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Toll-like receptors (TLRs) of the innate immune system are known targets for enhancing vaccine efficacy. We investigated
whether imiquimod, a synthetic TLR7 agonist, can expedite the immune response against influenza virus infection when com-
bined with influenza vaccine. BALB/c mice were immunized intraperitoneally with monovalent A(H1N1)pdm09 vaccine com-
bined with imiquimod (VCI) prior to intranasal inoculation with a lethal dose of mouse-adapted A(H1N1)pdm09 virus. For
mice immunized 3 days before infection, the survival rates were significantly higher in the VCI group (60%, mean survival
time[MST], 11 days) than in the vaccine-alone (30%; MST, 8.8 days), imiquimod-alone (5%; MST, 8.4 days), and phosphate-buff-
ered saline (PBS) (0%; MST, 6.2 days) groups (P < 0.01). In the VCI group, 45 and 35% of the mice survived even when they were
infected 2 days or 1 day after immunization. Virus-specific serum IgM, IgG, and neutralizing antibodies appeared earlier with
higher geometric mean titers in the VCI group than in the control groups. The pulmonary viral load was significantly lower at all
time points postinfection in the VCI, vaccine-alone, and imiquimod-alone groups than in the PBS control group (P < 0.05). The
protection induced by VCI was specific for A(H1N1)pdm09 virus but not for A(H5N1) virus. Since imiquimod combined with
RNase-treated vaccine is as protective as imiquimod combined with untreated vaccine, mechanisms other than TLR7 may oper-
ate in expediting and augmenting immune protection. Moreover, increased gamma interferon mRNA expression and IgG iso-
type switching, which are markers of the Th1 response induced by imiquimod, were not apparent in our mouse model. The
mechanisms of imiquimod-induced immune protection deserve further study.

Influenza vaccination is an effective strategy to prevent both
seasonal and pandemic influenza virus infections and reduce

the risk of influenza-related complications, including myocar-
dial infarction and stroke (1, 2). Several preparations of influ-
enza vaccines are currently available, including the inactivated
influenza whole-virus vaccine, virion-free “split” virus or sub-
unit vaccine, recombinant hemagglutinin (HA) vaccine, and
live attenuated influenza virus vaccine (3). Some vaccines con-
tain an adjuvant such as aluminum salt, AS04, which contains
both alum and monophosphoryl lipid A and MF59 (oil-in-
water emulsion) to enhance efficacy. Nevertheless, meta-anal-
ysis estimated that the overall efficacy of these vaccines is
around 70% (4). Recently, strategies have been employed to
improve vaccine immunogenicity, including vaccination via
the intradermal route (5, 6) and administration of new vaccine
adjuvants by recruiting the functions of the pattern recognition
receptors (PRRs) in the innate immune system. These PRRs
include the Toll-like receptors (TLRs), retinoic acid-inducible
gene-I-like receptors, and NOD-like receptors (7–9). Through
recognition of and binding to pathogen-associated molecular
patterns (PAMPs) conserved in microbes, PRRs could detect
the various invading pathogens. The engagement of PRRs with
PAMPs will immediately activate innate immune responses
against the invading pathogen (10). This efficient activation of
the innate immune response at the initial stage is critical for
subsequent induction of the more effective adaptive immune
response (11–13).

There are at least 10 types of TLRs present in humans (14). The
natural ligand for TLR7 is a single-stranded RNA (ssRNA) molecule
present in the viral genome or produced during viral replication
(15–17). Activation of TLR7 induces antigen-presenting cells such
as dendritic cells through the upregulation of human leukocyte
antigen and costimulatory molecules (18–20). TLR7 signaling also
augments the secretion of proinflammatory cytokines (17, 21).
The role of TLR7 in the induction of the adaptive immune
response has also been demonstrated by enhancing antibody-
producing B cell differentiation (16, 22), facilitating antibody
isotype class switching (13), and increasing long-term B cell
memory (7). TLR7 also plays significant roles in both influ-
enza virus infection and vaccination (19, 21, 23). Inactivated
whole-virus influenza vaccine had better immunogenicity than
split virus and subunit vaccine formulations; this was attrib-
uted to the activation of TLR7 by viral genome RNA present in
the vaccine preparation (16, 24). Augmentation of vaccine im-
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munogenicity by incorporating a synthetic TLR7 agonist has
also been demonstrated in human immunodeficiency virus
(25), human papillomavirus (26), and malaria (27) vaccine
studies. The rationale for using a TLR7 agonist as a vaccine
adjuvant is to trigger the activation and maturation of den-
dritic cells (28, 29), which effectively bridge the innate and
adaptive immune responses.

Because of the frequent antigenic changes in the influenza virus
and the continuous threat of an influenza pandemic and avian influ-
enza viruses (1, 30–32), the development of a timely, antigen-
matched, effective vaccine is a challenging task. The A(H1N1)pdm09
virus spread globally within 2 months because of a lack of immunity
in the general population (33, 34). An immunization strategy that
could induce rapid onset of immunity against imminent infection is

FIG 1 Diagram of the experimental design. PANENZA vaccine with or without imiquimod was administered by intraperitoneal injection 1, 2, or 3 days
prior to virus infection. The date of vaccination was designated day �1, �2, or �3. Day 0 was the day of virus inoculation. At 1, 2, 4, and 6 days after virus
infection, mice from each group were sacrificed for lung and blood sample collection. Survival and body weight after virus infection were observed for 14
days.

FIG 2 Survival rates, body weights, and pulmonary viral titers of infected BALB/c mice. Three days before a viral challenge, mice received an intraperitoneal
injection of imiquimod (50 �g) and PANENZA vaccine (3 �g of HA) in combination (VCI day �3; �), vaccine alone (vaccine day �3; *), imiquimod alone
(imiquimod day �3; Œ), or PBS (PBS day �3; �). On the day of infection, mouse-adapted A(H1N1)pdm09 virus (10 times the mouse LD50) was inoculated
intranasally. Survival (A) and body weight (B) were monitored for 14 days. n � 20 to 30 per group. Results are mean data from five experiments. *, P � 0.05; **,
P � 0.01 (compared with the VCI day �3 group). (C) Lung samples were taken at the indicated times after virus infection and homogenized for pulmonary virus
titration by quantitative real-time RT-PCR. n � 9 for the PBS group, and n � 8 for all of the other groups. *, P � 0.05; **, P � 0.01. Error bars indicate standard
deviations.
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thus highly desirable. In this study, we investigated whether the TLR7
agonist imiquimod could accelerate the onset of a protective antibody
response to influenza vaccine.

MATERIALS AND METHODS
Reagents, virus strains, and animals. The TLR7 agonist imiquimod (In-
vivoGen, San Diego, CA) was prepared with endotoxin-free water at 0.5
mg/ml in small aliquots and stored at �20°C until use. The monovalent
A(H1N1)pdm09 vaccine PANENZA containing split, inactivated whole
virus with HA protein at 30 �g/ml equivalent to A/California/7/2009
(H1N1) virus was obtained from Sanofi Pasteur (Swiftwater, PA). To
prepare inactivated H5N1 whole-virus vaccine, A/VNM/1194/2004 virus
was cultured in 10-day-old specific-pathogen-free (SPF) chicken em-
bryos. Allantoic fluid was harvested at 36 h after inoculation and inacti-
vated with 0.1% (vol/vol) formalin at 4°C for 7 days. Inactivation effi-
ciency was determined by plaque assay on Madin-Darby canine kidney
(MDCK) cells. The inactivated virus was then purified and concentrated
by sucrose gradient ultracentrifugation at 28,000 rpm. In some experi-
ments, the vaccine was treated with 100 �g/ml RNase at 37°C for 30 min
to remove the ssRNA present in the vaccine preparation. The virus strains
for mouse challenge experiments include the A/HK/415742/2009 (H1N1)
mouse-adapted strain (35, 36) and A/VNM/1194/2004 (H5N1). The virus
was propagated in 10-day-old SPF chicken embryos. Allantoic fluid was
titrated on MDCK cells for the determination of 50% tissue culture infec-
tive doses (TCID50) and PFU counts. Mouse 50% lethal doses (LD50) were
determined with 6- to 8-week-old female BALB/c mice as described pre-
viously (35, 36). Female BALB/c mice were obtained from the Animal
Unit of the University of Hong Kong. Virus challenge experiments were
performed in a biosafety level 2 (H1N1 virus) or 3 (H5N1 virus) animal
facility according to the standard operating procedures approved by the
Animal Ethics Committee.

Vaccination procedure with or without imiquimod and virus chal-
lenge. As illustrated in Fig. 1, 6- to 8-week-old female BALB/c mice were
randomly divided into groups. Imiquimod (50 �g in 100 �l) and vaccine
(3 �g of HA protein in 100 �l) were injected intraperitoneally alone or in
combination at 1, 2, or 3 days prior to virus infection (designated day �1,
�2, or �3) or immediately before virus infection (day 0). The intramus-
cular route was not chosen because it would be difficult to inject 200 �l
into hind-leg muscles without leakage. Mice in the negative-control group
were injected with the same volume of phosphate-buffered saline (PBS).
On the day of virus infection, a dose of the virus equal to 10 times the LD50

(2 � 103 TCID50) in 20 �l PBS was inoculated via the intranasal route into

mice under ketamine (100 mg/kg) and xylazine (10 mg/kg) anesthesia.
Body weight and survival were monitored for 14 days postinfection (p.i.).
For sample collection, three to five mice in each group were sacrificed on
days 1, 2, 4, and 6 p.i. Blood and lung samples were collected for further
studies. Vaccination and virus challenge experiments were repeated two
to four times, and the survival rates presented are the averages of all of the
experiments.

Real-time reverse transcriptase PCR (RT-PCR) detection of lung vi-
ral loads. Total RNA was reverse transcribed into cDNA with Superscript
RT II (Invitrogen Corp., Carlsbad, CA) and influenza virus-specific
primer Uni12 (AGC AAA AGC). Real-time quantitative PCR was per-
formed on a LightCycler 480 system with SYBR green I Master (Roche
Applied Sciences, Indianapolis, IN) and a gene-specific primer pair (for-
ward primer, GAT ACA CCA GTC CAC GAT TG; reverse primer, ACC
ATC CAT CTA CCA TCC C) targeting the viral H1 gene. The pcDNA3.1
plasmid containing the H1 gene fragment was used as the standard (37).

Plaque assays. For the detection of neutralizing antibodies in serum
by plaque reduction assay, all serum samples were first treated with recep-
tor-destroying enzyme (RDE; Denka Seiken, Tokyo, Japan) at 37°C over-
night and then heat inactivated at 56°C for 30 min. Serum samples were
then serially diluted 2-fold and mixed with 50 PFU of mouse-adapted
A(H1N1)pdm09 virus. The serum-virus mixtures were incubated for 1 h
at 37°C, added to MDCK cells in 24-well plates, and then allowed to
adsorb for 1 h at 37°C. After adsorption, the cells were washed with PBS,
overlaid with minimum essential medium (MEM) containing 2 �g/ml of
L-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK)-treated tryp-
sin and 2% low-melting-point agarose, and returned to 37°C for another
72 h of incubation. The cells were then fixed and stained with 0.5% crystal
violet before the plaques in each dilution were counted. Uninfected
mouse serum samples were used as negative controls. Percentages of
plaque reduction in tested samples were calculated against the negative
control, which was set at 100%. All of the data presented are the means of
two experiments.

Detection of A(H1N1)pdm09-specific IgM and IgG in serum by EIA.
Vaccine antigen was used to coat 96-well immunoplates (Nunc-Immuno
Modules; Nunc A/S, Roskilde, Denmark) at 100 �l per well containing 2
�g of HA/ml in 0.05 M NaHCO3 (pH 9.6) as described previously (38).
The plate was incubated at 4°C overnight and then blocked with 1% nor-
mal goat serum at 37°C for 1 h. One hundred microliters of diluted serum
was added, and the mixture was incubated at 37°C for 1 h. The plate was
washed six times with PBS before 100 �l of horseradish peroxidase-con-
jugated secondary antibodies (Life Technology, Carlsbad, CA) was added

FIG 3 Survival rates (A) and body weight (B) changes of mice immunized at different times prior to virus infection. Immunized mice received imiquimod (50
�g) and PANENZA vaccine (3 �g of HA) in combination (VCI) on day �3 (�), day �2 (*), day �1 (Œ), or day 0 (�). Control mice received PBS on day �3
(�). On the day of infection (day 0), mice were infected with 10 times the mouse LD50 of mouse-adapted A(H1N1)pdm09 virus and monitored for 14 days. n �
20 to 30 per group. Results are mean data from five experiments. Error bars indicate standard deviations. **, P � 0.01 (compared with the PBS group).

Zhang et al.

572 cvi.asm.org Clinical and Vaccine Immunology

http://cvi.asm.org


and the mixture was incubated for 1 h at 37°C. The reaction was developed
by adding 100 �l of diluted 3,3=,5,5=-tetramethylbenzidine solution (Life
Technology, Carlsbad, CA) for incubation for 15 min at 37°C and stopped
with 100 �l 1 N H2SO4. The optical density (OD) was read at 450 nm. For
antibody detection, we used serial 2-fold dilutions of serum starting at
1:200 for IgM and at 1:500 for IgG, IgG2a, and IgG2b. Uninfected mouse
sera were used as a negative control to set the enzyme immunoassay (EIA)
OD cutoff value. The cutoff OD was set at the mean OD of uninfected
serum at all dilutions plus 3 standard deviations. Serum dilutions yielding
an OD above the cutoff value were calculated. The reciprocal of the aver-
age of duplicates was expressed as the titer.

MN and HAI assays. Microneutralization (MN) and hemagglutina-
tion inhibition (HAI) assays were performed as described previously, with

FIG 4 Survival rates of BALB/c mice challenged intranasally with H5N1 virus
A/VNM/1194/2004. Mice received imiquimod (50 �g) and PANENZA vac-
cine (3 �g of HA) in combination (�) (VCI day �3), imiquimod (50 �g) and
formalin-inactivated A/VNM/1194/2004 vaccine (3 �g of HA) in combination
(�) (VH5CI day �3), or PBS (�) on day �3 before virus infection. On the day
of infection, mice were inoculated intranasally with 5 times the mouse LD50 of
A/VNM/1194/2004 diluted in 20 �l of PBS. Survival was observed for 14 days
after virus infection. **, P � 0.01 (compared with the imiquimod-PANENZA
vaccine [VCI day �3] or PBS group). n � 6 per group.

FIG 5 PANENZA vaccine was treated with 100 �g/ml RNase at 37°C for 30
min. RNase-treated vaccine (3 �g of HA) was injected intraperitoneally alone
(RNase/Vac; Œ) or in combination with 50 �g of imiquimod (RNase/
Vac�imq; �) 3 days prior to virus infection. Mice in the control group re-
ceived the same volume of PBS (�). The mice were then infected intranasally
with 10 times the mouse LD50 of mouse-adapted A(H1N1)pdm09 virus. Sur-
vival was observed for 14 days after virus infection. **, P � 0.01 (compared
with the RNase-treated vaccine or PBS group). n � 6 per group. T
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RDE-treated serum samples (38, 39). The HAI test was performed by
incubating 25 �l of serially 2-fold-diluted (starting at 1:10) serum with 25
�l of 4 hemagglutination units of mouse-adapted A(H1N1)pdm09 virus
at room temperature for 1 h. The plates were read after 40 min of incuba-
tion with 50 �l of 0.5% turkey red blood cells (Lampire Biological Labo-
ratories, Pipersville, PA). For the MN test, diluted sera were mixed with
100 TCID50 of mouse-adapted A(H1N1)pdm09 virus and incubated at
37°C for 1 h. The serum-virus mixture was then added to MDCK cells in
a 96-well plate. After adsorption for 1 h at 37°C, the cells were washed and
incubated with MEM containing 1% penicillin-streptomycin and 2 �g/ml
TPCK-treated trypsin at 37°C for 72 h. The cytopathic effect was recorded.

Detection of IFNs, cytokines, and chemokines by real-time RT-PCR.
Pulmonary levels of alpha interferon (IFN-�), IFN-	, IFN-
, interleu-
kin-1	 (IL-1	), IL-6, and macrophage inflammatory protein 1� (MIP-
1�) mRNA expression were determined by real-time RT-PCR. Total RNA
was extracted from lung tissue homogenates with a Qiagen RNeasy Mini-
kit (Qiagen, Germantown, MD). cDNA was synthesized by Superscript
RT II (Life Technology, Carlsbad, CA) with oligo(dT) primer. Real-time
quantitative PCR was performed on a 7900HT Fast Real-Time PCR Sys-
tem (Applied Biosystems, Life Technology, Carlsbad, CA) with SYBR
green I Master (Roche Applied Sciences, Indianapolis, IN) and gene-spe-
cific primers. The expression of mouse 	-actin was quantified and used
for RNA normalization, and the threshold cycle (��CT) method was used
to estimate the differential gene expression levels. The primers used for
real-time PCR were as follows: IFN-� forward, 5=-ARSYTGTSTGATGC
ARCAGGT-3=; IFN-� reverse, 5=-GGWACACAGTGATCCTGTGG-3=;
IFN-	 forward, 5=-TGGGAGATGTCCTCAACTGC-3=; IFN-	 reverse,
5=-CCTGCAACCACCACTCATTC-3=; IFN-
 forward, 5=-AAGCGTCA
TTGAATCACACC-3=; IFN-
 reverse, 5=-CGAATCAGCAGCGACTCCT
T-3=; IL-1	 forward, 5=-GCCTTGGGCCTCAAAGGAAAGAATC-3=;
IL-1	 reverse, 5=-GGAAGACACAGATTCCATGGTGAAG-3=; IL-6 for-

ward, 5=-TGGAGTCACAGAAGGAGTGGCTAAG-3=; IL-6 reverse, 5=-T
CTGACCACAGTGAGGAATGTCCAC-3=; MIP-1� forward, 5=-CCCAG
CCAGGTGTCATTTTCC-3=; MIP-1� reverse, 5=-GCATTCAGTTCCAG
GTCAGTG-3=; 	-actin forward;, 5=-ACGGCCAGGTCATCACTATTG-
3=; 	-actin reverse, 5=-CAAGAAGGAAGGCTGGAAAAG-3=.

Statistical analysis. Mouse survival rates after a virus challenge in
different groups were analyzed by the Kaplan-Meier method and the log
rank test. Serum antibody titers were compared by the Mann-Whitney U
test. Pulmonary viral loads and cytokine and chemokine profiles were
analyzed by Student’s t test. IBM SPSS Statistics 20.0 was used for statis-
tical computation. A P value of �0.05 was considered statistically signif-
icant.

RESULTS
Imiquimod in combination with influenza virus A(H1N1)-
pdm09 vaccine protected mice from an early lethal challenge
with A(H1N1)pdm09 virus but not A(H5N1). Mice that received
VCI 3 days prior to A(H1N1)pdm09 virus infection (VCI day �3)
showed 60% survival at 14 days p.i., with a mean survival time
(MST) of 11.0 days when challenged with the A(H1N1)pdm09
virus (Fig. 2A). The survival rate of the VCI day �3 group was
significantly higher than that of the groups that received the vac-
cine alone (vaccine day �3) (survival rate, 30%; MST, 8.8 days;
P � 0.029), imiquimod alone (imiquimod day �3) (survival rate,
5%; MST, 8.4 days; P � 0.001), and the PBS control (PBS day �3)
(survival rate, 0%; MST, 6.2 days; P � 0.001). There was a re-
bound of body weight in the VCI day �3 group from day 8 p.i.
onward (Fig. 2B), indicating recovery from infection. The survival
rates of the vaccine day �3 and imiquimod day �3 groups were

FIG 6 GMTs of A(H1N1)pdm09 virus-specific IgM and IgG (A) and IgG subtypes (B) in mouse serum detected by EIA. Mice were given different immunization
regimens on day �3. At the indicated times after virus infection, sera were collected and tested for virus-specific antibodies. n � 7 to 9 per group. Error bars
indicate standard deviations. *, P � 0.05; **, P � 0.01 (compared with the vaccine day �3 group).
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significantly higher than that of the PBS control group (P �
0.001). The pulmonary viral titers, as determined by quantitative
RT-PCR, were not significantly different among the VCI day �3
group, the vaccine day �3 group, and the imiquimod day �3
group on days 2, 4, and 6 p.i. However, the pulmonary viral titers
of the VCI day �3 and vaccine day �3 groups were significantly
lower than that of the PBS day �3 control group (Fig. 2C).

When the time interval between VCI immunization and virus
challenge was shortened to 2 days (VCI day �2 group) or 1 day
(VCI day �1 group), the survival rates fell to 45% (MST, 10.3
days) and 35% (MST, 9.3 days), respectively (Fig. 3). However,
even the survival rate of the VCI day �1 group was significantly
higher than that of the PBS control group (P � 0.001), indicating
that VCI immunization could still elicit significant immunity
against virus infection at 24 h before a virus challenge. However,
VCI did not offer any protection when administered on the day of
a virus challenge.

To investigate whether VCI can induce protection against a
different influenza virus subtype, we challenge VCI day �3 mice
with A(H5N1) virus (Fig. 4). When challenged with the A(H5N1)
virus, all of the mice in the VCI day �3 group (6/6) died, while
only 17% (1/6) of the mice that received inactivated A(H5N1)
virus vaccine combined with imiquimod 3 days prior to infection
(VH5CI day �3) died (P � 0.01).

By quantitative real-time RT-PCR, we verified that a small
amount of viral RNA was present in the PANENZA vaccine prepara-
tion (8 � 104 copies/ml; data not shown). To assess the effect of
A(H1N1)pdm09 virus ssRNA in the A(H1N1)pdm09 vaccine in elic-

iting protection, we used RNase to remove the ssRNA from the vac-
cine preparation. All of the A(H1N1)pdm09-infected mice that re-
ceived RNase-treated A(H1N1)pdm09 vaccine without imiquimod
died, while only 17% (1/6) of the infected mice that received RNase-
treated vaccine with imiquimod died (P � 0.001) (Fig. 5).

Early production of virus-specific serum IgM and IgG in the
VCI day �3 group. On day 1 p.i., VCI day �3 immunization
induced the production of A(H1N1)pdm09-specific IgM and IgG
in 60% (geometric mean titer [GMT], 151) and 100% (GMT, 500)
of the mice, while none of the mice in the other groups had de-
tectable IgM or IgG titers (Table 1; Fig. 6A). On day 6 p.i., the
GMTs of both IgM and IgG in the VCI day �3 group were signif-
icantly higher than those of the vaccine day �3 group (IgM, 4,526
versus 1,600 [P � 0.05]; IgG, 20,749 versus 4,876 [P � 0.05]). VCI
day �3 immunization induced significantly higher levels of IgG2a
and IgG2b than in the other groups (Fig. 6B). These results suggest
that VCI day �3 immunization could induce early onset of virus-
specific antibody production.

Early production of viral neutralizing antibody in the VCI
group. By MN assay, the earliest time point that showed detectable
neutralizing antibody was day 4 p.i. in the VCI day �3 group, with
12.5% (1/8) of the samples showing an MN titer of 13 (Table 1). On
the other hand, neutralizing antibody was not detected until day 6 p.i
in the vaccine day �3 group. On day 6 p.i., the HAI and MN GMTs
were much higher in the VCI day �3 group (GMTs, 269 and 494,
respectively) than in the vaccine day �3 group, but only the differ-
ence in MN titers was statistically significant (P � 0.01). In view of the
high IgG titer (GMT, 5,657) on day 4 p.i in the VCI day �3 group, the

FIG 7 Neutralizing antibody titers in mouse sera. All mice received different immunization regimens on day �3. (A) Representative image of plaque inhibition
by diluted sera collected on day 4 p.i. (left). The percentage of inhibition of plaque formation was calculated against the negative control (no serum), which was
taken as 100%. Data represent the means plus standard deviations (right). (B) HAI and MN assays of sera collected at various time points postinfection. GMTs
of HAI (left) and MN (right) antibodies are shown. n � 7 to 9 per group. Error bars indicate standard deviations. *, P � 0.05; **, P � 0.01 (compared with the
vaccine day �3 group).
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neutralizing antibody titer was also measured by plaque reduction
assay. All five serum samples from the VCI day �3 group inhibited
plaque formation by 50% at a 1:80 dilution, while none (0/5) of the
sera from the vaccine day �3 group showed 50% reduction in plaque
number even at a dilution of 1:40 (Fig. 7).

IL-1� and MIP-1� mRNA levels were elevated in mouse lung
tissue. There was no difference in the IL-1	 and IL-6 mRNA levels
between the VCI day �3 and vaccine day �3 groups on days 2 and
4 p.i. However, the levels of MIP-1� mRNA were significantly
lower in the VCI day �3 group than in the vaccine day �3 group
on days 2 (P � 0.033) and 4 (P � 0.045) p.i. (Fig. 8). On the other
hand, the levels of pulmonary proinflammatory cytokine IL-1	
and MIP-1� mRNA expression were significantly higher in the
VCI day �3 group than in the PBS control group on day 2 p.i. (P �
0.004 and P � 0.001, respectively). IL-6 production appeared to
be blunted in the VCI group compared with that in the PBS group,
but the difference was not significant.

Induction of IFN-�, IFN-�, and IFN-� in the mouse lung. As
imiquimod has been reported to induce type I IFN and IFN-

production (40, 41), we determined the levels of IFN-�, IFN-	,
and IFN-
 mRNA expression in mouse lungs at different time

points. There was no significant difference in the pulmonary
IFN-�, IFN-	, and IFN-
 mRNA levels of any of the groups be-
fore or after a viral challenge within the first 12 h (Fig. 9A). How-
ever, on day 2 p.i, the pulmonary IFN-� and IFN-
 mRNA levels
of the VCI day �3 group were lower than those of the vaccine day
�3 or imiquimod day �3 group (Fig. 9B).

DISCUSSION

Rapid induction of a neutralizing antibody response by influenza
vaccine is essential in the early control of influenza, especially
during a novel pandemic or avian influenza outbreak in an immu-
nologically naive population (38). The influenza vaccines cur-
rently available for human use require 14 to 21 days to achieve
adequate levels of neutralizing antibody, even if an adjuvant is
added to the vaccine (5, 42, 43). In this study, we sought to inves-
tigate whether the synthetic TLR7 agonist imiquimod can accel-
erate the protective immune response. We showed that imi-
quimod significantly expedited and augmented the humoral
immune responses against influenza A(H1N1)pdm09 virus when
administered together with influenza vaccine. VCI conferred sig-
nificant protection on BALB/c mice against early lethal viral chal-
lenges, which could not be achieved by imiquimod or vaccine
alone. Furthermore, the protection afforded by VCI was specific
to the A(H1N1)pdm09 virus but not the A(H5N1) virus. A study
using a glucopyranosyl lipid adjuvant and a stable emulsion of oil
in water showed improved survival of mice if the vaccine was given
at least 3 days prior to a viral challenge (44). Further experiments
are needed to determine whether another adjuvant, such as AS03
or MF59, can also achieve a protective effect within such a short
period. In our present study, we have shown that a protective
effect could be accomplished in mice that received VCI as late as 1
day before a viral challenge.

Compared to the vaccine day �3 group, the VCI day �3 group
had earlier production of A(H1N1)pdm09-specific IgM, IgG, and
neutralizing antibodies. Previous studies reported that imi-
quimod improved the antibody response via the TLR7 pathway.
TLR7 activation leads to the induction of proinflammatory cyto-
kines such as IL-6, chemokines such as MIP-1�, and antiviral
cytokines such as IFN-�, IFN-	, and IFN-
 (45). Induction of
cytokines leads to the activation of antigen-presenting cells and
other components of innate immunity, eventually activating the
Th1 cellular immune response. In our study, TLR7 appeared to
play some role in the protection of the vaccine day �3 group
because the removal of ssRNA from the vaccine day �3 group
with RNase abolished the protective response of the vaccine day
�3 group but not that of the VCI day �3 group. Weldon et al.
previously showed that imiquimod can enhance IFN-
, leading to
a Th1 cellular immune response and isotype switching, which re-
sulted in a specific increase in the level of IgG2a (40). However, in
our study, the increase in the pulmonary IFN-
 level was much
smaller in the VCI day �3 group than in the vaccine day �3
group, together with the increase in the total serum IgG, IgG2a,
and IgG2b levels. Our results suggest that imiquimod augmented
antibody levels not solely by increasing the Th1 response. Other
branches of the immune system are likely to be important in the
imiquimod-mediated protective response. One possibility is the
direct activation of B cells without T cell help. Imiquimod has
been shown to activate B cells in the absence of T cells (46). In
addition to the stimulation of T helper cells and B cells, imi-
quimod has also been reported to stimulate cytotoxic T cells and

FIG 8 Pulmonary IL-1	, IL-6, and MIP-1� mRNA expression levels were
determined by real-time RT-PCR. Mice that received different immunization
regimens on day �3 were infected with 10 times the LD50 of mouse-adapted
A(H1N1)pdm09. Lung homogenates were used for RNA extraction and de-
tection of IL-1	, IL-6, and MIP-1� mRNAs. n � 9 for the PBS group; n � 8 for
the other groups. Lung samples from uninfected mice (n � 3) were used as the
baseline control to compare the changes in gene expression. Error bars indicate
standard deviations. *, P � 0.05 (compared with the vaccine day �3 group).
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natural killer cells (46). Evidence also suggests that imiquimod can
act via the TLR-independent adenosine receptor-signaling path-
way (45) by reducing the adenylyl cyclase activity, suppressing the
negative regulatory feedback mechanism, which can augment the
proinflammatory activity. Adjuvants such as Freund’s complete
adjuvant, which were previously thought to enhance the immune
response via TLR signaling, did not require TLR signaling to elicit
a robust immune response (47). Further studies are needed to
clarify the exact pathways that lead to the protective immune re-
sponse elicited by the VCI approach.

The pulmonary viral load was lower in the VCI day�3 group than
in the PBS group, but there was no significant difference among the
pulmonary viral loads of the VCI day �3, vaccine day �3, and imi-
quimod day �3 groups. Since there was also better survival in the
vaccine day �3 and imiquimod day �3 groups than in the PBS
group, the results suggest that the lighter viral load may be associated
with the survival benefit. However, since the survival rates of the vac-
cine day �3 and imiquimod day �3 groups were lower than that of
the VCI day �3 group, other factors may be operating. One possibil-
ity is the difference in the induction of cytokine/chemokine re-
sponses. We have shown that the day 2 and 4 levels of MIP-1�, IL-1	,
and IL-6 were lower in the VCI day �3 group than in the vaccine day
�3 group, although the difference was only significant for MIP-1�.
Therefore, besides protection from enhanced cytokine and chemo-
kine production, imiquimod may have activated an additional pro-
tective immune response through other pathways. Although cyto-
kines and chemokines are necessary for successful immune
protection, this may be a double-edged sword as cytokine dysregula-
tion may lead to an adverse outcome (48).

The imiquimod day �3 group had a significantly higher survival
rate than the PBS group. There was also a lighter pulmonary viral load
and earlier development and higher titers of A(H1N1)pdm09 virus-
specific IgG, HI antibody, and neutralizing antibody in the imi-
quimod day �3 group than in the PBS group. Therefore, imiquimod
can expedite and augment the immune response to an influenza virus
challenge even without prior specific immune stimulation by the
A(H1N1)pdm09 vaccine. Therefore, imiquimod, by enhancing
the innate immune response alone, can provide some protection, but
the response is markedly inferior to the augmented adaptive immune
response induced by VCI.

In the present study, we have shown that imiquimod can ac-
celerate the immune response induced by vaccine. In the future, it
would be important to study the effect of imiquimod on long-
term immunity. One recent study of children has shown that a
single vaccination with 7.5 �g A/California/7/2009 antigen and a
full dose of MF59 adjuvant was able to meet all of the U.S. and
European licensure criteria for seroprotection up to 1 year after
immunization (49). Similar studies of adults also demonstrated
that the seroprotection rate was preserved in 70% of the MF59-
adjuvanted vaccine recipients at 10 months postvaccination (50)
and protective immune response was maintained for up to 6
months in the AS03(A)-adjuvanted vaccine recipients (51).

Unlike previous reports of induction of IFN-� and -	 by imi-
quimod, such a phenomenon was not obvious in our mouse
model. Our present findings suggest that multiple mechanisms of
the innate immune system may be operating in the induction of an
optimal adaptive immune response. Though the exact mechanism
is still under investigation, we postulate that imiquimod may poten-

FIG 9 IFN-�, IFN-	, and IFN-
 mRNA expression levels in mouse lungs at the indicated times were determined by real-time RT-PCR. Mice that received
different immunization regimens on day �3 were infected with 10 times the LD50 of mouse-adapted A(H1N1)pdm09. Relative levels of IFN-�, IFN-	, and IFN-

mRNA expression were determined by real-time RT-PCR with gene-specific primers (A, B). Lung samples from uninfected mice (n � 3) were used as the baseline
control to compare the changes in gene expression. n � 9 for the PBS group; n � 8 for other groups. Error bars indicate standard deviations. *, P � 0.05; **, P �
0.01 (compared with the vaccine day �3 group).
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tiate early vaccine-specific antigenic presentation by antigen-present-
ing cells and therefore early activation of the humoral immune sys-
tem. Further study of more relevant routes of vaccine administration,
such as intradermal or intramuscular injection, should be under-
taken. The potential clinical application of this vaccination strategy
undoubtedly warrants attention, and the underlying mechanisms
governing the early onset of virus-specific antibody production de-
serve further investigation in clinical trials.
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