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The chromogenic �Lacta test developed for the rapid detection of �-lactamase-hydrolyzing extended-spectrum cephalosporins
in Enterobacteriaceae revealed good performance with extended-spectrum �-lactamase (ESBL) producers (97.5% true-positive
results). However, false-negative results occurred with chromosomal AmpC hyperproducers and plasmid AmpC producers,
whereas uninterpretable results were mostly due to VIM-1 carbapenemase producers and possibly low levels of expressed ESBLs.

Detection of Enterobacteriaceae resistant to broad-spectrum
cephalosporins, mostly due to production of extended-spec-

trum �-lactamases (ESBL), plasmid AmpC �-lactamases, and/or
carbapenemases, has become a challenge in clinical microbiology
laboratories because of important clinical consequences for infec-
tion control purposes and guidance of antimicrobial therapy (1–
3). Methods routinely used to detect these organisms are primarily
based on susceptibility testing results, either MICs or disk diffu-
sion inhibition zones, as well as on ancillary testing using disk
synergy tests with different �-lactamase inhibitors or MIC-gradi-
ent strips combining �-lactams and �-lactamase inhibitors (4).
Molecular methods based on PCR or microarray hybridization
techniques have been also developed (5, 6). In addition, mass
spectrometry-based protocols using matrix-assisted laser desorp-
tion ionization–time of flight mass spectrometry (MALDI-TOF
MS) and in-house colorimetric tests have been developed to detect
the production of ESBLs in less than 4 h (7, 8). Increased interest
in rapid colorimetric assays has been observed, because of their
easy implementation in the routine workflow of clinical laborato-
ries (8).

The �Lacta test (Bio-Rad, Marnes la Coquette, France) is a new
chromogenic method based on the use of a yellow substrate
(HMRZ-86) that turns to red when hydrolyzed by ESBLs, AmpC
�-lactamases, and most carbapenemases (9–11). According to the
manufacturer, reading of the results can be performed visually in
less than 15 min. In the present study, we assessed the perfor-
mance of the �Lacta test for rapid detection of �-lactamase-
hydrolyzing extended-spectrum cephalosporins in two groups of
Enterobacteriaceae clinical isolates. The first group (Table 1) con-
sisted of 338 contemporary clinical isolates collected prospectively
(in January to March 2012), and the second group (Table 2) in-
cluded 106 clinical isolates with �-lactamase-mediated resistance
mechanisms that were characterized at the molecular level and
affected broad-spectrum cephalosporins (12–15). All isolates were
recovered at the Ramón y Cajal University Hospital and were
identified using both a MicroScan system (Siemens, West Sacra-
mento, CA) and MALDI-TOF MS (Bruker Daltonics, Germany).
In addition, the Escherichia coli ATCC 35218 strain (TEM-1 pro-
ducer) was used as a negative control, whereas the Klebsiella pneu-
moniae ATCC 700603 strain (SHV-18 producer) was used as a

positive control. Susceptibility testing of �-lactam antibiotics, in-
cluding broad-spectrum cephalosporins (cefotaxime, ceftazi-
dime, and cefepime) and carbapenems (imipenem and ertap-
enem), was performed using the MicroScan system (Siemens).
EUCAST breakpoint criteria were used to define susceptible, in-
termediate, and resistant categories (16). �-Lactam MICs as well
as in-house and commercial (Rosco-Diagnostica A/S, Taastrup,
Denmark) ancillary test results (double-disk diffusion synergy
techniques) using �-lactamase inhibitors (clavulanic acid, EDTA,
dipicolinic acid, cloxacillin, and boronic acid) were used to infer
phenotypes and resistance mechanisms affecting broad-spectrum
cephalosporins (17). Isolates were classified according to these
results.

Molecular characterization of bla genes was performed as de-
scribed previously (12–15), for both contemporary clinical iso-
lates (first group) with discrepant results in the �Lacta test and
isolates with well-characterized resistance mechanisms (second
group). The �Lacta test was performed according to the manufac-
turer’s instructions. Briefly, several colonies from 18- to 20-h cul-
tures were picked from blood agar medium, to yield a full 1-�l
loop, and then were mixed with the �Lacta test reagents (R1 and
R2, one drop each) in plastic microtubes. The mixtures were left
at room temperature, and color changes, when present, were
read and interpreted after 2 and 15 min by following the manu-
facturer’s instructions. Color changes were interpreted as follows:
(i) red or purple, positive; (ii) no change (yellow), negative; (iii)
orange, uninterpretable. The accuracy of the �Lacta test was de-
termined by using susceptibility test results and considering either
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a resistance or intermediate result for ceftazidime, cefotaxime, or
cefepime as the reference value. Sensitivity, specificity, and likeli-
hood ratios were determined. Confidence intervals (CIs) were es-
timated by Taylor’s method.

Considering all routine clinical isolates and excluding isolates
with uninterpretable results (Table 1), 96.7% (327/338 isolates)
gave expected results (251 isolates yielded true-negative results
and 76 true-positive results), in accordance with the inferred phe-
notype. However, six isolates (1.8%) gave unexpected negative
(false-negative) results, including 3 E. coli isolates expressing
CMY-2 plasmid AmpC �-lactamase and one isolate each of En-
terobacter cloacae, Providencia stuartii, and Morganella morganii
expressing a hyperproduced AmpC phenotype (see Table S1 in the
supplemental material). Moreover, 5 isolates (1.5%) had uninter-
pretable results, including one �-lactam-susceptible E. coli isolate,
three ESBL-producing E. coli isolates expressing either SHV-2
(n � 1) or SHV-12 (n � 2), and one VIM-1-producing K. pneu-
moniae isolate. The MIC values, resistance phenotypes, and �-lac-
tamase types of these strains are included in Table S2 in the sup-
plemental material. Interpretive �Lacta test results for the routine

clinical isolates, considering both the resistance phenotype and
the resistance mechanism as gold standards, were as follows: sen-
sitivity, 92.7% (95% CI, 88.8 to 97.3%); specificity, 100% (95%
CI, 98.5 to 100.0%); positive predictive value, 100% (95% CI, 95.3
to 100.0%); negative predictive value, 97.7% (95% CI, 94.9 to
99.2%). The negative likelihood ratio was 0.07.

These results prompted us to investigate the performance of
the �Lacta test with a collection of isolates with well-characterized
resistance mechanisms. Within this collection, including isolates
expressing ESBLs, plasmid AmpC �-lactamases, or carbapen-
emases (Table 2), 97.03% (98/101 isolates) yielded expected re-
sults (0 true-negative results and 98 true-positive results), 5 iso-
lates yielded uninterpretable results (3 E. coli isolates and 2 K.
pneumoniae isolates expressing VIM-1), and 3 isolates yielded
false-negative results (3 CMY-2-producing E. coli isolates).

These results confirmed that the �Lacta test is useful for the
detection of ESBL-producing organisms (97.5% of all ESBL pro-
ducers demonstrated true-positive results) but not AmpC pro-
ducers (either plasmid-mediated or chromosomally mediated).
This was also noted in a multicenter evaluation performed in

TABLE 1 Contemporary clinical Enterobacteriaceae isolates (n � 338)

Microorganism
(no. of isolates) Phenotype or �-lactamase

�o. with �LACTA test result of:

Positive Negative Uninterpretable

Escherichia coli (231) Wild type 65 1
Penicillinase production 77
Penicillinase hyperproduction 31
ESBLa 50 3b

ESBL � plasmid AmpC 1
Plasmid AmpC 3c

Klebsiella spp. (67) Wild type (penicillinase) 41
Penicillinase hyperproduction 6
ESBL 18
ESBL � plasmid AmpC 1
Carbapenemase 1d

Proteus mirabilis (12) Wild type 7
Penicillinase 5

Enterobacter spp. (13) Wild-type (inducible AmpC) 11
AmpC hyperproduction 1c

ESBL 1

Serratia marcescens (6) Wild type (inducible AmpC) 3
AmpC hyperproduction 3

Morganella morganii (4) Wild type (inducible AmpC) 2
AmpC hyperproduction 1c

ESBL 1

Citrobacter freundii (2) Wild type (inducible AmpC) 1
AmpC hyperproduction 1

Providencia stuartii (3) Wild type (inducible AmpC) 2
AmpC hyperproduction 1c

Total 76 257 5
a ESBL, extended-spectrum �-lactamase.
b SHV-12 (n � 2) and SHV-2 (n � 1).
c False-negative results.
d VIM-1 producer.
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French and Belgian hospitals, in which poor performance of the
�Lacta test with AmpC producers was observed (11). Unlike in
our study, none of ESBL producers in the multicenter evaluation
gave negative results, a situation that occurred with 3 E. coli iso-
lates (two expressing SHV-12 and one expressing SHV-2) in our
work. Extended-spectrum cephalosporins were variably affected,
with MICs ranging from �1 to �16 mg/liter (see Table S2 in the
supplemental material). Variable expression of ESBLs was de-
scribed several years ago, particularly with SHV variants, affecting
the hydrolysis of cephalosporins and MIC values (18). This could
also eventually affect the hydrolysis of HMRZ-86, a fact that has
been shown with nitrocefin and in vitro variants obtained by mu-
tagenesis of blaSHV-1 (19).

On the other hand, results for carbapenemase producers (n �
67) were mainly positive (92.5% [62/67 isolates]), including re-
sults for producers of OXA-48, an enzyme with minor hydrolytic
activity against extended-spectrum cephalosporins (20). Uninter-
pretable results (7.5% [5/67 isolates]) were specifically associated
with VIM-1 producers. The variable expression of resistance phe-
notypes in these isolates might affect extended-spectrum and car-
bapenem MICs, as we demonstrated previously (13).

The isolates with unexpected negative (yellow) or uninterpre-
table (orange) results were tested under different conditions in
order to enhance enzymatic activity to favor a positive result (red).
For this purpose, and to enhance �-lactamase release, a bacterial
suspension of each tested isolate was frozen and thawed twice and
then incubated with the R1 and R2 reagents at room temperature

and at 37°C, in separate tubes. Cells disrupted by sonication were
also tested. In all cases, the results remained unchanged (data not
shown).

In summary, the chromogenic �Lacta test was demonstrated
to be a rapid and reliable assay for the detection of ESBL-produc-
ing Enterobacteriaceae and presumably KPC and class D (OXA-
48) carbapenemase producers. However, results were negative for
AmpC �-lactamase producers, including both chromosomal
AmpC hyperproducers and plasmid AmpC producers. Moreover,
the percentage of uninterpretable results was low, mostly due to
VIM-1 carbapenemases and possibly low levels of expressed
ESBLs. Use of the chromogenic �Lacta test might provide useful
early guidance for detection of ESBLs in Enterobacteriaceae in rou-
tine clinical microbiology laboratories.
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TABLE 2 Enterobacteriaceae isolates (n � 106) with characterized �-lactamases

Microorganism
(no. of isolates) Phenotype or �-lactamase

�o. with �LACTA test result of:

Positive Negative Uninterpretable

Escherichia coli (20) ESBLa (1 CTX-M-9, 4 CTX-M-14, 5 CTX-M-15) 10
KPC (1 KPC-1, 1 KPC-2) 2
VIM-1 3
VIM-1 � SHV-12 1
CMY-2 3b

OXA-48 � VIM-1 � CTX-M-15 1

Klebsiella spp. (65) ESBL (2 TEM-4, 8 SHV-12, 1 CTX-M-9, 2 CTX-M-14,
3 CTX-M-10, 6 CTX-M-15)

22

KPC (6 KPC-2, 13 KPC-3) 19
KPC-3 � VIM-1 3
VIM-1 7 2
VIM-1 � SHV-12 � TEM-1 2
OXA-48 3
OXA-48 � CTX-M-15 3
OXA-48 � VIM-1 � CTX-M-15 4

Enterobacter spp. (18) ESBL (3 CTX-M-1, 1 SHV-2) 4
KPC (1 KPC-2, 1 KPC-3) 2
VIM-1 10
OXA-48 1
OXA-48 � CTX-M-15 1

Serratia marcescens (1) VIM-1 1

Citrobacter freundii (2) VIM-1 2

Total 98 3 5
a ESBL, extended-spectrum �-lactamase.
b False-negative results.
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