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SUMMARY trachomatis each year, and the infection rate has been increasing

Chlamydia trachomatis is the leading cause of bacterial sexually
transmitted disease worldwide, and despite significant advances in
chlamydial research, a prophylactic vaccine has yet to be developed.
This Gram-negative obligate intracellular bacterium, which often
causes asymptomatic infection, may cause pelvic inflammatory dis-
ease (PID), ectopic pregnancies, scarring of the fallopian tubes, mis-
carriage, and infertility when left untreated. In the genital tract, Chla-
mydia trachomatis infects primarily epithelial cells and requires
Th1 immunity for optimal clearance. This review first focuses on
the immune cells important in a chlamydial infection. Second, we
summarize the research and challenges associated with developing
a chlamydial vaccine that elicits a protective Thl-mediated im-
mune response without inducing adverse immunopathologies.

INTRODUCTION

lamydia trachomatis is the leading cause of bacterial sexually
transmitted diseases (STDs) in humans. According to a 2008
WHO report, there are 105 million new cases of STDs due to C.
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steadily (1, 2). When symptomatic, C. trachomatis infection can
lead to mucopurulent endocervical discharge, hypertrophic cer-
vix, and postcoital bleeding. In 20 to 40% of untreated women, C.
trachomatis may reach the fallopian tubes via the endometrial ep-
ithelium and cause pelvic inflammatory disease (PID). However,
because patients with C. trachomatis urogenital infections often
do not exhibit any symptoms (75 to 90% of patients), they remain
undiagnosed and untreated. This can lead to tubal factor infertil-
ity, miscarriage, or ectopic pregnancy (3—5), which is a life-threat-
ening condition. Figure 1 shows pathologies caused by C. tracho-
matis. C. trachomatis is easily treated with antibiotics (i.e.,
erythromycin, azithromycin, or doxycycline), but several studies
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FIG 1 (Top left) Laparoscopy surgical procedure showing a ruptured left fallopian tube as a result of ectopic pregnancy. The image shows the presence of
significant hemoperitoneum. The patient was positive for Chlamydia trachomatis by PCR. (Top right) Fitz-Hugh-Curtis syndrome caused by Chlamydia
trachomatis. (Bottom) Pelvic inflammatory disease (PID) caused by Chlamydia trachomatis infection of the uterus, fallopian tubes, and ovaries. The image shows
the presence of a large dilation of the right fallopian tube, representing a tubo-ovarian abscess. (Inset) Drainage of the tubo-ovarian abscess.

indicate that a year after treatment, almost one-fourth of individ-
uals are reinfected with C. trachomatis (6, 7). C. trachomatis can
also cause ocular scarring, which often leads to blindness. This
disease, known as trachoma, is the leading cause of blindness
worldwide (8, 9). As with C. trachomatis genital infection, ocular
infections are often asymptomatic but can induce inflammation
that leads to conjunctival scarring. Trachoma is prevalent in more
than 50 countries, and the WHO estimates that 40 million people
worldwide suffer from trachoma and that 1.3 million people are
blind as a result of C. trachomatis trachoma infections (10, 11). In
addition to causing urogenital and ocular disease, C. trachomatis
can also infect the lymph nodes and the lymphatic system. This
disease, termed lymphogranuloma venereum (LGV), is mostly
caused by C. trachomatis serovars L1 to L3 (12, 13). Therefore,
because of the prevalence of asymptomatic infections, recurrent
infections, and the severity of genital and ocular pathologies in-
duced by Chlamydia, the development of a vaccine is paramount.
This review focuses largely on genital C. trachomatis and C. muri-
darum (a model organism that naturally infects rodents and is
used largely for animal experiments) immunity and the challenges
associated with generating a vaccine against these bacteria.

CHLAMYDIA BIOLOGY

C. trachomatis is a Gram-negative obligate intracellular bacte-
rium, and chlamydial species are able to infect both humans (C.
trachomatis and C. pneumoniae) and animals (C. muridarum, C.
suis, C. abortus, C. pecorum, C. psittaci, and C. caviae) (14). Pres-
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ently, there are 18 identified serovars of C. trachomatis (15). Some
serovars naturally infect the eye (serovars A to C), while others
infect primarily genital tissues (serovars D to K) (16). In the gen-
ital tissues, C. trachomatis normally infects the cervical (women)
or urethral (men) epithelium layer (17). Chlamydia exists in two
developmental forms: the elementary body (EB), which is infec-
tious, nonreplicating, and extracellular; and the reticulate body
(RB), which is noninfectious, replicating, and intracellular. The
EB displays no metabolic activity and is able to survive for long
periods outside the cell. Infection begins when the small (~0.2 to
0.3 wm) EB is internalized by the cell. After 8 to 10 h, the vesicle-
bound EB (termed an inclusion) replicates by binary fission into
the larger (~0.8 wm) RB (18). After replication, the RBs revert
back to EBs, which are able to infect neighboring cells (19). C.
trachomatis is able to avoid destruction by preventing lysosomal
fusion and replicating in an inclusion outside the endocytic path-
way (18). Scarring associated with C. trachomatis infections may
be the result of increased production of inducible nitric oxide
synthase (iNOS) and mediators such as activins (20, 21).

INNATE AND ADAPTIVE IMMUNITY TO CHLAMYDIA

Neutrophils and NK Cells

Innate immunity plays a role in controlling chlamydial infections
(22). Natural killer (NK) cells and neutrophils are the first cells
that are recruited to the site of a chlamydial infection. These cells
are important in innate immunity and have been implicated in the
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initial control of chlamydial infections. Two early studies demon-
strated that human neutrophils were able to inactivate C. tracho-
matis in vitro (23, 24). Additionally, mice that were neutrophil
depleted had a 10-fold greater C. muridarum burden in the female
genital tract than neutrophil-competent mice. However, both sets
of mice were able to eliminate C. trachomatis within the same time
frame (25), suggesting that neutrophils are not critical for the
resolution of infection. In fact, neutrophils are usually the first
immune cells recruited to an infectious site, and compared to
other leukocytes, they are short-lived (26, 27). Therefore, the most
likely role for neutrophils is to reduce the initial chlamydial infec-
tion and limit it from spreading. However, recent evidence indi-
cates that C. trachomatis may delay neutrophil apoptosis (28).
Since neutrophils are a major source of tissue-damaging cyto-
kines, such as matrix metalloproteinase 9 (MMP9), during acute
inflammation (29), the prolonged life span of neutrophils may
contribute to fibrosis and infertility associated with a chlamydial
infection (30).

NK cells are known to be involved primarily in viral infections
and cancer but have also been shown to be important in the early
elimination of intracellular bacteria (31, 32). A study conducted
by Tseng and Rank demonstrated that mice inoculated intravagi-
nally with C. muridarum recruited gamma interferon (IFN-vy)-
producing NK cells to the site of infection as early as 12 to 24 h
after inoculation (33). Cytokine production by epithelial cells and
dendritic cells (DC) has been implicated in NK cell IFN-+y produc-
tion during a chlamydial challenge. Hook and colleagues demon-
strated that C. trachomatis-stimulated human epithelial cells and
DC produced interleukin-18 (IL-18) and IL-12, respectively, and
that these cytokines induced NK cells to secrete IFN-y in vitro
(34). IFN-y not only is important in inhibiting the growth of
Chlamydia (35) but also is one of the main cytokines important
for the induction of a Th1 immune response. Indeed, mice that
were depleted of NK cells by treatment with an anti-NK-cell anti-
body and inoculated intravaginally with C. muridarum had a sig-
nificant increase in the Th2-associated antibody IgG1. In contrast,
Thi-associated IgG2a was the dominant antibody in mice that
were not treated with an anti-NK-cell antibody and challenged
with Chlamydia (33). A more recent study indicated that NK cells
may influence Th1l immunity by modulating DC function. This
investigation demonstrated that DC from intranasally C. muri-
darum-infected and NK-cell-depleted mice produced lower levels
of IL-12 and a reduced capacity to stimulate CD4™ T cells in vitro.
Furthermore, DC from NK cell knockout (KO) mice that were
adoptively transferred into naive mice failed to induce a Thl-
mediated immune response after intranasal challenge with C. mu-
ridarum (36). These data suggest that early IFN-y production by
NK cells modulates DC to downregulate the Th2 response,
thereby allowing expression of strong Thl-mediated immunity,
which has been shown to be essential for the resolution of Chla-
mydia infection.

NK T Cells

Natural killer T cells (NK T cells) are a unique population of T
lymphocytes that express typical NK cell markers (NK1.1 and
NKR-P1C) and a semivariant T cell receptor (o T cell receptor;
TCR) (37). NK T cells are CD1d restricted, meaning that they are
able to recognize lipids and glycolipids presented by antigen-pre-
senting cells on CD1d receptors but not antigens from the classical
major histocompatibility complex (MHC) (38). These granular
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cytolytic lymphocytes are able to destroy infected and cancerous
cells without prior sensitization and also secrete cytokines that are
important in both innate and adaptive immunity. NK T cells have
demonstrated immunomodulatory roles in a wide range of dis-
eases, such as cancer, autoimmunity, allergy, atherosclerosis, and
infection (37, 38). Furthermore, these cells have been implicated
in regulating both innate (macrophages [Md], natural killer cells,
and dendritic cells) and adaptive (B cells and conventional T cells)
immune cells (39-41). Zhao et al. demonstrated that NK cells
from NK T cell KO mice and from mice that had the CD1d recep-
tors blocked by antibodies exhibited decreased IFN-y production
and proliferation in a C. muridarum lung infection model (37).
Another study suggested that natural killer T cells may induce
protective Thl immunity by promoting proliferation, CD40 up-
regulation, and production of IL-12 in a DC subset (CD8a ") dur-
ing C. pneumoniae respiratory tract infections (42). However,
there is conflicting evidence on whether NK T cells promote pro-
tective Thl cell immunity or a Th2-mediated response that is
characterized by bacterial pathogenesis. A study conducted by
Bilenki et al. in 2005 (43) examined the role that NK T cells play in
C. muridarum pneumonitis infection. This study demonstrated
that intranasally infected CD1d-deficient mice lost less weight,
exhibited less pathology, and had lower bacterial burdens, IL-14
levels, and IgE titers than wild-type (wt) mice. Additionally, wt
mice that were stimulated with a known NK T cell ligand, a-galac-
tosylceramide (a-GalCer), showed induced C. muridarum growth
and increased IL-4 and IgE levels, suggesting that NK T cells pro-
mote a pathological Th2 response during chlamydial infection
(43). However, a more recent study by Wang and colleagues dem-
onstrated that pretreatment with a-GalCer in C. muridarum gen-
ital infection reduced bacterial burdens, decreased pathology, and
increased the Thl-associated cytokines IFN-y and IL-12 in both
lymph nodes and genital tissues compared with those in non-a-
GalCer-pretreated mice. These results suggest a role for NK T cells
in protective Th1 immunity against Chlamydia (44).

M

Studies using both C. trachomatis and C. muridarum have shown
that macrophages (Md) migrate to chlamydial infection sites
(45), phagocytose bacteria (46), and produce proinflammatory
cytokines (47, 48). However, unlike epithelial cells, M¢ are not a
hospitable niche for chlamydial intracellular replication, as illus-
trated by the fact that compared to the case in epithelial cells, only
a small fraction of chlamydial RBs are detected in M¢ (49). C.
trachomatis destruction inside M has been associated with host
cell autophagy, a process by which cells degrade cytoplasmic pro-
teins and organelles (49-51). Also, studies have demonstrated that
Md autophagy can enhance antigen presentation to T cells (52).
Furthermore, IFN-y has been shown to enhance both autophagy
and upregulation of MHC class II molecules in M (50, 53). This
is relevant because in addition to activating primed T cells, studies
indicate that M¢ can induce a humoral response in naive mice
(54). Therefore, enhanced upregulation of MHC molecules con-
taining chlamydial antigens may induce T cells to initiate both
cell-mediated and antibody immune responses against Chla-
mydia. However, Jendro et al. demonstrated that C. trachomatis-
infected human Md are able to induce T cell apoptosis (55, 56). In
addition to efficiently eliminating Chlamydia and presenting the
peptides to T cells, Md may also have an effect on chlamydial
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infection by inducing T cell death and perpetuating a persistent
infection.

DC

Dendritic cells (DC) are known to be the quintessential antigen-
presenting cells (APC). Immature DC are highly phagocytic, and
after internalization of pathogens, they degrade the components
and present the peptides to T cells via MHC receptors. This acti-
vates the T cells to initiate a cell-mediated and/or humoral im-
mune response. Numerous investigations have demonstrated the
ability of DC to activate T cells through MHC class I/1I presenta-
tion and to secrete Th1 cytokines in chlamydial infection both in
vitro and in vivo (57-61). An early study conducted by Lu and
Zhong showed that mice that received heat-killed (HK) C. tracho-
matis-incubated bone marrow-derived DC (BMDC) were pro-
tected against a subsequent nasal challenge with live C. trachoma-
tis (62). The protective response was Thl mediated, further
demonstrating a correlation between Th1-skewed immunity and
protection against chlamydial infection. In contrast, DC that were
pulsed with recombinant MOMP and adoptively transferred into
mice elicited primarily the Th2-associated antibody IgG1 (63).
Furthermore, IL-10 (Th2-associated cytokine) knockout DC
pulsed with UV-inactivated C. trachomatis and adoptively trans-
ferred activated a high frequency of Th1 cells (64). These data have
direct relevance to vaccine development because they indicate that
the types of cytokines produced and antigens processed by DC and
presented to CD4™" T cells mediate the Th1/Th2 balance during a
chlamydial infection. There is also evidence that live Chlamydia is
required for an optimal and protective immune response. Rey-
Ladino and colleagues demonstrated that protection mediated by
DC pulsed with UV-inactivated C. trachomatis and adoptively
transferred into mice was significantly less than that in mice that
were challenged with live EB-pulsed DC (65). A more recent study
discovered that murine DC incubated with live C. muridarum
presented many more peptides on their MHC class II molecules
than DC that were incubated with dead EBs (66). However, C.
trachomatis is able to limit MHC class I/II expression in APC (67).
C. trachomatis has been shown to inhibit MHC molecules by de-
grading the MHC class I transcription factor REX-5 and the MHC
class II transcription factor USF-1 by secreting chlamydial pro-
tease-activating factor (CPAF) into the cytosol (68-71). DC are
important for vaccine research because they are the critical links
between innate and adaptive immunity. Two recent studies, using
C. trachomatis MOMP transfected into DC (72) and DC that were
incubated with recombinant CPAF (rCPAF) in vitro (73), illus-
trate the ability of DC to induce protective immunity against gen-
ital C. trachomatis and C. muridarum challenges, respectively.

T Cells

The involvement of T cells in chlamydial immunity was demon-
strated almost 30 years ago, when Rank et al. observed that athy-
mic nude mice established chronic infection with C. muridarum
after intravaginal inoculation, but wild-type controls were able to
eliminate the infection within 20 days (74). In human and mouse
models, CD4™ as well as CD8™ T cells are able to be detected at the
site of C. trachomatis infection (75-78). T cells are unable to rec-
ognize pathogens or antigens without the help of APC. APC such
as DC and M are able to phagocytose chlamydial EBs in the
extracellular space or engulf infected cells harboring RBs. After
phagocytosis, APC degrade chlamydial components and present
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the peptides via MHC class I/II-antigen complexes. CD4™" T cells
recognize antigens that are presented on MHC class II, and CD8 ™"
T cells are activated by MHC class I-antigen complexes. In fact,
both T cell subsets have been shown to recognize C. trachomatis
antigens, such as outer membrane protein 2 (Omp2) (79), poly-
morphic outer membrane protein D (POMP-D) (80), MOMP
(81-83), heat shock protein 60 (hsp60) (81, 84), chlamydial pro-
tease activating factor (CPAF) (73), PmpG, PmpF, and RplIF (77,
85). Although Chlamydia is able to induce a Th2-associated re-
sponse by inducing IL-4 and IgG1 production, a Thl response
predominates. This response is characterized by the production of
IL-12 by APC (86) and the subsequent activation of IFN-y-pro-
ducing T cells and plasma B cells that secrete Th1-associated an-
tibodies, such as IgG2a and IgG3 (87, 88). However, a recent study
demonstrated that previously C. trachomatis-sensitized human
CD4" T cells that were restimulated ex vivo with inactivated (-
irradiated) EBs secreted significantly more IL-4 than tumor
necrosis factor alpha (TNF-a) and IFN-y. This study suggests that
the type of immune response (Th1 versus Th2) to C. trachomatis
may be tissue specific (89).

While there is ample evidence that CD4 ™ T cells play an integral
partin C. muridarum and C. trachomatis infection resolution (90—
93), the role for CD8" T cells has been controversial. Indeed,
CD8™ T cells are known to migrate to the infection site, and
both human and mouse CD8™ T cells have been shown to
destroy cells that have been infected with Chlamydia (94). A
recent study by Murthy and colleagues showed that wt and CD8™"
T knockout mice displayed similar clearances of C. muridarum
following vaginal chlamydial challenge (95). These data support
previous studies demonstrating that CD8* T cells are not critical
for C. trachomatis clearance (45, 59, 96). Furthermore, compared
to wt mice, CD8™ T cell-deficient mice demonstrated less hydro-
salpinx, implicating CD8™ T cells in chlamydia-induced pathol-
ogy (95). A study conducted by Ibana et al. showed that most of
the cervical CD8™" T cell populations before and after a C. tracho-
matis infection do not express the cytolytic protein perforin (97).
Therefore, the lack of perforin in endocervix CD8* T cells may
explain why CD8™ T cells are not critical for genital chlamydial
infection resolution. Although CD8" T cells are not critical for
chlamydial elimination and may even contribute to chlamydial
sequelae, they nonetheless may play a contributory, albeit second-
ary, role by regulating other cells and by their own production of
IEN-y (94).

B Cells and Antibodies

Previous studies demonstrated that in humans, Chlamydia-spe-
cific antibodies play a role in C. trachomatis protective immunity
(98, 99), and numerous C. trachomatis proteins have been shown
to induce antigen-specific antibodies (91). However, even though
anti-Chlamydia antibodies are able to neutralize infection in vitro
(100, 101), growing evidence shows that B cells may not be impor-
tant for initial chlamydial infection but, instead, play an impor-
tant role in the secondary memory response (102, 103). Several
possible mechanisms by which B cells modulate immunity during
reinfection include antibody-mediated neutralization and op-
sonization (100) and antibody-dependent cellular cytotoxicity
(ADCC) (a mechanism of cell-mediated immune defense
whereby cells that have antibodies attached to their surfaces are
targeted for lysis) (104). Another mechanism is the formation of
antigen-antibody complexes that bind Fc receptors on APC,
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which then enhance phagocytosis and antigen presentation to
CD4™ T cells (105). A recent study suggests that in humans, anti-
bodies may be more specific for certain chlamydial serovars. Ver-
weij and colleagues demonstrated that in serum samples from 235
C. trachomatis-positive patients, anti-IgG titers specific for C. tra-
chomatis serogroup B (serovars B, Ba, D, Da, E, L1, L2, and L2a)
were significantly higher than titers specific for serogroup C (se-
rovars A, C, H, [, Ia, ], K, and L3) and serogroup I (serovars F, G,
and Ga) (106).

Heat shock proteins (hsp’s) are proteins that influence the cor-
rect folding and unfolding of intracellular proteins. C. trachomatis
is known to secrete hsp’s during an infection, and antigenic
epitopes from bacterial hsp’s have proven to be strong inducers of
cellular and humoral immunity. Chlamydial and human hsp60
proteins are extremely similar, with four defined epitopes having
70% homology and virtually identical amino acid sequences
(107). Several studies have suggested that autoimmunity to hu-
man hsp60 is a result of cross-reactivity after a chlamydial infec-
tion (108, 109). However, a study conducted by Hjelholt and col-
leagues did not find a correlation between tubal infertility and
antibodies specific for human hsp60 in C. trachomatis infections,
even though the patients produced antibodies against MOMP and
chlamydial hsp60 (110).

IFN-vy

Production of IFN-v in response to Chlamydia infection is critical
for inhibiting chlamydial growth (17). IFN-vy can affect the sur-
vival of Chlamydia by several mechanisms. IFN-y is able to en-
hance the phagocytic capabilities of Md (111) and may promote
the engulfment and elimination of Chlamydia trachomatis (112).
Iron has been shown to be important for Chlamydia survival
(113). IFN-y downregulation of the transferrin receptor (114),
which is needed for the import of iron into the cell, may also
inhibit Chlamydia growth by limiting the available iron to the
bacterium. In fact, IFN-vy has been shown to limit iron availability
in M¢ infected with Salmonella (115). Most Chlamydia species
require tryptophan for survival (116). IFN-y induces the expres-
sion of the cellular tryptophan-decyclizing enzyme indoleamine-
2,3-dioxygenase (IDO), which degrades tryptophan. The lack of
this essential amino acid has also been shown to cause Chlamydia
trachomatis death through tryptophan starvation (35). However,
there are chlamydial species that have adapted to tryptophan star-
vation by transforming into nonreplicating but viable persistent
forms. After IFN-y removal and subsequent tryptophan produc-
tion, these persistent forms quickly differentiate into infectious
elementary bodies. Furthermore, a recent study by Zhang and
colleagues demonstrated that IFN-y and IL-17A synergistically
inhibit Chlamydia muridarum replication by inducing intracellu-
lar iNOS and NO production (117).

In conclusion, cell-mediated immunity that activates M, NK
cells, NK T cells, neutrophils, and mediators such as IL-12 and
IFN-vy is required for initial clearance. However, for protective
immunity, both cell-mediated immunity and humoral immunity
are needed, including antigen-specific T cells and antibodies that
enhance phagocytosis and subsequent degradation and presenta-
tion of bacterial components by DC for a rapid Thl-mediated
immune response. Table 1 summarizes recent developments in
chlamydial research, including Chlamydia strains and antigens
used, cell types affected, and immune responses elicited.
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ANIMAL MODELS

Mouse

The most commonly used animal in chlamydial research is the
mouse. There are several advantages in using mice to investigate
chlamydial genital infections, including availability of transgenic
mouse strains, small size, low cost, and availability of mouse-spe-
cific reagents. C. muridarum is utilized for genital studies, because
C. muridarum intravaginal infection closely mimics acute C. tra-
chomatis infection in women. Moreover, it can cause hydrosal-
pinx, fibrosis, infertility, and abortion in mice (118-121). C. mu-
ridarum genital infection is usually resolved in 3 to 4 weeks, and
the mice are partially protected against subsequent reinfections
(122, 123). C. trachomatis is also used, but the infection in mice is
less severe and is resolved more quickly than C. muridarum infec-
tion. Additionally, a mouse C. trachomatis infection requires a
larger number of infectious units (118) and usually causes pathol-
ogy only when injected directly into the uterus, uterine horn, or
ovarian bursa (92, 124). However, C. trachomatis genital infection
in women is mostly asymptomatic and often does not induce se-
vere upper tract genital pathology. Thus, as Lyons et al. have ar-
gued (125), C. trachomatis is an appropriate model for studying
chlamydial urogenital infections in mice.

Pigtailed Macaque

Although several nonhuman primate models have been used in
Chlamydia research, including the grivet monkey (126), marmo-
set (127), and baboon (128), the pigtailed macaque is utilized
most frequently for genital research. Indeed, it is naturally infected
with C. trachomatis human biovars, and the female anatomy,
menstrual cycle, and vaginal microflora are akin to those in hu-
mans (129). In fact, repeated C. trachomatis infection of macaque
fallopian tubes has been shown to induce a pathology similar to
that of pelvic inflammatory disease in women (130). Immune re-
sponses include Th1-skewed cytokine production after initial in-
oculation and systemic and local humoral responses. However,
unlike the case in mice, where CD4" T cells are the dominant T
cell subset, CD8™" T cells predominate in macaques after chlamyd-
ial infection (118). Although the macaque model is ideal for vac-
cine and immunology studies, the high cost and need for adequate
facilities and expertise limit its use.

Guinea Pig

Guinea pigs are naturally infected with C. caviae. Advantages of
this model include the ability to study chlamydial sexual transmis-
sion (male guinea pigs are able to be infected with Chlamydia)
(131), the transmission of Chlamydia to newborns, and the fact
that guinea pig genital tract infection is similar to that by C. tra-
chomatis in humans. Additionally, the guinea pig is a good model
for hormonal research because humans and guinea pigs have
comparable estrous cycles (118, 132, 133). Studies have indicated
that CD8" T cell genital infiltrates after infection are similar to
those of humans and nonhuman primates (134, 135). In contrast
to the case in mice, antibodies have been implicated in the resolu-
tion of primary infection in chlamydia-infected guinea pigs (118).

Pig
In addition to the mouse, guinea pig, and nonhuman primate

models, the pig has also been used for chlamydial studies. Pig and
human female reproductive tracts are very similar (136), and
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TABLE 1 Summary of recent developments in Chlamydia research

Cell type

Chlamydia species or antigen

Immune response

Reference(s)

Human neutrophil

Mouse neutrophil

Human neutrophil
Guinea pig neutrophil

Mouse NK cell

Human NK cell
Human NK cell line

Mouse NK cell

Mouse NK T cell

Mouse M cell line (J774)
and human M¢

Mouse (RAW) and human
(THP-1) M¢ cell lines

Human Md

Mouse BMDC

C. trachomatis

C. psittaci and C. trachomatis

C. muridarum

C. pneumoniae

C. caviae

C. muridarum

C. trachomatis
C. trachomatis

C. muridarum

C. muridarum
C. pneumoniae

C. muridarum

C. muridarum

C. trachomatis
C. trachomatis
C. trachomatis

C. muridarum

rMOMP

C. trachomatis

C. muridarum

Neutrophils incubated with Chlamydia in vitro were able to decrease viable
bacterial count by 3 log after 60 min.

C. psittaci and C. trachomatis cultured with complement or antibody induced
neutrophil chemotaxis, whereas reticulate bodies alone did not.

Neutrophil phagocytosis of C. psittaci and C. trachomatis was antibody and
complement independent.

Neutrophil-depleted mice had a 10-fold greater chlamydial burden in the female
genital tract than neutrophil-competent mice.

Both wt and neutrophil-depleted mice were able to eliminate C. muridarum within
the same time frame.

C. pneumoniae delayed neutrophil apoptosis in vitro.
Chlamydia-infected neutrophil-depleted animals exhibited reduced ocular
pathology and decreased T cells in infected conjunctivae.

Chlamydia induced IFN-y-producing NK cells at the site of infection within 12-24
h after vaginal challenge.

Mice depleted of NK cells and inoculated intravaginally with C. muridarum had a
significant increase in Th2-associated IgG1 antibody, whereas Th1-associated
IgG2a was the dominant antibody in nondepleted mice.

C. trachomatis induced human NK cells to secrete IFN-y in vitro.
IL-18 and IL-12 from epithelial cells and DC, respectively, that were incubated with
C. trachomatis stimulated NK cell IFN-y production.

DC from intranasally C. muridarum-infected, NK cell-depleted mice produced
lower levels of IL-12 and a reduced capacity to stimulate CD4™ T cells in vitro.
DC from NK cell-deficient mice that were adoptively transferred failed to induce a

Thl-mediated immune response after intranasal challenge with C. muridarum.

NK cells from NK T cell KO and CD1d antibody-blocked mice had decreased IFN-
«y production and proliferation in a C. muridarum lung infection.

NK T cells promote proliferation, CD40 upregulation, and production of IL-12 in a
DC subset (CD8a™) in C. pneumoniae respiratory tract infection.

Infected CD1d-deficient mice were less susceptible to weight loss and had less
severe pathology, lower bacterial burdens, lower IL-4 levels, and lower IgE titers
than wild-type mice.

Wild-type mice that were stimulated with a known NK T cell ligand (a-GalCer)
had induced C. muridarum growth and increased IL-4 and IgE levels.

Pretreatment with a-GalCer in C. muridarum genital infection reduced bacterial
burdens, decreased pathology, and increased the Th1-associated cytokines IFN-vy
and IL-12 in both lymph nodes and genital tissues compared with the case in
non-a-GalCer-pretreated mice.

Live and inactivated Chlamydia induced elevated IL-8, IL-13, TNF-, and IL-6.
Live Chlamydia induced autophagy.
Live-Chlamydia-infected M¢ induced T cell apoptosis.

DC pulsed with UV-inactivated Chlamydia in vitro secreted elevated levels of IL-12.

DC pulsed with UV-inactivated Chlamydia and adoptively transferred into naive
mice induced strong protection against live chlamydial lung infection.

IL-127/~ DC failed to induce Th1-dominant response and did not induce strong
protection against chlamydial infection.

DC pulsed with rMOMP secreted IL-12 and induced infection-sensitized CD4" T
cells to secrete IFN-y.

DC pulsed with rMOMP and adoptively transferred into naive mice generated a
Th2 anti-MOMP immune response.

IL-10~/~ DC pulsed with UV-inactivated Chlamydia caused early DC maturation
and activation and an increased ability to process and present antigens and
enhanced the rate of Th1 activation.

DC incubated with UV-inactivated Chlamydia expressed low levels of CD40 and
CD80, secreted low levels of proinflammatory cytokines, and exhibited reduced
recognition by Chlamydia-specific CD4™" T cells.

Adoptive transfer of live-EB-pulsed DC was more effective than UV-inactivated
Chlamydia at protecting mice against a live intranasal chlamydial challenge.
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TABLE 1 (Continued)

Cell type

Chlamydia species or antigen

Immune response

Reference(s)

Mouse T cell

Mouse CD4™" T cell

Human CD4 " T cell
Mouse CD8" T cell
Human CD8" T cell

Human B cell/antibody

Mouse B cell/antibody

C. muridarum

Recombinant adenovirus carrying
C. trachomatis MOMP

UV-inactivated C. muridarum
plus CpG or rCPAF plus CpG

C. muridarum

C. trachomatis T cell antigens plus
AbISCO-100

C. muridarum MOMP plus CpG
and Montanide ISA

C. trachomatis

C. muridarum

C. trachomatis
C. muridarum

C. trachomatis

Recombinant outer membrane
vesicles carrying C. muridarum
HtrA, C. muridarum MOMP,
or a monoclonal antibody
(MAD)

rCPAF plus CpG

DC pulsed with live EBs presented 45 MHC class IT C. muridarum peptides
mapping to 13 proteins. In contrast, DC pulsed with heat- or UV-inactivated
Chlamydia presented only 6 MHC class II chlamydial peptides mapping to 3
proteins.

Only two epitopes were shared in common between live and inactivated C.
muridarum.

DC exhibited increased CD80, MHC class II, and IL-12 and were able to stimulate
CD4™" T cell proliferation and IFN-y.

Adoptively transferred MOMP-transfected DC generated Th1-biased cytokine
production and mucosal IgA and protected mice against chlamydial genital tract
infection.

DC pulsed with rCPAF plus CpG exhibited increased CD86, CD80, CD40, MHC
class II, and IL-12 but not IL-10 and IL-4.

Mice adoptively immunized with rCPAF-plus-CpG- or UV-inactivated C.
muridarum-plus-CpG-pulsed DC produced elevated IFN-v, IgG1, and IgG2a
and exhibited reduced Chlamydia shedding and reduced oviduct pathology
compared to infected mock-immunized mice.

Athymic nude mice established chronic genital tract infection, whereas wild-type
mice resolved infection in 20 days.

A potent CD8™ T cell response, polyfunctional Th1-polarized CD4™ T cell
responses (IFN-y, TNF-a, and IL-2), and a high protein-specific Th1-skewed
antibody response (IgG2c) were observed.

Adoptive transfer of CD4" T cells and CD8™ T cells to naive nonimmunized mice
protected against C. trachomatis vaginal challenge, whereas passive transfer of
immune sera did not.

Vaccinated mice were depleted of CD4™ and CD8™" T cells and challenged vaginally
with live C. muridarum. Depletion of CD4™ T cells, but not CD8™ T cells,
diminished vaccine-induced protection.

Genital tract C. trachomatis infection stimulated the activation and memory
development of C. trachomatis-specific CD4™ T cells.

CD4™" T cells are necessary to confer protection against C. trachomatis infection.

CD4™ T cell clone-induced epithelial NO production was critical for controlling
replication.

Most potent CD4™" T cell clones were dependent on T cell degranulation for
chlamydial replication control.

CD4™ T cells from women with genital tract infection that were pulsed ex vivo with
EBs secreted significantly more IL-4 than TNF-a and IFN-y

TNF-a from CD8™ T cells contributed significantly to oviduct pathological
sequelae, but not bacterial clearance, following genital chlamydial challenge.

Endocervix effector memory CD8™ T cells from C. trachomatis-infected women
expressed low perforin levels.

A total of 21 antibody-inducing antigens were identified from C. trachomatis-
infected patient sera.

Mice immunized with outer membrane vesicles carrying HtrA induced specific
anti-HtrA antibodies that neutralized C. muridarum infectivity in vitro.

Passive immunization with sera from C. muridarum-infected mice conferred a
marked level of protection from C. muridarum genital reinfection and shortened
the time of infection.

MOMP MADbs conferred significant level of immunity to reinfection and reduced
shedding.

Wild-type and B cell-deficient (umT) mice vaccinated intranasally with rCPAF
plus CpG and challenged vaginally with live C. muridarum demonstrated
comparable clearances and similar reductions in pathology.

66

72

73

74

234

92

93

89

95

97

91

100

102

103

studies indicate that the immune systems of humans and pigs are
much more related than those of mice and humans (118). Pigs are
naturally infected with C. abortus and C. suis, but C. pecorum, C.
psittaci, and C. trachomatis are also able to infect pigs (118, 137).
However, although C. suis is highly related to C. trachomatis and is
anatural pig pathogen, C. suis does not induce tubal infertility and
PID. Therefore, it is difficult to use this species as a model for
investigating human C. trachomatis urogenital pathology (118).
Nevertheless, Schautteet and colleagues have used the pig model
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to investigate recombinant protein-based and DNA-based vac-
cine candidates. These investigations demonstrated that both
rPmpG and C. trachomatis DNA vaccines provided significant
protection against C. trachomatis vaginal challenge. DNA mucosal
immunization provided superior protection compared to that in
pigs immunized intradermally (138-140), demonstrating the im-
portance of vaccination routes.

Although animal models are extremely useful and necessary for
understanding the complex nature of chlamydial infection and
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TABLE 2 Advantages, disadvantages, and chlamydial protective immunity of different animal models

Species Advantages Disadvantages Protective immunity Reference(s)

Mouse Small size, availability of reagents, C. muridarum does not infect C. muridarum primary genital tract 118
low cost humans; C. trachomatis infects infection resolves in 3—4 weeks;

mice only at high doses; it is primary C. muridarum infection

difficult to extrapolate C. partially protects against

muridarum and C. trachomatis to reinfection; durations are

human correlates. shorter and bacterial loads are
lower in C. muridarum-
reinfected mice; C. trachomatis
genital infection is milder and
shorter than C. muridarum
infection.

Guinea pig Ability to study sexual transmission Limited guinea pig-specific reagents Primary genital infection with C. 123,132
(female to male) and caviae is resolved in 3—4 weeks;
transmission to newborns; good partial immunity remains for
model for hormonal research roughly 50% of the animals’ life
(estrous cycle similar to that in span.
women); genital infection with
C. caviae closely resembles C.
trachomatis infection in women

Pig Reproductive organs and immune Expensive, complicated to work C. trachomatis shedding has been 132
system are closely related to with, lack of reagents documented for up to 21 days.
those of humans; naturally
infected with C. suis, which is
closely related to C. trachomatis

Nonhuman primates Female anatomy, menstrual cycle, Expensive, need for special facilities, Secondary cervical challenge with 141

and microflora similar to those
in women; naturally infected
with C. trachomatis

(pigtailed
macaque)

need for expertise

C. trachomatis after initial
resolution resulted in either no
infection or a shorter and less
severe infection.

pathology, comparing data from different animal models can be
difficult. C. muridarum-infected mice and genitally C. cavige-in-
fected guinea pigs are characterized by infections that last roughly
3 to 4 weeks (132). However, pigtailed macaque genital C. tracho-
matis infections are longer and more persistent, with bacterial
shedding still occurring after 4 months (132, 141). In comparison,
human studies suggest that after 1 year of untreated genital infec-
tions, half of C. trachomatis infections still persist (142, 143). Ex-
trapolating data from animal studies and comparing the results to
human correlates are difficult because of limited data on un-
treated human subjects with chlamydial infections. Nevertheless,
there are data indicating that although humans are able to spon-
taneously clear chlamydial infection without antibiotic interven-
tion, the time frame of such clearance can span several months to
years, and the resolution appears to be more robust in older indi-
viduals (142, 144). Additionally, epidemiological data indicate
that the longer an individual is infected with Chlamydia, the
greater are the chances of clearance (142, 144). Finally, a major
limitation in comparing animal models of chlamydial genital in-
fection to human C. trachomatis urogenital infection is that the
actual amounts of Chlamydia inoculated during sexual inter-
course in humans are not known, so it is impossible to approxi-
mate similar doses in animal models. Table 2 summarizes the
main advantages, disadvantages, and protection in the various
animal models discussed above.

VACCINES

Due to increasing rates of mainly asymptomatic C. trachomatis
infections worldwide and the adverse long-term consequences re-
sulting from these infections (ectopic pregnancy, infertility, and
preterm birth), developing an antichlamydial vaccine is of para-
mount importance. However, a human vaccine that elicits both T

April 2014 Volume 27 Number 2

cell and B cell immunity has been elusive. Lack of knowledge of
female genital tract immunity, which is highly regulated by sex
hormones during the menstrual cycle (145), a dearth of adjuvants
that not only optimize the immune response to Chlamydia anti-
gens but also can target the vaccine-specific immune responses at
the infection site, and a limited understanding of the mechanisms
by which chlamydial antigens induce protective immunity hinder
human C. trachomatis vaccine development. A potential C. tracho-
matis vaccine ideally will induce both mucosal and systemic im-
mune responses, but autoimmune cross-reactions with human
antigens and unregulated inflammation that causes pathology
must be avoided. Table 3 summarizes recent chlamydial antigens,
delivery systems, routes of vaccination and infection, and the sub-
sequent immune responses elicited.

Intact Organisms

Successful vaccines against ovine enzootic abortions have been
available for many years (146). These vaccines consist of either live
or inactivated C. abortis strains and provide proof of principle that
a successful vaccine against Chlamydia is possible in mammals.
However, these vaccines are not able to protect against infection,
and the vaccines were not designed for use in humans (147, 148).
Nonetheless, because of the success of these vaccines, live C. tra-
chomatis bacteria were used as the first human Chlamydia vaccines
(149). The first vaccines focused mainly on trachoma rather than
genital C. trachomatis infection, with results ranging from limited
and short-lived protection to considerable protection against in-
fection and pathology (150, 151). However, some individuals who
were challenged with Chlamydia trachomatis developed a patho-
logical response that was worse than that in those who did not
receive the vaccine. Notably, Grayston and colleagues vaccinated
Taiwanese children at risk for trachoma with formalin-inactivated
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C. trachomatis and followed their progress for 3 years. Although
the children that received the inactivated chlamydial vaccine ex-
hibited partial protection compared to nonimmunized controls, a
significant proportion of the immunized individuals developed
enhanced disease, ostensibly as a result of delayed-type hypersen-
sitivity after chlamydial infection (152). A vaccine study using two
different preparations of live C. trachomatis demonstrated short-
lived and modest protection in Gambian children. However, sim-
ilar to the case in the Taiwanese study, some individuals developed
more severe disease after infection (153). Vaccines with live or-
ganisms are generally considered optimal because they contain
virtually all of the antigenic determinants in the correct three-
dimensional conformation. However, using live organisms for
vaccines has drawbacks, as growing and purifying Chlamydia on a
large scale are extremely complex. Moreover, these vaccines need
cold storage, and even more importantly, there is the potential for
avirulent strains to revert back to infectious wild-type strains
(154).

Because of the safety issues of live vaccines, research switched to
organisms that were heat or chemically inactivated. The major
disadvantages of these types of vaccines are the absence of replica-
tion and a suboptimal immune response, necessitating the need
for revaccination and adjuvants. Heat or chemical bacterial inac-
tivation may also release unwanted and detrimental components,
which can have deleterious effects or degrade protein antigenic
determinants, thereby reducing the degree of protection. Re-
cently, plasmid-deficient Chlamydia strains have been used in vac-
cine research, with conflicting results. O’Connell et al. demon-
strated that a strain of C. muridarum (Nigg) which lacks a plasmid
and is defective in the ability to accumulate glycogen did not cause
inflammatory pathology in mice. Furthermore, the plasmid-defi-
cient bacterium protected mice against a secondary infection with
plasmid-competent virulent C. muridarum (87). However, a dif-
ferent group demonstrated that mice vaccinated with an attenu-
ated plasmidless C. trachomatis strain (L2R) were not protected
from colonization and inflammatory pathology after a secondary
challenge with wild-type C. trachomatis, although there were re-
ductions in infectious burdens at early time points (88).

Subunit Antigenic Determinants

Another vaccine strategy utilized is the administration of purified
antigenic determinants known to elicit an immune response. Sub-
unit vaccines are safer than attenuated or heat- or chemically in-
activated organisms because they are unable to cause infection and
because virulent components that may cause pathology can be
avoided. One of the most well-studied vaccine candidates for C.
trachomatis is MOMP. This membrane protein contains several
conserved CD4™ T, CD8" T, and B cell epitopes (155). An early
study conducted by Pal and colleagues demonstrated that C. mu-
ridarum COMP (chlamydial outer membrane complex), a chla-
mydial outer membrane with a cysteine-cross-linked protein
shell, significantly protected mice against genital challenge,
whereas MOMP did not (156). Several years later, the same group
administered a different preparation of C. muridarum MOMP
along with Freund’s adjuvant. This new, purified-and-refolded
MOMP-Freund’s adjuvant preparation significantly reduced bac-
terial burdens after a chlamydial genital challenge, demonstrating
the importance of adjuvants and a correct MOMP configuration
in eliciting a protective immune response (157). Tifrea et al. dis-
covered that a polymer that keeps membrane proteins soluble
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(Amphipol) in aqueous solution was able to stabilize MOMP
(158). Another group immunized mice with a C. trachomatis
MOMP-ISCOM vaccine. ISCOM (immune-stimulating com-
plex), which is composed mainly of cholesterol, phospholipids,
and saponin, is known to induce both cell-mediated and antibody
responses when used as an adjuvant. Inoculation with MOMP-
ISCOM was able to elicit a Thl antigen-specific response, and
vaginal infection was cleared within 1 week (159). A C. muridarum
native MOMP preparation combined with an adjuvant consisting
of the subunit B cholera toxin conjugated to CpG (CTB-CpG)
induced significant cell-mediated and antigen-specific antibody
responses against intranasal infection with C. muridarum (160). A
nonhuman primate model was used to demonstrate the efficacy of
a vaccine formulated with native MOMP. Rhesus macaques that
were immunized intramuscularly and subcutaneously along with
the adjuvants CpG-2395 and Montanide ISA 720 produced high
levels of Th1 cytokines (IFN-y and TNF-a) and C. trachomatis-
specific IgG and IgA (161). Drawbacks of subunit vaccines include
the facts that extracting, refolding, and purifying protein com-
plexes such as MOMP are very expensive and that purifications are
not standardized, so differences in extraction methods may influ-
ence the conformation of the protein epitopes and the vaccine
efficacy. The advent of protein arrays has aided in the identifica-
tion of potential immunodominant antigen vaccine candidates.
Cruz-Fisher et al. designed a protein chip array that was incubated
with sera from mice that were infected with C. muridarum (162).
From a total of 909 proteins, 71 were recognized by the array.
Another array using sera from C. trachomatis-infected women
recognized over 700 chlamydial proteins (163).

Recombinant Proteins

The advent of recombinant DNA technology has made it possible
to produce large quantities of bacterial proteins. Thus, different
attempts have been made to use rMOMP in C. trachomatis vac-
cines. Unfortunately, producing rMOMP with its native confor-
mational epitopes intact on a large scale is challenging, and full-
length rMOMP is toxic in some expression systems (164, 165).
Evidence suggests that differences in MOMP conformation may
affect its ability to act as a vaccine. In 2009, a comparison of vac-
cines using native or recombinant MOMP demonstrated that nat-
ural MOMP was superior than rMOMP in its ability to protect
against chlamydial challenge (166). However, other studies using
rMOMP with and without adjuvants demonstrated protection
against Chlamydia (167, 168). In 2011, Kalbina and colleagues
designed a chimeric construct containing genes that correlate with
two different MOMP regions and introduced the construct into a
bacterium (Escherichia coli) and two plants (Arabidopsis thaliana
and Daucus carota). The stable integration of the transgene was
demonstrated in A. thaliana and D. carota plants over several gen-
erations. The rIMOMP purified from E. coli was used to produce
antibodies in rabbits, and these antibodies recognized the proteins
in E. coli, A. thaliana, D. carota, and C. trachomatis. The stability of
the construct in the offspring plants suggests that this system may
be useful for large-scale production of rMOMP (169).
Recombinant proteins other than MOMP have also been shown
to be potential vaccine candidates. In 2007, Murphy and col-
leagues investigated the potential of rCPAF to induce an immune
response that would resolve chlamydial infection. Mice immu-
nized intranasally with rCPAF and IL-12 (a Thl cytokine) dem-
onstrated increased IFN-vy production and minimal IL-4 (a Th2
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cytokine) production and elevated IgG2a (Th1) and IgA (muco-
sal) antibody levels, displayed markedly reduced bacterial burdens
upon C. muridarum genital inoculation, and were protected
against pathological consequences of Chlamydia infection com-
pared with mock-immunized mice (170). The same group dem-
onstrated that rCPAF intranasal vaccination may prevent infertil-
ity from repeated genital C. muridarum infections in mice (171).
Mice immunized with recombinant chlamydial glycogen phos-
phorylase (GlgP) and intravaginally challenged with live C. muri-
darum elicited Th1 immunity that included antichlamydial anti-
bodies and reduced hydrosalpinx severity. Additionally, mice that
were immunized with GlgP demonstrated less shedding on day 14
post-vaginal challenge (172). Olsen et al. utilized two recombi-
nant proteins in a subunit chlamydial vaccine. The fusion protein
CTHI1 consisted of CT443 (OmcB), which has been shown to elicit
cell-mediated and antibody responses, and CT521 (rl 16), a pro-
tein known to be a target during chlamydial infection in humans.
Immunization with CTH1 along with the strong Thl-inducing
adjuvant CAFO01 elicited TNF-«, IL-2, and IFN-vy production
from T cells, as well as large amounts of both Th1 (IgG2a) and Th2
(IgG1) CTH1-specific antibodies. The vaccine significantly re-
duced bacterial burdens after vaginal infections with live C. tra-
chomatis and C. muridarum (173). Lu and colleagues screened 5
recombinant chlamydial antigens that were previously found to
react with sera from intravaginally C. muridarum-infected mice as
chlamydial vaccine candidates. Only Mip (macrophage inflam-
matory protein) induced pronounced protection, which was
characterized by a Thl-dominant T cell response and anti-Mip
antibodies (174).

Plasmid DNA

DNA vaccines work by injecting a plasmid that carries a specific
gene of interest within the host. The product of the gene can then
be expressed by inducing an immune response. DNA vaccines
have several advantages compared with other vaccination strate-
gies. DNA is easy to purify, and plasmids can be constructed rel-
atively quickly (175). Additionally, DNA vaccines can encode
multiple epitopes that are in the native three-dimensional config-
uration and avoid the problem associated with attenuated organ-
isms which are able to revert back to virulent forms. However, as
with other vaccine strategies, DNA vaccines have some disadvan-
tages. In autoimmune diseases such as lupus, anti-DNA antibod-
iesare produced, and introduction of a DNA plasmid into the host
may result in autoimmunity. Also, because DNA encodes pro-
teins, DNA vaccines are generally used for protein-based antigens
(176). In 1999, Pal and colleagues immunized mice with a C. tra-
chomatis MOMP DNA vaccine. When the mice were vaginally
challenged with C. trachomatis, the immune response was modest,
and immunized mice were not protected against infection (177).
The following year, Dong-Ji et al. demonstrated that immuniza-
tion with DNA-MOMP and boosting with MOMP-ISCOM con-
ferred more protection against C. trachomatis than that in mice
that were immunized only with MOMP-ISCOM (178). More re-
cently, two studies using a pig model assessed the efficacy of DNA
chlamydial vaccines. Schautteet et al. combined aerosol-vaginal
delivery of a DNA vaccine encoding MOMP coadministered with
DNAs encoding three different adjuvants (granulocyte-macro-
phage colony-stimulating factor [GM-CSF] and E. coli entero-
toxin subunits A and B). Mice immunized with the DNA vaccine
were significantly protected against genital C. trachomatis chal-
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lenge (138). Ou and colleagues, using a pig model, demonstrated
that an OmpA-based DNA vaccine elicited more antigen-specific
IgG antibodies and a larger T cell proliferative response than those
in controls after a vaginal infection with C. abortus (179). A plas-
mid encoding MOMP epitopes inserted into a human papilloma-
virus (HPV) was used to assess the ability of a MOMP DNA
vaccine to protect against vaginal C. trachomatis infection. Immu-
nization elicited a Th1 response characterized by low IL-4 produc-
tion and antibodies against MOMP (180). All of these recent stud-
ies demonstrate the feasibility of DNA-based vaccines, and this
approach thus deserves further study.

OTHER CHLAMYDIAL VACCINES AND DELIVERY SYSTEMS

BGs

Bacterial ghosts (BGs) are bacterium-based empty shells that do
not contain internal components but retain their outer morpho-
logical structure and can be loaded with peptides, drugs, or DNA
(181). In 2007, a vaccine system in which a DNA plasmid that
encoded C. trachomatis MOMP and the porin protein (PorB) in-
serted into a BG was used. Animals that were immunized intra-
muscularly with the DNA-bacterial ghost vaccine completely re-
solved a C. trachomatis genital infection by 2 weeks postinfection.
The inflammatory response was Th1 mediated, characterized by
high levels of IgA and IgG2a (182). More recently, Eko and col-
leagues used a BG that contained PorB and chlamydial polymor-
phic membrane protein D (PmpD) proteins to evaluate its ability
to induce chlamydial immunity. Intramuscular immunization
elicited high levels of Thl-associated IgG2a antibody, mucosa-
associated IgA antibody, and IFN-vy (Thl1) and low levels of IL-5
(Th2) in response to an intravaginal C. muridarum infection
(183).

Biodegradable Polymers

PLGA (poly-p,L-lactide-coglycolide) is an FDA-approved poly-
saccharide that can encapsulate peptides, proteins, or DNA.
PLGAs are efficiently phagocytosed by DC and Md (184, 185),
and PLGA antigens are able to be presented on MHC class I/II
molecules, thus activating CD4" and CD8" T cells (186, 187).
Chitosan is a chitin-derived polysaccharide and has several prop-
erties that make it a useful vaccine delivery system, including its
mucoadhesiveness and enhanced penetration capacity across mu-
cosal barriers (188). Two recent studies using recombinant
MOMP encapsulated in PLGA demonstrated enhanced induction
of Th1 cytokines and cellular and antibody immune responses
(189, 190). Cambridge et al. demonstrated that MOMP was ex-
pressed in the tissues and organs of mice that were intramuscu-
larly injected with chitosan nanoparticles containing recombinant
MOMP DNA (191).

Gas Vesicles

Gas vesicles are gas-containing structures that provide buoyancy
and are found in some bacteria and archaea. These protein struc-
tures are hollow, rigid, and lipid-free and allow diffusion of gases
across the membrane. In fact, gas vesicles from Halobacterium
spp. have been used in vaccine research (192, 193). Gas vesicles are
desirable for use as a delivery system for human vaccines because
they are nontoxic to humans and are able to be phagocytosed
efficiently by APC (194). Furthermore, exogenous bacterial DNAs
that encode particular proteins are able to be inserted into the
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structure, resulting in expression of these proteins on the gas ves-
icle surface (192—194). Studies have shown that in the absence of
adjuvants, Halobacteria gas vesicles that displayed viral peptides
elicited a long-lasting immune response characterized by immu-
nological memory in mice (193). Halobacteria-derived gas vesicles
that were loaded with gene fragments coding for MOMP, OmcB
(outer membrane complex B), and POMP-B (polymorphic outer
membrane B) and expressed on the surface were able to elicit a
Thl cytokine profile in human foreskin fibroblasts in vitro. Fur-
thermore, antibodies specific for the recombinant proteins were
confirmed using sera from Chlamydia-positive patients, suggest-
ing that this could be an effective antigen delivery system for a
Chlamydia vaccine (192).

ADJUVANTS

Live attenuated or intact inactivated whole-organism vaccines
usually do not require additional components to induce a robust
immune response. However, vaccines that comprise subunits of
the original organism often induce a suboptimal immune re-
sponse and therefore require substances, termed adjuvants, that
are intended to enhance the immunogenicity of these vaccines.
Natural adjuvants can come from the organism itself, such as Toll-
like receptor (TLR) ligands, or can be endogenous cytokines/
chemokines produced in response to a challenge. The main goal of
artificial or naturally derived adjuvants is to induce immunity that
closely resembles a natural immune response to the intended
pathogen. Therefore, identifying adjuvants that elicit a protective
immune response in vivo is going to be one of the main challenges
for developing an effective chlamydial vaccine. There are several
components that are required for a successful vaccine, including
activation of innate immunity, costimulation of immune cells,
cytokine production, antigen presentation, and immune modula-
tion, and adjuvants can contribute to all of these signals. Even
though various natural and synthetic adjuvants have been utilized
in basic research for over 70 years, only a few adjuvants are cur-
rently licensed for use in human vaccines. These include alum
(aluminum hydroxide), AS04 (monophosphoryl lipid A [MPL]-
alum), AS03 and MF59 (squalene-based adjuvants), and lipo-
somes (195). Some adjuvants bind with the antigen and are used
as delivery systems. Delivery system adjuvants stabilize the antigen
and allow the antigen to be released slowly, thereby contributing
to costimulation of immune cells and possible uptake by antigen-
presenting cells, such as DC. Examples of antigen delivery system
adjuvants include calcium phosphate, tyrosine, liposomes, viro-
somes, emulsions, nanoparticles, ISCOMs, virus-like particles,
and alum (196). However, even though, until recently, alum has
been the only FDA-approved adjuvant, it does not induce IL-12
production, weakly activates DC, and induces a Th2-mediated
antibody response (197, 198). Therefore, it is a poor adjuvant if
the intended outcome is Th1-mediated immunity. Another class
of adjuvants influence the immune response by directly activating
immune cells. These components are recognized as “danger sig-
nals” via receptors, such as TLRs, of innate immune cells. The
subsequent cytokine secretion, internalization, and presentation
of the antigen to CD4 ™" T lymphocytes activate the T cells, which
can then initiate an adaptive immune response. These adjuvants,
termed potentiators, are usually purified bacterial or viral compo-
nents or synthetic molecules that are structurally similar to the
intended natural organism component. Examples of immune po-
tentiators are MPL, MDP (N-acetyl-muramyl-1-alanyl-D-isoglu-
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tamine), CpG, bacterial or viral components, lipopeptides, and
double-stranded RNA (dsRNA) (196).

Numerous adjuvants, such as those mentioned in this review
(e.g., Freund’s adjuvant, ISCOMs, CTB-CpG, CpG, and bacterial
ghosts), have been used in chlamydial vaccine research, with var-
ious results. Recent research has added other new antigen/adju-
vant candidates, with encouraging results. A study by Yu and col-
leagues investigated the ability of liposomes, CpG, alum, and the
squalene water-in-oil emulsion adjuvant Montanide coadminis-
tered with the chlamydial protein PmpG to mediate protective
immunity against C. muridarum. The results demonstrated that
two liposomal adjuvants, DDA-MPL and DDa-TDB, were supe-
rior compared to the other adjuvants. Additionally, protection
against chlamydial infection was better when the liposomal adju-
vant DDA-MPL was administered with 7 different T cell antigens
compared to immunization with just MOMP (199). This high-
lights the various opportunities to further improve vaccine candi-
dates by identifying the optimal epitope-adjuvant combination.

VACCINATION ROUTES

Vaccine efficacy is defined not only by the type of antigen and
adjuvant used but also by the administration route, since lympho-
cytes primed by antigens in vivo are endowed with specialized
homing programs guiding their migration to specific mucosal
sites (200). Once naive T cells are primed in alymph node, a global
switch of their homing program occurs, which enables them,
while trafficking through the blood circulation, to detect chemo-
kines and adhesion molecules which direct them to their tissue
destination. Furthermore, T cell homing to the genital mucosa
involves either a1B1, a4B1 (201), or a4B7/E selectin (202) in
Chlamydia-infected mice. Both systemic and mucosal immuniza-
tion routes have been shown to be able to induce both antibody-
and cell-mediated immune responses in the genital tract, with
intranasal immunization often being more effective (203, 204).
Opverall, mucosal immunization routes were more effective at pre-
venting genital challenges with a variety of pathogens (205-209).

Numerous immunization routes have been used for chlamyd-
ial vaccinations, including oral (210), intranasal (211), intravagi-
nal (139), subcutaneous (212), intramuscular (213), perivaginal
(212), perisacral (212), sublingual (214), and colonic (124) routes.
A study using purified MOMP with a Borrelia surface protein as an
adjuvant demonstrated that in two different mouse strains, intra-
muscular-plus-subcutaneous and perivaginal-plus-perisacral im-
munization elicited high systemic and mucosal serum antibody
titers. In contrast, the mice that received the MOMP-adjuvant
vaccine intranasally were characterized by low serum titers (212).
However, Cunningham et al. showed that intranasal vaccination
with rMOMP resulted in antibodies (IgG and IgA) specific for
MOMP in the genital tract, demonstrating that intranasal admin-
istration may target immunity to the reproductive tract (215).
Several studies comparing the protective abilities of various
vaccination routes demonstrated that combined mucosal and sys-
temic inoculation may be optimal. Ralli-Jain and colleagues dem-
onstrated that a MOMP-adjuvant combined sublingual (muco-
sal), intramuscular (systemic), and subcutaneous (systemic)
vaccination regimen showed the best protection following intra-
nasal C. trachomatis challenge (214). Another group demon-
strated that mice immunized by combined mucosal and systemic
routes with C. muridarum recombinant MOMP plus CpG/Mon-
tanide not only showed the strongest antibody and cell-mediated
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responses after vaginal challenge with C. muridarum but also were
protected against infertility (124).

POSTVACCINATION PROTECTION

Postvaccination protection can vary depending on the antigen,
immunization route, adjuvant, and infection model. Yu and col-
leagues investigated the ability of live versus inactivated Chla-
mydia to protect against a subsequent chlamydial vaginal infec-
tion. In their studies, the mice were immunized with either live or
UV- or heat-inactivated C. muridarum and challenged (at 6 weeks
postvaccination for live EBs or 2 weeks postvaccination for inac-
tivated EBs) with live C. muridarum intravaginally. Mice that were
vaccinated with inactivated Chlamydia exhibited little to no pro-
tection, whereas live-EB-immunized mice had virtually no bacte-
rial titers in cervicovaginal washes at 6 days postchallenge (66).
UV-inactivated bacteria are often alive and have their compo-
nents intact but are unable to replicate (216), whereas heat inac-
tivation kills bacteria and often denatures protein epitopes (217).
Therefore, these results indicate a requirement for replicating bac-
teria that contain nondenatured epitopes in their original confor-
mation to induce protective immunity that significantly reduces
or eliminates bacterial shedding at the site of infection. A guinea
pig-C. psittaci genital model demonstrated the effectiveness of live
chlamydial vaccination and the importance of vaccination routes.
Animals were vaccinated by four different routes (intravenous,
subcutaneous, oral, and ocular) with either live or UV-inactivated
C. psittaci and were challenged intravaginally with live C. psittaci.
All immunized animals exhibited a reduction in genital infection,
except for guinea pigs that received UV-inactivated Chlamydia
orally. Live C. psittaci immunization induced greater resistance to
challenge than that with UV-inactivated C. psittaci immunization,
and all routes of immunization (intravenous versus subcutaneous
versus ocular versus oral) induced similar protective responses
(218). Two studies investigating the use of plasmid-deficient C.
muridarum and C. trachomatis as attenuated live vaccines demon-
strated different results in terms of bacterial burdens and pathol-
ogy in a genital infection model. Mice vaccinated with mutant C.
muridarum strains were protected against oviduct disease but ex-
hibited bacterial burdens similar to those in wild-type C. muri-
darum-vaccinated controls (87). Plasmid-deficient C. trachomatis
(L2)-vaccinated mice were not protected against infection or in-
flammatory disease but exhibited a reduction in infectious burden
1 to 2 weeks after challenge with wild-type C. trachomatis (88).
These results demonstrate the challenges associated with using
different chlamydial strains in mouse models to understand pro-
tective immunity and pathology during Chlamydia infection.
MOMP is one of the most investigated components of Chlamydia
in vaccine research, and depending on the source (DNA, purified
protein, or recombinant protein), preparation, and serovar, it can
have varied results in its efficacy in protection against chlamydial
burden and pathology. Shaw et al. demonstrated that mice intra-
venously receiving rMOMP-pulsed BMDC were not protected
against live genital C. muridarum challenge and had vaginal shed-
ding similar to that of unimmunized control mice (63). In con-
trast, mice immunized intravenously with Ad-MOMP (a recom-
binant adenovirus carrying the C. trachomatis serovar E MOMP
gene)-transfected BMDC exhibited smaller bacterial genital bur-
dens, less pathology, and minimal loss of body weight compared
to controls (72). However, mice vaccinated with MOMP DNA
and challenged intravaginally with C. muridarum demonstrated
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vaginal shedding and fertility rates similar to those for mice vac-
cinated with control plasmids (177). Collectively, these results in-
dicate that the origin of antigen (recombinant MOMP versus a
virus carrying the MOMP gene) and the type of chlamydial strain
(C. muridarumversus C. trachomatis) may significantly affect how
DC present proteins to T cells and modulate protective immunity
and pathology in a chlamydial infection. Pal et al. showed that
mice immunized intramuscularly and subcutaneously with a vor-
texed preparation of native MOMP plus Freund’s adjuvant were
significantly protected against C. muridarum genital challenge in
terms of the number of inclusion-forming units (IFUs) and the
length of time the mice shed viable organisms compared to soni-
cated-MOMP-vaccinated mice (157), indicating that the prepara-
tion of native MOMP is important for its ability to act as a vaccine
antigen. Table 4 summarizes postvaccination protection, includ-
ing animal models, vaccination antigens, and times of postvacci-
nation chlamydial challenge.

Antibiotic intervention studies in Canada, Vietnam, and Africa
have yielded important insights into the development of protec-
tive immunity to Chlamydia in humans. Collectively, the data
suggest that early antibiotic treatment for chlamydial infection
may increase the number of individuals who are susceptible to
reinfection by disrupting the development of adaptive immunity.
Therefore, early antibiotic intervention may paradoxically in-
crease the prevalence of Chlamydia in the population over the long
term. For example, an epidemiological study analyzing C. tracho-
matis urogenital cases discovered that after antibiotic interven-
tion, the incidence of Chlamydia reinfection cases rose by 4.6%
(219). These results have also been observed for trachoma (220,
221).

CHALLENGES FOR A CHLAMYDIAL VACCINE

There are many critical questions that still need to be addressed in
order to develop a chlamydial vaccine in the future. How does this
intracellular bacterium induce pathogenesis in the host? How
does Chlamydia mediate the immune response, and by what
mechanism does Chlamydia induce sequelae during infection?
Why do most patients remain asymptomatic and not develop pa-
thology, whereas others develop severe PID? What type of human
genetic polymorphisms may predispose a given individual to a
chlamydial infection and pathology?

Indeed, regarding genetic susceptibility to chlamydial infec-
tion, two good reviews are available, by Morre et al. and Lal et al.
(222,223). In cases of persistent infection, what are the character-
istics of immunity that allow the infection to persist? We still do
not completely understand the role that antibodies play in chla-
mydial infection and how Th1- versus Th2-mediated immunity is
regulated at different infection sites (especially in the female gen-
ital tract). Furthermore, a better understanding of mucosal im-
munity may allow the development of a more specific vaccine.
What type of chlamydial antigens should be used in a potential
vaccine, and how will the vaccine be prepared and delivered? One
might need to produce the desired vaccine antigen in a heterolo-
gous host, thus bypassing the difficulties of growing an intracellu-
lar bacterium or purifying a specific protein. Because APC differ-
entially modulate immunity to Chlamydia depending on the type
of antigen (i.e., recombinant, native, from viral transfection, or
whole, intact bacteria), antigen origin is important for developing
a vaccine to Chlamydia. The fact that most infected patients re-
main asymptomatic suggests that different strategies of vaccina-
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tion will be needed. Indeed, both preventing the primary acute
infection and curing persistent/chronic infection might be inves-
tigated. What type of immunization route(s) and how many vac-
cinations are optimal? Should mucosal or systemic vaccinations
be utilized separately or in combination? How many vaccinations
should be administered, and what would be the optimal intervals
between vaccinations? In order to enhance or select a specific im-
mune response, novel adjuvants might have to be developed. Al-
though animal experiments cannot replace clinical trials, they are
nonetheless necessary, and deciding which animal model to utilize
is an important factor in understanding and analyzing protective
immunity, pathology, and immunological mechanisms during
chlamydial infection. Thus, there is still much research to be done
on the biology of C. trachomatis and on the pathogenesis of genital
chlamydial infection. Developing a chlamydial vaccine will entail
further research on the antigenicity of chlamydial proteins and on
novel and more effective vaccine delivery systems.

When should individuals be vaccinated? A prophylactic chla-
mydial vaccine should be administered before the infection is nor-
mally acquired, which usually means the early teens, and prefera-
bly before sexual activity. However, the vaccine should be effective
enough to provide protection throughout sexual life and may
need to be readministered throughout the individual’s lifetime to
be optimally effective. Who should be vaccinated? Should only
men or women be vaccinated, or both sexes? A similar debate
occurred when the HPV vaccine Gardasil became available. In
Australia, Gardasil was directly approved for both men and
women in 2006, whereas the U.S. FDA initially approved it only
for women. The reason for approving only women was that the
efficacy studies (phase I1I) were performed in women, and thus no
efficacy was assessed at that time for men (protection against gen-
ital warts). However, because immunity bridging data were avail-
able for both boys and girls, Australia recommended vaccination
for both sexes. Computer simulations have demonstrated that
more than 80% female vaccination would achieve sufficient cov-
erage and would be more cost-effective than vaccinating both
males and females (224, 225). Also, it was calculated that with such
high vaccine coverage, herd immunity would be enough to reduce
HPV circulation (226). Currently, the U.S. Centers for Disease
Control and Prevention (CDC) recommends HPV vaccination
for females aged 11 to 12 years of age, with catch-up vaccination at
13 to 16 years of age, and the HPV vaccine was recently approved
for use in boys and men aged 9 to 26 years to prevent genital warts
(227). If Chlamydia vaccination programs were to be directed
mainly at females, the possible rationale would be because Chla-
mydia-related morbidity and mortality are higher among women
(infertility and ectopic pregnancy). A reason for male inclusion
would be to further decrease Chlamydia trachomatis prevalence in
the population and indirectly improve the protection of women.
Since men and women are equally susceptible to genital chlamyd-
ial infection (228), a Chlamydia trachomatis vaccine for both sexes
should at least be discussed. However, although recent studies
have demonstrated that vaccinating both sexes has a beneficial
impact on Chlamydia-related morbidity, similar to the case with
the HPV vaccine, targeting women is more effective than targeting
men (229). Chlamydia vaccination in groups with the highest risks
of infection should be prioritized (multiple partners, sex workers,
and immunocompromised individuals), independent of gender.
Since a large proportion of HIV-positive homosexual men test
positive for rectal LGV and non-LGV Chlamydia trachomatis
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(230), and since Chlamydia trachomatis is associated with an in-
creased risk of HIV transmission (231), this group would also
benefit from a Chlamydia vaccine. However, a chlamydial vaccine
for these groups would be more for its therapeutic potential than
as a prophylactic measure. Finally, who will pay for the cost of
vaccination to prevent what is mostly a chronic silent infection?
How do we convince decision-makers that the current epidemic
of subfertility due to the silent C. trachomatis outbreak will have
such a huge negative financial impact at the societal level that
vaccine development should now be considered a public health
priority?

CONCLUSIONS

Chlamydial infection is a public health concern worldwide, and a
vaccine that stimulates multiple arms of the adaptive immune
system and avoids immunopathological consequences would be
the best solution for controlling this sexually transmitted disease.
Unfortunately, a partial or fully protective vaccine has yet to be
developed, highlighting the complex nature of the immunobiol-
ogy mounted against this intracellular parasitic bacterium. The
immune response to chlamydial infection is dynamic and involves
cells and mediators from both arms of the host’s immune system.
Clearance of a chlamydial infection requires a coordinated im-
mune response between innate immune cells, such as M, neu-
trophils, NK cells, NK T cells, and DC, and cells important in both
cell-mediated and humoral adaptive responses, such as CD4" T
cells, CD8 " T cells, and B cells. Activation and clonal expansion of
T cells occur through cognate interactions with DC that present
chlamydial antigens on their MHC molecules, and B cells produce
antichlamydial antibodies through interaction with these clonal T
cells. However, persistent infection seems to induce chronic in-
flammation and tissue damage. A shift from Th1 to Th2 immunity
also appears to induce scarring and immunopathology. It is there-
fore essential to understand these immunological dynamics in or-
der to develop a vaccine that is both effective and long-lasting and
does not have the deleterious effects associated with unregulated
inflammation. Further research is needed to identify novel adju-
vants that enhance the immune response and antigens that induce
a protective T cell response and antichlamydial antibodies.

A mathematical model developed by Gray and colleagues dem-
onstrated that a fully protective vaccine administered to adoles-
cents before they are sexually active would be able to significantly
decrease Chlamydia trachomatis infection in 20 years. In addition,
the model predicted that vaccinating 100% of women would have
a greater epidemiological impact than vaccinating both sexes
(229). Unfortunately, there are risks and ethical questions associ-
ated with vaccination programs, as demonstrated by the first
Chlamydia vaccine using a live attenuated bacterium (149). Thus,
research is needed to develop an efficient and safe chlamydial vac-
cine.
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