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SUMMARY

CD4™" T cells are key cells of the adaptive immune system that use
T cell antigen receptors to recognize peptides that are generated in
endosomes or phagosomes and displayed on the host cell surface
bound to major histocompatibility complex molecules. These T
cells participate in immune responses that protect hosts from mi-
crobes such as Mycobacterium tuberculosis, Cryptococcus neofor-
mans, Leishmania major, and Salmonella enterica, which have
evolved to live in the phagosomes of macrophages and dendritic
cells. Here, we review studies indicating that CD4™" T cells control
phagosomal infections asymptomatically in most individuals by
secreting cytokines that activate the microbicidal activities of in-
fected phagocytes but in a way that inhibits the pathogen but does
not eliminate it. Indeed, we make the case that localized, con-
trolled, persistent infection is necessary to maintain large numbers
of CD4 " effector T cells in a state of activation needed to eradicate
systemic and more pathogenic forms of the infection. Finally, we
posit that current vaccines for phagosomal infections fail because
they do not produce this “periodic reminder” form of CD4™ T
cell-mediated immune control.

INTRODUCTION

he number of microbes that can cause disease in mammals is

extremely large (1). Different pathogens infect and reside in
different niches in the body and have various mechanisms of
pathogenesis. Consequently, immune functions that are protec-
tive against one pathogen may be completely ineffective against
another. To deal with this challenge, the vertebrate adaptive im-
mune system has evolved three types of lymphocytes that survey
different types of pathogen-derived antigens: B cells, which use
antibodies to recognize extracellular macromolecules; CD8™ T
cells, which use T cell receptors (TCRs) to recognize short pep-
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tides from cytosolic proteins; and CD4 ™ T cells, which use TCRs
to recognize peptides from extracellular proteins that are taken up
into endosomes or phagosomes. This review focuses on CD4" T
cells and their important role in protecting the host from patho-
gens that persistently infect the phagosomes of phagocytes.

ANTIGEN RECOGNITION BY LYMPHOCYTES

The adaptive immune system depends on lymphocytes, which
exist in three main classes: B cells, CD8" T cells, and CD4 ™" T cells
(2). Each lymphocyte produces an antigen receptor from a com-
posite gene assembled by somatic recombination of many possible
gene segments on only one chromosome (3). This process, which
occurs only in developing lymphocytes, ensures that millions of
different antigen receptors can be produced but that each newly
formed lymphocyte expresses many copies of a single antigen re-
ceptor. Each antigen receptor has a unique binding pocket that
accommodates an antigen with a defined shape (4, 5). Since the
gene segment shuffling mechanism that produces antigen recep-
tors is relatively random (6), the antigen receptor binding pockets
have random shapes. Thus, the set of lymphocytes in an individual
is likely to contain only a few cells that by chance express antigen
receptors with shapes that are highly complementary to the mo-
lecular shapes of antigens produced by a given microbe. The adap-
tive immune response to that microbe therefore depends on the
expansion and differentiation of these few lymphocytes (7).
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T Cell Antigen Receptor Recognition of Peptide-MHC
Ligands

Immune protection from intracellular pathogens is the job of T
cells (2). To understand how T cells do this job, it is important to
understand the specificity of their TCRs. TCRs are composed of
either alpha and beta or gamma and delta chain heterodimers that
form antibody Fab-like structures on the surface of T cells (4, 8).
This review focuses on alpha-beta TCRs, because the CD4™ T cells
that control phagosomal infections for the most part express these
receptors (9).

The ligands for alpha-beta TCRs are usually short peptides
bound to host cell surface proteins called major histocompatibil-
ity complex (MHC) molecules (4). MHC molecules come in two
forms: MHC class I (MHCI) molecules, which are expressed on
most cells of the host and present peptides that are recognized by
TCRs on CD8" T cells, and MHCIT molecules, which are consti-
tutively expressed on B cells, dendritic cells (DCs), and macro-
phages and present peptides that are recognized by TCRs on
CD4™ T cells (4). MHC molecules alert the host to an infection by
displaying peptides from intracellular microbes on the surfaces of
host cells.

In almost all cells of the body, the peptides that bind to MHCI
molecules are derived exclusively from cytosolic proteins (10).
Newly translated proteins are constantly being clipped by protea-
somes in the cytosols of all host cells. Some of the resulting pep-
tides are pumped by the transporter associated with antigen pro-
cessing (TAP) into the endoplasmic reticulum, where 8- to
9-amino-acid peptides with certain key anchor residues bind to
newly synthesized MHCI molecules (11). The resulting peptide:
MHCI (p:MHCI) complexes are transported to the cell surface.
Certain dendritic cells can shuttle internalized extracellular pro-
teins from endosomes to the cytosol, where proteasomes produce
peptides that enter the endoplasmic reticulum through TAP and
are loaded onto MHCI molecules (12). This exceptional capacity
is known as cross-presentation.

The p:MHCII ligands for TCRs on CD4" T cells are formed
from extracellular proteins that are taken up by cells that express
MHCII molecules (10). Dendritic cells and macrophages take up
extracellular proteins into endosomes by macropinocytosis or
particles by phagocytosis. B cells are very inefficient at this process
and can efficiently internalize only proteins that bind to the their
surface antibody. Endosomes or phagosomes containing internal-
ized proteins then fuse with vesicles containing proteases such as
cathepsins, which cleave the internalized proteins into peptides.
These vesicles also contain newly synthesized MHCII molecules
that bind ~9-amino-acid peptides that have certain key anchor
residues. The p:MHCII complexes are then trafficked to the cell
surface.

MHC molecules are loaded with peptides from host proteins in
uninfected individuals (13). These host p:MHC complexes play a
critical role in T cell development in the thymus (14). Developing
T cells rearrange Tcra-V, Tcra-J, Tcrb-V, Terb-D, and Terb-J seg-
ments such that each cell expresses a unique alpha-beta TCR (15).
Unlike antibodies, TCR V domains have an inherent germ line-
encoded affinity for MHC molecules, which causes strong signal-
ing and clonal deletion of many developing T cells in the thymus
(16). The only cells that are not deleted are those that produce
TCRs with weakened binding to self-p:MHC molecules. Weak
TCR binding to self-p:MHC molecules is needed for survival and
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lineage commitment: thymic T cells with TCRs with low affinity
for self-p:MHCI molecules become CD8" T cells, whereas cells
with TCRs with low affinity for self-p:MHCII molecules become
CD4™" T cells (14). The result of this process is a diverse set of T
cells, all with TCRs with weak affinity for self-p:MHC molecules, a
few of which are likely to have high affinity for a host MHC mol-
ecule when complexed with a given foreign peptide.

The utility of the CD8™ T cell- MHCI system becomes apparent
when considering intracellular infections such as those caused by
viruses. Viral proteins are processed in the cytosol, and viral
p:MHCI complexes are displayed on the cell surface of any in-
fected cell, marking it for recognition and killing by CD8™ T cells.
There is almost nowhere in the body for viruses to hide, since most
cells of the body express MHCI molecules (17, 18).

Notall intracellular microbes, however, infect the cytosol; some
infect the phagosomes of phagocytes, for example, Mycobacterium
tuberculosis, Cryptococcus neoformans, and Salmonella species
(19). These microbes are not well controlled by CD8" T cells (9,
20, 21), probably because these microbes are not abundant in the
cytosols of infected cells and therefore do not lead to efficient
production of microbial p:MHCI complexes. Proteins from these
microbes, however, are processed in the phagosome, loaded onto
MHCII molecules, and shuttled to the cell surface, marking the
infected cells for recognition by CD4 ™ T cells (22-26). The impor-
tance of this fundamental aspect of antigen presentation is evi-
denced by that fact that CD4™" T cell-deficient individuals have a
preferential susceptibility to phagosomal infections (27, 28).

CD4™" T CELL RESPONSE

General Aspects of the CD4™ T Cell Response

We first review some general information about how CD4™ T cells
respond to p:MHCII ligands before delving into the mechanisms
used by these cells to control phagosomal infections. After leaving
the thymus, a newly minted CD4 ™ T cell, now called a naive T cell,
enters a secondary lymphoid organ (lymph nodes, spleen, and
mucosal lymphoid organs) from the blood and percolates through
a meshwork of MHCII-expressing dendritic cells (29). This search
process optimizes the likelihood that a naive T cell will encounter
the p:MHCII ligand that its TCR has a high affinity for no matter
where in the body that ligand happens to be produced. The recir-
culation of naive T cells is facilitated by the expression of CD62L
and CC chemokine receptor 7 (CCR7), which bind to ligands
expressed exclusively on endothelial cells in secondary lymphoid
organs (29). If a naive T cell does not encounter its high-affinity
p:MHCII ligand, it leaves that secondary lymphoid organ and mi-
grates to a different one to continue the search (30). The cell re-
mains in the G, phase of the cell cycle and expresses small amounts
of CD44 and large amounts of CD45RA during the search process,
which goes on for 2 to 3 months in mice before the cell dies (31).

The naive T cell undergoes a dramatic transformation if it en-
counters a dendritic cell displaying the relevant high-affinity
p:MHCII ligand. This occurs during infection, as dendritic cells at
the infection site take up microbial proteins and migrate to the
draining lymph nodes, and free microbial proteins are carried by
lymph or blood to secondary lymphoid organs for uptake by res-
ident dendritic cells (32). In either case, dendritic cells in second-
ary lymphoid organs produce and display microbial p:MHCII
complexes. On average, about 1 naive CD4" T cell in a million,
about 50 cells in a mouse, expresses a TCR capable of strong bind-
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ing to any given microbial p:MHCII complex (33). During the
relevant infection, these 50 cells interact with dendritic cells dis-
playing the relevant microbial p:MHCII complex, receive TCR
signals, produce growth factors, divide many times, and produce
several hundred thousand progeny in 1 week (34, 35). These prog-
eny are termed effector cells, which lose the naive phenotype by
increasing the expression of levels CD44 and CD45RO and reduc-
ing the expression level of CD45RA (36).

Early in vitro studies showed that effector T cells differentiate
into specific subsets during this period of rapid division. The best-
understood effector cell subsets are known as T helper 1 (Th1), T
helper 2 (Th2), T helper 17 (Th17), and T follicular helper (Tth)
cells (37). These effector cell subsets form in response to infection-
specific signals from the innate immune system and perform spe-
cific functions. For example, worm infections cause epithelial cells
to produce interleukin-33 (IL-33) and cause group 2 innate lym-
phoid cells to produce IL-4 (38). Effector T cells that are exposed
to these cytokines express the GATA3 transcription factor, which
enforces Th2 cell differentiation (37). When stimulated by the
relevant p:MHCII ligand, Th2 cells produce IL-4, IL-5, and IL-13,
which activate eosinophils and goblet cells to expel worms (39).
Extracellular bacterial infections cause dendritic cells to produce
IL-6 and transforming growth factor 3, which cause effector cells
to induce the retinoic acid-related orphan receptor yt transcrip-
tion factor, which promotes Th17 cell differentiation (40). Th17
cells produce IL-17, which stimulates epithelial cells to produce
chemokines that recruit neutrophils to engulf and kill bacteria.
Extracellular bacterial infections also cause the production of IL-6
and IL-21, which induce the expression of the Bcl6 transcription
factor, which drives Tth differentiation in combination with in-
ducible T cell costimulator (ICOS) signals from ICOS ligand-ex-
pressing B cells (41). Tth cells localize to B cell-rich follicles and
germinal centers and help B cells undergo antibody affinity mat-
uration and isotype switching. Antibodies then facilitate killing of
extracellular microbes via complement activation, antibody-de-
pendent cellular cytotoxicity, or opsonization (42). Certain intra-
cellular infections cause macrophages and dendritic cells to pro-
duce the cytokine IL-12 or type 1 interferon (IFN), which causes
effector cells to express the T-bet transcription factor, which pro-
motes Thl cell differentiation (43). Thl cells produce gamma in-
terferon (IFN-y) and tumor necrosis factor (TNF), which activate
phagocytes to kill intracellular microbes (44).

CD4™ T Cell Response to Acute Infection
Generation of effector cells. Although much of the evidence for
CD4" effector T cell differentiation comes from in vitro culture
systems, recent studies of acute infections by attenuated Listeria
monocytogenes bacteria or lymphocytic choriomeningitis virus
(LCMV) have shed light on this process as it occurs for p:MHCII-
specific T cells in vivo. Naive CD4™" T cells with TCRs specific for
MHCII-bound peptides from either infection proliferate to pro-
duce effector cell populations consisting of about equal numbers
of Th1 and Tth cells in the secondary lymphoid organs by 1 week
after infection (35,45, 46). IL-12 likely drives the differentiation of
Th1 cells during infection with attenuated Listeria monocytogenes
bacteria (47), while type 1 IFN serves this function during LCMV
infection (48). In contrast, Tth cell formation during LCMV in-
fection and probably Listeria monocytogenes infection depends on
IL-6 and IL-21 (49).

These studies provide the important insight that two different
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polarized Th cell subsets, Th1 cells and Tth cells, can differentiate
simultaneously in the same infection. It is possible that individual
naive T cells become activated in different niches in secondary
lymphoid organs that contain either IL-12 or IL-6 and IL-21. Al-
ternatively, some effector cells may receive ICOS signals from B
cells and become Tth cells, while others do not (45, 50). Another
possibility relates to the strength of the signal that a CD4™ T cell
receives through its TCR. In vitro stimulation with very low or very
high doses of peptide favors the generation of IL-4-producing T
cells, while moderate doses of peptide favor IFN-y production
(51, 52). In vivo studies showed that cell-mediated immunity (as-
sociated with Th1 cells) is favored at low antigen doses (53), while
humoral immunity (associated with Tth cells) is favored at high
antigen doses (54). Naive T cells that experience moderate TCR
stimulation during attenuated L. monocytogenes infection or after
peptide injection have a tendency to become Thl cells, while
strong or prolonged TCR signaling favors Tth cell generation (55—
58). Consistent with this finding, immune control of Leishmania
major infection, which depends on Thl immunity, is induced
more efficiently by immunization with a low dose of Leishmania
protein than with a high dose (59). Strong TCR signaling inhibits
the expression of the IL-12 receptor (60) and IL-2 receptor signal-
ing (61), both of which are needed for maximal Th1 cell differen-
tiation (35, 45, 62, 63). Thus, it is possible that strong TCR signal-
ing suppresses the Thl cell fate, thereby promoting the Tth cell
fate.

Studies on attenuated L. monocytogenes infection also revealed
that some Th1 effector cells leave secondary lymphoid organs and
migrate to nonlymphoid tissues such as the liver, while Tth cells
are confined to the secondary lymphoid organs (55). Although not
examined in this case, in other systems, Th1 cells express the active
form of P-selectin glycoprotein 1, which binds to CD62E and
CD62P, and CXC chemokine receptor 3 (CXCR3), which binds to
CXC chemokine ligand 9 (CXCL9) and CXCL10 (64). CD62E
CD62P, CXCL9, and CXCL10 are displayed on endothelial cells in
inflamed nonlymphoid tissues, thereby facilitating the extravasa-
tion of Th1 cells (65).

Formation of memory cells. Some of the effector cells survive
acute infection to become memory cells. The number of L. mono-
cytogenes or LCMV p:MHCII-specific effector cells in the body
declines by about 90% in secondary lymphoid organs via apopto-
sis over a 2-week period after the peak (34, 35, 46, 66). The loss of
effector cells coincides with clearance of the infection, and it was
recently found that deprivation from p:MHCI molecules may
cause some CD8" T cells to die during the contraction period
(67). Thus, it is possible that the 10% of effector cells that survive
to become memory cells are those that happen to interact with a
cell displaying the relevant p:MHC molecules during a critical
period of the contraction phase. Effector cell survival into the
memory phase is associated with expression of the IL-7 receptor
(68) or the TNF receptor superfamily member CD27 (34), which
enhances expression of prosurvival members of the Bcl-2 family.

The CD4" memory T cells that survive the contraction period
after L. monocytogenes or LCMV infection retain the CD44"¢"
phenotype of effector cells and consist of Th1 and Tth-like subsets
(35, 46, 69-71). It is likely that Th1 memory cells derive from Thl
effector cells (72) and that Tth memory cells derive from Tth ef-
fector cells (35, 71). Th1 memory cells lack expression of CCR7
(35) and thus resemble so-called effector memory cells (73), while
Tth-like memory cells express CCR7 (35) and resemble central
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memory cells (73). Most of the memory cells in either subset are
not cycling (34) but are maintained for prolonged periods in the
G, or G, phase of the cell cycle by the cytokine IL-7 (74). However,
some of the memory cells in the population divide infrequently in
response to the cytokine IL-15 (34, 75). In contrast, if the relevant
infection occurs a second time, memory cells receive TCR signals
and rapidly enter the cell cycle, with Th1 memory cells producing
Th1 effector cells and Tth memory cells producing Thl and Tth
effector cells (35, 69, 70).

Surprisingly, the combination of IL-7-dependent survival and
IL-15-dependent proliferation is not sufficient to maintain CD4 ™"
memory T cells induced by acute infections. Levels of CD4 ™ mem-
ory T cells induced by attenuated L. monocytogenes or LCMV in-
fection slowly decline, with a half-life of about 60 days in mice (34,
35, 46, 66). This decline is in contrast to the seemingly perfect
numerical stability of CD8" memory T cells and plasma B cells
(76, 77). Thus, at the population level, murine CD4" memory T
cells induced by acute infections are remarkably “forgetful” com-
pared to other memory cells. This could be due to the fact that
CD4™ T cells undergo less IL-15-driven homeostatic proliferation
than CD8™ T cells due to a lower expression level of the IL-15
receptor (34,75, 78). A second, non-mutually exclusive possibility
is that weak TCR signals from self-p:MHCII ligands are important
for the survival of CD4" memory T cells, and competition for
these ligands reduces survival when CD4™ T cell populations spe-
cific for the same ligand are large (79, 80). In any case, murine
CD4" T cells do not conform to the textbook notion that a single
transient exposure to antigen is sufficient to induce lifelong im-
mune memory. Although human CD4" T memory cells appear to
be long-lived without the eliciting antigen (81), it is difficult to
rule out the involvement of periodic TCR stimulation with envi-
ronmental peptides that cross-react with the eliciting peptide (82).

CD4™" T Cell Response to Phagosomal Infection

Generation of effector cells. Although work on attenuated L.
monocytogenes and LCMV infections elucidated many interesting
aspects of the in vivo CD4™ T cell response, it did not reveal much
about the role that these cells play in protective immunity because
CD8™ T cells are mainly responsible for protecting the host from
these microbes (83, 84). The primary role of CD8" T cells in the
control of these cytosolic infections is likely related to the efficient
production of microbial p:MHCI complexes by infected cells. In
contrast, CD4" T cells are probably the key controllers of primary
infections by microbes such as Mycobacterium tuberculosis, Cryp-
tococcus neoformans, Leishmania major, and Salmonella enterica
(27), because these organisms replicate in the phagosomes of mac-
rophages and dendritic cells, where p:MHCII complexes are
formed (85-88). Not only are CD4™ T cells the main controllers of
these infections (9, 21, 89-91), they also appear to do so with little
help from other cells of the adaptive immune system. For exam-
ple, despite becoming activated (92), gamma-delta T cells appear
to play no positive role in controlling phagosomal infections (9,
21),and CD8 " T cells play only a small or no role (9, 20, 21, 93).
Mice lacking CD1 control M. tuberculosis infection normally,
demonstrating that natural killer T (NKT) cells are not required
(94). In addition, a role for B cells or antibodies has not been
clearly established for the control of phagosomal infections. Sev-
eral groups reported that mice lacking B cells had a defect in the
control of primary M. tuberculosis infection (95, 96), whereas an-
other group reported no defect (97). Several other studies found
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that mice lacking B cells had mild deficits in controlling phago-
somal infections, but these defects were attributed to poor prim-
ing of T cells rather than antibody production (98-100). In sum-
mary, although CD8™" T cells and B cells may play minor roles in
the control of phagosomal infections, their importance in this
regard pales in comparison to that of CD4™ T cells.

We now review research on the CD4* T cell response to the
phagosomal pathogens M. tuberculosis, L. major, and S. enterica.
These organisms are the focus of this review because the large
body of research on each one is conducive to identifying common
elements of the CD4 " T cell response to phagosomal pathogens.
In the case of S. enterica, special attention is given to studies of
Nrampl-sufficient hosts, which generate persistent infections,
unlike Nramp1-deficient hosts, which are abnormally susceptible
and die very early after infection (86). Emphasis is also placed on
studies in which T cells specific for MHCII-bound peptides from
phagosomal pathogens were tracked, because these studies pro-
vide insight into the T cells that specifically control these infec-
tions. Because of this focus, most of the studies reviewed here were
performed in mouse model systems where relevant reagents, such
as p:MHCII tetramers, are available for tracking relevant CDh4* T
cells (101).

All three of the prototypical phagosomal infections have simi-
lar features. In each case, the microbes enter and replicate in mac-
rophages and dendritic cells at the initial site of infection and then
spread to associated secondary lymphoid organs and eventually to
blood, probably within phagocytes (9, 86, 102, 103). The number
of microbes in all body sites increases steadily from a small num-
ber to a peak about 3 weeks after infection and then declines to a
lower set point that is maintained for the life of the host. CD4™ T
cells have no effect on the growth of the microbes for the first 2 to
3 weeks after infection but are then critical for reducing the num-
ber of microbes to the set point (9, 21, 104). Phagosomal patho-
gens often persist during the period of CD4" T cell-mediated
control in organoids called granulomas, which form at the initial
site of infection and consist of tight clusters of phagocytes inter-
spersed with epithelial cells and surrounded by T cells (85).

Phagosomal infections induce CD4™" T cell responses that get
off to a slow start compared to the responses induced by acute
bacterial and viral infections. In each case, macrophages and den-
dritic cells at the initial site of infection—lung for M. tuberculosis,
skin for L. major, and Peyer’s patches for S. enterica—take up
microbes into phagosomes (103, 105-107). The infected macro-
phages and dendritic cells then migrate to the draining lymph
nodes (105, 108—110), where activation of CD4 ™ T cells with spe-
cific TCRs is first detected 1 to 2 weeks after infection (111-114)
(Fig. 1). The relevant p:MHCII-specific CD4" T cells eventually
produce a large number of effector cells that peak in the secondary
lymphoid organs after 2 to 3 weeks, when the infection peaks.
Some of the effector T cells that are generated in the secondary
lymphoid organs migrate to nonlymphoid organs, including the
original sites of infection (111, 114, 115) (Fig. 1). In the case of M.
tuberculosis, granulomas eventually form in the lungs (116), and
the T cells are contained within them (117). Granuloma-like
structures also eventually form in the skin sites of L. major infec-
tion (118, 119) and the livers of S. enterica-infected mice (120).

Several factors may account for the slow tempo of the CD4™* T
cell responses to phagosomal infections. First, in all three cases, it
is likely that only a small number of microbes make it to the sec-
ondary lymphoid organs early after infection. The initial inocu-

cmr.asm.org 203


http://cmr.asm.org

Tubo and Jenkins

- = = =

naive
CD4* T cell

1 Draining lymph node ’

FIG 1 Early events after a phagosomal infection. The schematic illustrates
events occurring at the initial site of infection and a draining lymph node about
1 to 2 weeks after infection.

lum of M. tuberculosis or L. major organisms is low in the most
common models (9, 102), and the number of S. enterica organisms
that enter the mucosal lymphoid organs is also very small (121),
likely because most of the bacteria die in the stomach after inges-
tion. In addition, it has been reported that phagosomal pathogens
inhibit antigen processing and the formation of p:MHCII com-
plexes (122-128), although this effect not been observed in all
studies (129, 130). Thus, only a few of the relevant CD4™ T cells
may become activated early after infection, because the number of
infected phagocytes initially capable of presenting p:MHCII
complexes is very small, or the infected phagocytes display very
few p:MHCII complexes per cell (127). Second, M. tuberculosis
p:MHCII-specific regulatory T cells become activated early after
infection and slow the activation of effector T cells (114). The
effector cells eventually take over, however, because the regulatory
cells disappear by an IL-12-dependent mechanism (114).

Memory cell survival. Another difference between the immune
responses to persistent phagosomal infections and those to acute in-
fections relates to the numerical stability of memory cells. The num-
ber of microbe p:MHCII-specific effector cells induced by phago-
somal infections drops about 10-fold after the peak, as in the case of
acute infections (111, 113, 115). Unlike the case of acute infections,
however, the number of specific memory cells then remains constant
in all body sites for hundreds of days (111, 113, 115). This remarkable
stability is associated with low-level persistence of the phagosomal
pathogen, as evidenced by the decline in the number of S. enterica
p:MHCII-specific CD4" T cells after persistent infection was
cleared with antibiotics (113, 125). Thus, phagosomal pathogen
p:MHCII-specific CD4™ T cell populations are maintained by a
nonclassical antigen-dependent mechanism. This mechanism has
also been observed for polyomavirus p:MHCII-specific CD4* T
cells in mice with persistent infection (131).
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It is important to note that only a small number of cells in the
specific CD4" T cell population proliferate in response to the
relevant p:MHCII ligand in secondary lymphoid organs or gran-
ulomas at any one time during the persistent phase of infection
(113,115). This phenomenon is again likely related to the fact that
only a small number of infected phagocytes are present in the body
during this phase. Thus, specific CD4" memory T cells probably
proliferate infrequently because they rarely encounter a phagocyte
displaying the relevant p:MHCII ligand. The infrequency of this
proliferation probably explains why the CD4 ™ T cell population is
maintained at a stable level rather than increasing steadily over
time (113). Indeed, p:MHCII-driven proliferation must perfectly
balance the death rate to keep the population at a stable level. This
model also implies that CD4™ T cells with TCRs specific for
MHCII-bound peptides from phagosomal microbes spend long
periods of time during persistent infection without encountering
the relevant p:MHCII ligand. These long rest intervals could ex-
plain why these CD4™ T cells do not experience the activation
defects exhibited by the “exhausted” T cells (113, 115) observed in
individuals with systemic chronic infection (132).

Thl-mediated control of phagosomal infection. The p:MHCII-
specific CD4™ T cell populations present during the persistent
phase of M. tuberculosis, S. enterica, and L. major infections have
the CD44"¢" memory cell phenotype and are dominated by Th1
cells (111, 113-115). This makes sense because all three microbes
are potent inducers of IL-12 by cells of the innate immune system,
and IL-12 is a major driver of Th1 cell differentiation (47, 133—
135). It is less clear why Tth cells do not form or are not main-
tained efficiently during these infections as in the case of acute
infection with attenuated L. monocytogenes bacteria, which is also
a strong IL-12 inducer (47). The fact that results for attenuated L.
monocytogenes were obtained by injecting a large number of bac-
teria directly into the blood (35) is one possibility. This regimen
provides many extracellular bacteria for uptake by antigen-spe-
cific B cells in the spleen. These B cells could present p:MHCII
complexes to effector CD4™ T cells, steering them toward the Tth
fate, since antigen presentation by B cells favors Tth cell develop-
ment by providing continuously high levels of cognate p:MHCII
(57).In contrast, very few free microbes likely enter the body after
M. tuberculosis, S. enterica, or L. major infections, and the ones that
do quickly enter a phagocyte, thereby limiting B cell access to the
microbes. In this situation, very few of the effector cells would be
diverted to the Tth fate, and most would default to the Thl fate.
Poor access to antigen may also explain why B cells play little or no
role in the control of phagosomal infections (97, 136-138). The
dominance of Th1 cells during phagosomal infections could also
be the result of the iterative stimulation of memory cells during
persistent infection. Even if Tfh-like central memory cells are
formed early after infection, they would be expected to yield
mainly Thl progeny after encountering the relevant p:MHCII li-
gand at a later time (34, 35, 69). Many rounds of this process
would eventually lead to a Th1-dominated population.

Although the majority of effector cells induced by phagosomal
infections are Th1 cells, some heterogeneity exists in this popula-
tion. The M. tuberculosis p:MHCII-specific Thl cell population
consists of two subsets, one expressing killer cell lectin-like recep-
tor G1 (KLRG1) and one lacking it (115). KLRG1™ cells have a
greater proliferative potential than KLRG1™" cells, while KLRG1 ™"
cells are better IFN-y and TNF producers than KLRG1™ cells.
KLRGI™ cells may give rise to KLRG1™ cells in response to
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chronic TCR stimulation. The results suggest a conveyor belt
model where KLRG1™ Thl cells periodically encounter their
p:MHCII ligand on infected phagocytes, proliferate, and differen-
tiate into KLRG1 ™ cells.

Th1 cells are important for the control of phagosomal infec-
tions because their lymphokines enhance the microbe-killing
functions of phagocytes, including the production of nitric oxide
(9,139, 140). A likely scenario is that dendritic cells from the site of
infection migrate to the draining lymph nodes and present patho-
gen p:MHCII complexes and IL-12 to naive CD4" cells, which
proliferate and become Th1 effector cells (Fig. 1). These cells then
migrate to the site of infection and produce IFN-vy after encoun-
tering pathogen p:MHCII complexes on infected phagocytes.
IEN-vy then binds the IFN-y receptor on the infected phagocyte,
causing the production of inducible nitric oxide synthase (NOS2)
and the generation of the microbicidal compound nitric oxide (9).
The finding that NOS2-deficient mice cannot control phagosomal
pathogens is evidence of the importance of this pathway (9, 141—
144). Synergy between IFN-y and TNF for NOS2 induction could
explain why T cells that produce both cytokines are more protec-
tive than T cells that produce IFN-vy alone (59, 145). IFN-y and
TNF also cause fusion of microbe-containing phagosomes with
lysosomes, leading to microbial death due to exposure to acids,
reactive oxygen species, and proteases (146, 147).

Srivastava and Ernst recently shed light on how the interaction
of Thl cells and infected phagocytes contains infection (148).
They used chimeric mice that contained a mixture of MHCII-
sufficient and MHCII-deficient macrophages and dendritic cells
and found that the MHCII-sufficient cells controlled M. tubercu-
losis infection in a CD4™ T cell-dependent fashion, while the
MHCII-deficient cells in the same mouse did not. The fact that the
MHCII-deficient cells could not control infection indicates that
the IFN-y and TNF produced by CD4™ T cells in response to
MHCII-sufficient cells could not act in a bystander fashion on
nearby MHCII-deficient cells. This phenomenon could be ex-
plained by focal secretion of the cytokines into the synaptic space
formed by the opposed membranes of CD4™ T cells and infected
phagocytes displaying M. tuberculosis p:MHCII complexes (149).

Another way in which CD4™ T cells could contain phagosomal
infections is the direct killing of infected phagocytes. Although
cytotoxicity is often considered to be the job of CD8™ T cells,
recent work (150) indicates that CD4* T cells can acquire this
capacity under certain conditions. Naive CD4™ T cells stimulated
through the TCR, the TNF receptor family members CD134
(OX40) and CD137 (4-1BB), and the IL-2 receptor differentiate
into effector cells that express the cytotoxic proteins perforin and
granzyme B and kill cells displaying the relevant p:MHCII ligand
(151, 152). This differentiation pathway depends on the eomeso-
dermin transcription factor but not T-bet (151, 152). It will be of
interest to determine if eomesodermin-dependent CD4™ cyto-
toxic T cells play a role in the control of phagosomal infections.

Some Th17 effector cells are generated during M. tuberculosis
and Salmonella infections (153-155). Th17 cells might be ex-
pected to participate in the control of phagosomal infections by
recruiting neutrophils. Indeed, it was reported that mice lacking
the IL-17 receptor were defective in the long-term control of M.
tuberculosis infection (156). On the other hand, M. tuberculosis
and Salmonella infections are controlled normally in IL-23-defi-
cient mice, in which Th17 generation does not occur (157, 158),
and neutralization of IL-17 had no effect on the control of L. major

April 2014 Volume 27 Number 2

Th1 Cells Control Phagosomal Infections

infection (159). Furthermore, people with mutations that affect
the expression of IL-17 or IL-17 receptor are susceptible to Can-
dida and Staphylococcus aureus skin infections (160) but do not
appear to be susceptible to the phagosomal pathogens that afflict
people lacking CD4™ T cells or IL-12 receptor (27, 28, 161). Thus,
the bulk of the evidence to date suggests that Th1 cells, and not
Th17 cells, are critical for controlling phagosomal infections.

The curious case of herpes simplex virus. One microbe that
afflicts CD4 ™" T cell-deficient hosts but is not thought to persist in
phagocytes is herpes simplex virus (HSV). This virus produces a
lytic infection of epithelial cells in the skin and then spreads to
nearby neurons, where it can persist for the life of the host (162).
Local dendritic cells are also infected, atleast early on (163-167). T
cells are thought to play a role in keeping the infection in a latent
state in neurons, although this state can sporadically break down,
resulting in viral replication and a skin lesion (162). CD8" T cells
likely contribute to the control of infection by killing epithelial
cells that become infected after the virus emerges from persistently
infected neurons (162). The susceptibility of AIDS patients to
HSV infection (27) suggests that CD4™ T cells also play a role in
the control of this infection. This role may be forced by HSV
shutting down the expression of MHCI molecules in dendritic
cells using a protein called vhs (168, 169), thereby limiting the
capacity of infected dendritic cells to stimulate CD8™ T cells.
Nearby uninfected dendritic cells of the CD8a™ subtype, how-
ever, engulf dying infected cells and produce HSV peptide:MHCII
complexes (163). It is therefore possible that CD4" T cells are
critical for the control of HSV infection by producing the antiviral
cytokine IFN-v in response to HSV peptide:MHCII complexes
generated by CD8a* dendritic cells that engulf dying infected cells
or their debris. Thus, even though HSV is not a phagosomal in-
fection per se, CD4" T cells may be critical for its control because
of the special role that phagosomal antigen presentation plays in
this infection.

Phagosomal pathogen resistance to Thl-mediated control.
Although it is clear that CD4* T cells control phagosomal infec-
tions, it is equally clear that infection is rarely eliminated (86, 170).
Granulomas, which form in the lungs, skin, and liver in M. tuber-
culosis, L. major, and S. enterica infections, respectively, may be
involved in this process (85, 120, 171-173). Granulomas consist of
tight clusters of macrophages, some of which are infected and
many of which fuse to form multinucleated giant cells (174). The
macrophage clusters are surrounded by lymphocytes and inter-
spersed with CD4™ T cells, collagen fibers, and epithelial cells. It
can be argued that granulomas provide an advantage to the host
by walling off the microbe in a site full of activated T cells and
phagocytes (175). M. tuberculosis organisms, however, produce
substances that cause host epithelial cells to secrete matrix metal-
loproteinase 9 (MMP9), which is critical for granuloma formation
(176, 177). The fact that the pathogen appears to foster granuloma
formation suggests that granulomas provide an advantage to the
pathogen. Although Thl-mediated killing of infected macro-
phages and their microbes likely restrains the infection within
granulomas, new phagocytes, which are actively recruited to gran-
ulomas, quickly engulf the dying macrophages and their microbes
and become infected in the process (85, 117) (Fig. 2). Thus, gran-
ulomas are sites where M. tuberculosis organisms obtain access to
a constant supply of new cells to infect. Another point in favor of
the microbe is that infected phagocytes within granulomas display
very small numbers of microbe p:MHCII complexes, thereby lim-
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FIG 2 Events during the persistent phase of a phagosomal infection. The
schematic illustrates events at the initial site of infection and a draining lymph
node, months after the initial infection.

iting IFN-vy and TNF production by Th1 cells (178, 179). It is also
possible that the abnormal multinucleated giant cells found in
granulomas (174) are impaired with respect to antigen processing
and p:MHCII ligand production.

Another factor that limits pathogen clearance is that Th1 cells
at sites of persistent phagosomal infection acquire the capacity to
produce the suppressive cytokine IL-10 (111, 180) (Fig. 2). The
differentiation of Thl cells to an IL-10-producing state may de-
pend on very high levels of IL-12 receptor signaling (181-184),
which may be most likely to occur at sites of persistent infection.
Importantly, IL-10 receptor signaling in macrophages inhibits
MHCII expression (185, 186), thereby potentially limiting the dis-
play of microbial p:MHCII complexes by infected phagocytes in
granulomas. IL-10 receptor signaling also suppresses IFN-y and
TNF production (187) and nitric oxide generation (188), which
could blunt the capacity of infected macrophages to kill their mi-
crobes. This model is supported by the observation that IL-10
neutralization increases killing of phagosomal pathogens (102,
189, 190).

Regulatory T cells provide another brake on the killing of pha-
gosomal pathogens in granulomas (Fig. 2). L. major-induced skin
lesions contain abundant regulatory T cells, which are required for
persistent infection (191). Some (192) but not all (111) of these
regulatory T cells express TCRs that are specific for L. major
p:MHCII complexes and accumulate in skin lesions through the
expression of the E-cadherin binding integrin CD103 (193). These
observations suggest that L. major pxMHCII-specific regulatory T
cells suppress the microbe-killing functions of L. major p:MHCII-
specific Thl cells in the same lesions. M. tuberculosis-induced
granulomas also contain abundant regulatory T cells (194). The
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TCR specificity of these cells is unclear, however, since M. tuber-
culosis p:MHCII-specific regulatory T cells are lost at later times
after infection (114). In addition, the relevance of regulatory T
cells in granulomas is uncertain, since late depletion of regulatory
T cells had no effect on the number of M. tuberculosis organisms in
this location (195).

Phagosomal pathogens also have intrinsic mechanisms to re-
sist the attempts of Th1 cells to activate their phagocyte host. As
mentioned above, many phagosomal microbes produce mole-
cules that interfere with the IFN-vy-enhanced process of phago-
some fusion with lysosomes (146, 171). For example, M. tubercu-
losis has many enzymes that detoxify microbicidal compounds,
such as superoxide anion, hydrogen peroxide, and nitric oxide,
that are produced in large amounts in the phagolysosomes of IFN-
y-activated phagocytes. M. tuberculosis, L. major, and S. enterica
organisms also cause phagocytes to produce IL-10 (196-199) (Fig.
2), which, in addition its T cell-suppressive effects, inhibits phago-
some-lysosome fusion (128, 200, 201).

Thus, phagosomal pathogens persist by resisting phagosome
toxification, quickly jumping from dying phagocytes to newly re-
cruited phagocytes, and promoting regulatory T cells and IL-10
that restrain the microbicidal functions of Th1 cells.

Concomitant immunity. Remarkably, healthy hosts that har-
bor Leishmania parasites in phagocytes at a site of persistent infec-
tion are resistant to superinfection in other parts of the body
(202). This situation is advantageous to the host, since unlike per-
sistent granuloma infection, which is usually asymptomatic, sys-
temic superinfections can be fatal. This odd state of affairs raises
the question, how does the immune system eliminate infections at
secondary sites but leave the initial infection intact? The answer
may lie in the fact that superinfecting organisms are taken up by
phagocytes that are not in the immunosuppressive environment
of the granuloma and are thus susceptible to complete killing by
circulating memory T cells.

The concept that a localized infection is required for protection
from systemic infection is called concomitant immunity and has
been studied primarily with Leishmania infection. L. major para-
sites are deposited in the skin by a sand fly bite and are taken up by
dendritic cells and macrophages, some of which migrate to the
draining lymph nodes (203). The infected phagocytes process
proteins from the parasite and present parasite p:MHCII ligands
to naive CD4™" T cells, which expand and produce Thl effector
cells (Fig. 1). The Th1 cells migrate to the skin infection site and
limit the replication of the parasites within phagocytes by stimu-
lating nitric oxide production, as described above (Fig. 1). How-
ever, Treg cell- and IL-10-rich granuloma-like structures quickly
form at this site to protect the microbes from complete elimina-
tion (102, 188, 191, 204), allowing the parasites to persist long-
term (205) (Fig. 2). Thl cells also circulate to other body sites,
including nondraining lymph nodes and uninfected skin (111)
(Fig. 2). Occasionally, some of the Th1 cells return to the site of
infection and respond to parasite p:MHCII molecules, keeping the
infection in check (Fig. 2) and maintaining the population of par-
asite p:MHCII-specific CD4™" T cells. In the event of a later sand fly
bite, Th1 cells at the new bite site, or in the spleen if the parasites
reach the blood, produce IFN-vy and TNF and kill all the parasites
in these locations before new granuloma-like organoids can form
to protect the parasites (204, 206) (Fig. 3). Because CD4 " memory
T cells do not persist indefinitely without periodic stimulation by
the relevant p:MHCII ligand (34, 35, 46, 66), the decrease in the
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level of cognate p:MHCII that would accompany a sterile cure of
Leishmania infection would likely lead to a gradual decrease in the
number of CD4™ T cells and eventual loss of immunity. Indeed,
protection from superinfection is lost if the original infection is
cleared (191, 207, 208).

While concomitant immunity is best understood in the con-
text of Leishmania infection, it may operate for all phagosomal
infections. Concomitant immunity could be responsible for con-
taining M. tuberculosis and C. neoformans infections to lung gran-
ulomas, limiting their spread and preventing superinfection. Con-
comitant immunity may have evolved because it meets the needs
of the microbe and the host: the microbe gets a niche to live in, and
the host becomes resistant to more serious systemic forms of the
infection.

Implications for vaccines. Most vaccines consist of attenuated
microbes, dead microbes, or components of microbes that are
given to subjects a limited number of times. This regimen pro-
duces a situation where vaccine antigens are present in an extra-
cellular form and are eliminated from the body shortly after
administration. Transient exposure to extracellular antigen is suf-
ficient to stimulate the production of Tth cells, which help B cells
become long-lived plasma cells that produce neutralizing anti-
bodies for the life of the host, even after the eliciting antigens have
been cleared from the body (41). Vaccines of this kind are there-
fore very effective for extracellular infections. Given what we now
know about the immune response to phagosomal infections, it is
easy see why this vaccination strategy has failed for this class of
microbes. Phagosomal pathogens are not susceptible to antibod-
ies, because they reside in phagosomes and are often transmitted
to new phagocytes that engulf an infected phagocyte. In addition,
transient exposure to antigen is not an effective way to induce a
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numerically stable population of CD4* memory T cells over long
periods of time (113). Indeed, the fact that the bacillus Calmette-
Guérin (BCG) vaccine, an attenuated strain of Mycobacterium
bovis, induces partial immunity to M. fuberculosis infection that
fades with time (209) may be explained by the decline in the num-
ber of relevant CD4™ memory T cells as BCG antigens disappear.

The practice of “leishmanization” provides a clue as to how a
vaccine for a phagosomal pathogen could work (202). People in
areas where the disease is endemic have long recognized that in-
dividuals with a Leishmania-infected skin lesion rarely contract
the often-fatal visceral form of the infection. This knowledge has
led to leishmanization, a process whereby people inoculate them-
selves in an inconspicuous skin site with material from the skin
lesion of an infected person. It is reasonable to suspect that this
practice produces alocalized persistent infection and concomitant
immunity.

Although it may be effective, leishmanization is a dangerous
practice in the AIDS era (210). An AIDS-related drop in the num-
ber of CD4™ T cells could lead to a loss of control of the Leishma-
nia parasites in the skin lesion, resulting in systemic infection and
death. Thus, the question becomes how to deliver antigens from
phagosomal pathogens safely for a long period of time and in
small amounts from a localized site, perhaps with features of a
granuloma. Perhaps, it will be possible to build a better BCG vac-
cines, that is, more persistent vaccine strains containing suicide
molecules that could be triggered in the event of AIDS. Alterna-
tively, peptides from phagosomal pathogens could be incorpo-
rated into next-generation polymers designed to release their
cargo over very long periods of time. Peptides could be incorpo-
rated to limit the formation of antibodies that would speed the
clearance of the vaccine antigen. These formulations could be in-
jected with MMP9 in an attempt to recreate a granuloma-like
structure at the injection site. Success could depend on abandon-
ing approaches aimed at elicitation of neutralizing antibodies in
favor of approaches aimed at generating large, intermittently
stimulated populations of Th1 cells.
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