p22 (P = 0.048) was
significant for bone metastasis, while gains at 10923.1 (P < 0.001) was significant for non-
bone metastasis; and gain at 11q13.5 was significant for both bone (P = 0.029) and non-bone
(P = 0.010) metastasis. The C-index of the full models incorporating the clinical and CNIs
were 0.859 and 0.759, for bone and non-bone metastasis, respectively (Table 3).

Because of the smaller size of the validation cohort, other CNIs were not significantly
associated with metastasis, although the direction and magnitude of risk replicated those
observed in the discovery set. Restricting analyses to cases with known stage (n = 209) or
those with high-quality aCGH data did not substantially change the associations. For
cumulative risk prediction, the risk of bone (Figure 1C) or non-bone (Figure 1D) metastasis
was significantly different among the three risk groups (log-rank test, P = 6.08x10~4 and
1.42x1073 for bone and non-bone metastasis, respectively). Compared with the
intermediate-risk group, the HR for the high-risk group was 7.85 (1.63-37.9) for bone
metastasis and 3.17 (1.20-8.33) for non-bone metastasis.

Discussion

This study provides one of the first global, high-resolution genome-wide DNA CNI profiles
of site-specific metastasis in early-stage breast cancer patients. In the discovery dataset, we
found copy number gains at 1941 and 1942.12 and losses at 1p13.3, 8p22, and Xp11.3
independently increased risk of bone metastasis. Further, gains at 2p11.2, 3q21.3-22.2,
3027.1, 10923.1, and 14g13.2-3 and loss at 7g21.11 were associated with non-bone
metastasis. When evaluated in an external dataset, loss at 8p22 acting as a bone-specific
marker and gain at 10923.1 as a non-bone specific marker. Copy number gain at 11913.5
was significantly associated with risk for both bone and non-bone metastases in the two
study populations, which suggest that 11q13.5 gain increases the propensity for metastasis
independent of site.

Of the twelve CNIs identified as predictors of bone or non-bone metastasis, gains at 10923.1
[14], 11913.5 [18-20,14], and 14q13.2-3 [14] and loss at 8p22 [14,4,21-23] have previously
been implicated in metastasis and worse patient outcomes. Putative candidate genes at
11913.5 include EMSY, which encodes a BRCAZ2-associated protein, and LRRC32 (leucine
rich repeat containing 32), and gains in both have been associated with poor prognosis in a
variety of human cancers [19,24-26,20,27,28]. Of interest, amplification on 11q13.5isa
feature of a subset of ER+ breast carcinomas prone to metastasis [20]. Similarly, 8p22 is
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commonly deleted in metastatic tumors [14,29-31]. Two metastasis suppressor genes have
been identified at 8p22: REAM (reduced expression associated with metastasis) [14] and
DLC1 (Deleted in Liver Cancer 1) [32,22]. In a clonal model of experimental organ-specific
metastasis, DLC1 was down-regulated in breast cancer cells that were highly metastatic to
the bone [4]; supporting our observed association between 8p22 loss and bone metastasis in
two cohorts.

To our knowledge, this is the first study to identify gain at 1g41 and loss at 1p13.3 for bone
metastasis and gain at 3q21.3-22.2 and loss at 7g21.11 for non-bone metastasis. While we
failed to replicate theses associations, prior studies support a role for genes in the region and
metastasis risk. For example, PTPN14 (protein tyrosine phosphatase non-receptor type 14)
at 1g41 has been associated with tumor progression [33] acting via phosphorylation of
adherens junctions and facilitating tumor motility and migration [34]. EPHB1 (a member of
the Ephrin receptor family) at 3q21.3-22.2 has been correlated with invasion, stage, and
metastasis in colorectal cancer [35,36] and shown to influence cell-cell interaction and cell
migration in response to environmental signals [29,37].

A number of studies have investigated putative associations between gene expression
profiles and metastasis to the bone [4], lung [11], and brain [10]. However, the numbers of
patients in these studies is small, and none have explored CNIs as predictors of site of
metastasis. The strength of our study is the large sample size and cases from a single
treatment center with validated long-term follow-up, including first site of metastasis. There
are few studies with site of metastasis and none to our knowledge of this size with the copy
number data because of the rarity of the metastasis events and the need to follow patient
long term. These two retrospective sample sets (discovery and validation) are unique in that
they have collected patient outcomes by site of metastasis. Further, we found strong
associations between certain CNIs and site of metastasis that can be replicated across sample
sets. Notably, we also found that the metastasis associated CNIs, while not equally
distributed, were present across all breast tumor subtypes whether defined by IHC as in the
MDACC cohort or by gene expression profiling as in the validation study (Supplemental
Table 2). These results suggest that measurement of CNIs may further enhance
discrimination of high risk tumors within subtypes.

A limitation of our study is the smaller size of the validation data-set, as well as population
heterogeneity (MDACC included non-Hispanic white, Hispanic, and African American
patients, whereas the vast majority Swedish/Norwegian patients were non-Hispanic white
(only a few immigrants with background from Pakistan or other countries) as well as
differences in the resolution of the aCGH and MIP platforms. A further potential limitation
is the relevance of outcomes in the context of current treatment protocols. Routine use of an
anthracycline with cyclophosphamide (AC) at MDACC began in the 1980s, whereas the
first use of AC plus taxane was observed in our cohort in 1986; use of AC plus taxane (now
standard of care) was routine by 1994. Among patients receiving chemotherapy, use of AC
plus taxane was 5.3% prior to 1994 and 42.3% after 1994. Among patients in our study
receiving chemotherapy, 73.7% received a regimen containing an anthracycline and the
remainder (26.3%) received both an anthracycline and a taxane. Our sensitivity analyses
stratifying the cohort by time (before/after year 1994) shown no evidence that change in
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treatment practice modified the association between specific CNIs and risk for first site of
metastasis.

In summary, we identified specific CNIs that increase risk for bone and/or non-bone
metastasis, independently of established risk factors like tumor subtype. Validation of our
findings show gain at 11q13.5, loss at 8p22, and gain at 10g23.1, and possibly loss at
Xp11.3, are informative as markers of site of first metastasis. These results strongly suggest
that these markers, or their underlying genomic drivers, have potential clinical use as
biomarkers to tailor post-treatment surveillance and to identify high-risk patients, who
would be most likely to benefit from prolonged therapy with treatments given in the
adjuvant setting for the purpose of preventing bone or soft tissue metastasis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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