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Limited information is available about the effects of HIV and subsequent antiretroviral treatment on host-microbe interactions.
This study aimed to determine the salivary microbial composition for 10 HIV-seropositive subjects, before and 6 months after
highly active antiretroviral therapy (HAART), compared with that for 10 HIV-seronegative subjects. A conventional culture and
two culture-independent analyses were used and consistently demonstrated differences in microbial composition among the
three sets of samples. HIV-positive subjects had higher levels of total cultivable microbes, including oral streptococci, lactoba-
cilli, Streptococcus mutans, and Candida, in saliva than did HIV-negative subjects. The total cultivable microbial levels were sig-
nificantly correlated with CD4� T cell counts. Denaturing gradient gel electrophoresis (DGGE), which compared the overall mi-
crobial profiles, showed distinct fingerprinting profiles for each group. The human oral microbe identification microarray
(HOMIM) assay, which compared the 16S rRNA genes, showed clear separation among the three sample groups. Veillonella,
Synergistetes, and Streptococcus were present in all 30 saliva samples. Only minor changes or no changes in the prevalence of
Neisseria, Haemophilus, Gemella, Leptotrichia, Solobacterium, Parvimonas, and Rothia were observed. Seven genera, Capnocy-
tophaga, Slackia, Porphyromonas, Kingella, Peptostreptococcaceae, Lactobacillus, and Atopobium, were detected only in HIV-
negative samples. The prevalences of Fusobacterium, Campylobacter, Prevotella, Capnocytophaga, Selenomonas, Actinomyces,
Granulicatella, and Atopobium were increased after HAART. In contrast, the prevalence of Aggregatibacter was significantly de-
creased after HAART. The findings of this study suggest that HIV infection and HAART can have significant effects on salivary
microbial colonization and composition.

In 2012, more than 35 million people were living with HIV, and
more people than ever received life-saving antiretroviral therapy

worldwide (1). The availability of antiretroviral therapy has sig-
nificantly reduced the number of AIDS-related deaths. Concur-
rently, people living with HIV are continuously challenged by dis-
eases associated with a compromised host immune system,
including opportunistic infections (2). Oropharyngeal candidiasis
is the most common oral infection (3), and it can be detected in
the early stages of HIV infection (4). This opportunistic infection
and others can be a consequence of immune impairment induced
by HIV, changes in saliva composition and function (5, 6), the
presence of advanced caries lesions (7), and/or progressive peri-
odontal infections (8).

Despite the overall decline in HIV-related deaths, studies have
suggested clinical associations between HIV infection and both
caries and periodontal diseases; for example, immunocompro-
mised individuals, especially children and young adults, have
shown increased prevalence rates of dental caries (7, 9–11) and
necrotizing periodontal diseases (12, 13). However, a few studies
have shown no differences between HIV-infected and healthy
subjects in caries severity, chronic periodontitis, or advanced peri-
odontal diseases (14, 15). Previously, we reported salivary micro-
bial changes in HIV-infected patients (16). Others have observed
positive correlations between HIV infection and increased oral
Candida colonization (6, 17–19). It has also been suggested that
impairment of systemic defense mechanisms by reduction of
CD4� T cells below protective levels and impairment of local im-
munity by reduction of levels of salivary IgA, defensins, or epithe-
lial cell-mediated cytokines in the saliva might lead to the conver-

sion of commensal Candida to microorganisms with increased
pathogenicity, causing an imbalance in the host oral microbial
composition and hence increased risk for opportunistic infections
(20, 21). Dramatic reductions in oral candidiasis after highly ac-
tive antiretroviral therapy (HAART) have been observed consis-
tently (22–25); however, the mechanisms underlying host-mi-
crobe interactions relative to HIV infection and subsequent
HAART, all in the context of oral microbial composition, are not
well understood. Currently, a wide range of molecular techniques
are available to help identify and characterize microorganisms,
including sequencing of 16S rRNA genes using DNA hybridiza-
tion with custom-designed oligonucleotide probes, fingerprinting
of the microbial flora with denaturing gradient gel electrophoresis
(DGGE), and other PCR-based techniques.
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The present study aimed to evaluate the microbial colonization
and composition in samples collected from HIV-positive subjects
and healthy controls. We hypothesized that individuals immuno-
compromised by HIV infection would be at greater risk for in-
creased microbial colonization and diversity than healthy con-
trols, leading to increased prevalence and severity of oral diseases.
We also hypothesized that HAART might reverse the HIV-associ-
ated changes in the microbial composition in saliva, restoring bal-
ance in the oral microbiota and hence improving the oral health of
individuals with HIV. A conventional culture method was used to
evaluate total cultivable microbes in saliva, and two culture-inde-
pendent methods based on 16S rRNA were used to determine the
effects of HIV infection and HAART on changes in salivary mi-
crobial composition. The molecular fingerprints generated by
DGGE provided a direct cross-sectional comparison of microbial
compositions of the targeted bacterial 16S rRNA gene (26, 27). In
addition, the human oral microbe identification microarray
(HOMIM) assay enabled us to further distinguish the observed
differences in microbial diversity at the microbial genus or species
level.

(A preliminary report of this work was presented at the Inter-
national Association for Dental Research/American Association
for Dental Research/Canadian Association for Dental Research
91st General Session and Exhibition, Seattle, WA, 20 to 23 March
2013.)

MATERIALS AND METHODS
Ethics statement. The study was conducted at two sites, Bellevue Hospital
Center and New York University College of Dentistry, and was approved
by the Institutional Review Board of the New York University School of
Medicine (for the College of Dentistry) and the Institutional Review
Board of the New York City Health and Hospital Corporation (for Belle-
vue Hospital Center). Written informed consent was obtained from all
participants.

Study participants. Twenty subjects were randomly selected from an
HIV cohort study (16). Ten subjects who were seropositive for HIV and
were HAART naive or off therapy for at least 6 months were recruited
prior to the initiation of HAART, which was provided by the New York
University Clinical Trial Unit, Bellevue Hospital Center (New York, NY).
The other 10 subjects were seronegative for HIV and were recruited from
the Bluestone Center for Clinical Research, New York University College
of Dentistry. Demographic data (for all subjects) and medical data (for
HIV-positive subjects), including age, sex, ethnicity, HIV load, CD4� and
CD8� T cell counts, and type and date of initiation of antiretroviral med-
ications, were obtained from the medical records; data were collected and
evaluated before and 6 months after initiation of HAART. For HIV-neg-
ative subjects, seronegative status was confirmed using the OraQuick
ADVANCE Rapid HIV-1/2 antibody test.

Oral examination and sample collection. At the initial evaluation,
each subject received a comprehensive oral examination performed by
one of two standardized clinical examiners. Caries status was determined
at the tooth surface level according to criteria modified from National
Health and Nutrition Examination Survey III, as well as an index of de-
cayed and filled teeth (DFT) and decayed and filled tooth surfaces (DFS)
(28). Periodontal examinations were performed for the 6 Ramfjord index
teeth (29), at 6 sites on each tooth (mesiobuccal, buccal, distobuccal,
distolingual, lingual, and mesiolingual sites). Periodontal bleeding on
probing (BOP) was recorded as a dichotomous outcome for each site and
was deemed positive if bleeding occurred within 15 s after the assessment
of probing depth.

Stimulated whole-saliva samples were collected for this study. In order
to minimize potential variations, saliva sample collection was conducted
in the morning, if possible. Each subject was asked to refrain from eating

or drinking for at least 2 h prior to sample collection. After resting for 5
min with no talking, subjects were asked to rinse their mouths with sterile
water, chew on a piece of paraffin wax for 30 s, and expectorate directly
into a graduated 50-ml sample collection tube on ice. A portion of the
saliva sample (2 ml) was transferred immediately, on ice, to a microbiol-
ogy laboratory (New York University College of Dentistry) and was pro-
cessed within 2 h. For HIV-seropositive subjects, a second saliva sample
was collected 6 months after the initiation of HAART.

Quantitative evaluations of oral microbial colonization and microbial
diversity were performed with 3 methods, namely, conventional culture,
denaturing gradient gel electrophoresis (DGGE), and the human oral mi-
crobe identification microarray (HOMIM) assay.

Microbial cultivation. Saliva samples were sonicated (30 s) and di-
luted (10�1 to 10�4). The diluted samples (50 �l) were plated on selective
media for cultivation of Streptococcus mutans (mitis salivarius agar with
potassium tellurite-bacitracin; Difco Laboratories Inc., Detroit, MI) (30),
Lactobacillus species (Rogosa agar; Thermo Scientific, Lenexa, KS) (31),
total oral streptococci (mitis salivarius agar; Anaerobe Systems, Morgan
Hill, CA), and Candida species (CHROMagar Candida; CHROMagar,
Paris, France) (32, 33). The saliva samples were also plated on nonselective
enriched tryptic soy agar (ETSA) (Anaerobe Systems, Morgan Hill, CA)
for cultivation of total cultivable oral bacteria. All bacterial samples were
plated using an Autoplate 4000 system (Advanced Instruments, Nor-
wood, MA) and incubated anaerobically (85% nitrogen, 10% carbon di-
oxide, and 5% hydrogen) or aerobically for 72 h, and colonies on each
culture plate were counted manually. For statistical analysis, CFU values
were transformed logarithmically to normalize the variation in distribu-
tion and to estimate the concentration of each targeted microorganism in
saliva. The microbial CFU were analyzed for association with viral loads,
CD4� and CD8� T cell counts, caries status (DFT/DFS scores), and peri-
odontal health status (BOP scores).

Extraction of bacterial genomic DNA. Whole-saliva samples (1 ml)
were used for bacterial genomic DNA extraction, as described previously
(34, 35). Briefly, each saliva sample was centrifuged (18,000 � g for 3
min), the supernatant was discarded, and total bacterial genomic DNA
was extracted from the pellet using a DNA purification kit (MasterPure;
Epicentre, Madison, WI). Samples were treated with a solution of phenol,
chloroform, and isoamyl alcohol (25:24:1 [pH 8.0]) with mutanolysin
(5,000 U/ml; 2 �l). DNA was precipitated from the aqueous phase with
isopropanol and recovered by centrifugation. The pellet was resuspended
in 20 �l of Tris-EDTA buffer. Final DNA quality and concentration were
measured using a Nanodrop spectrophotometer (Thermo Scientific, Wil-
mington, DE). The bacterial DNA was stored at �20°C.

DGGE assay. The DGGE assay is commonly used in studies of micro-
bial ecology, microbiology, and environmental microbiology (36–38).
Previously, we showed that the assay can provide rapid assessment of the
oral bacterial community without cultivation, can differentiate the major
components of the microbial profile, and enabled longitudinal monitor-
ing of changes in microbial flora in the same subjects (35, 39–42). In this
study, we applied DGGE to all bacterial genomic DNA samples. The com-
plete 16S rRNA gene locus (1,500 bp) was preamplified with universal 16S
rRNA gene primers (8f to 1492r), as described previously (43). Nested
amplification of the V4 to V5 hypervariable region of the 16S rRNA gene
was performed using an internal set of primers (prbac1 and prbac2) (44)
with a 40-nucleotide GC clamp added at the 5= end of the forward primer
(39, 45). After PCR amplification (GeneAmp PCR System 9700; PE Ap-
plied Biosystems, Foster City, CA), the PCR products (�300 bp) were
separated on linear denaturing gradient polyacrylamide gels (40% to 60%,
DCode System; Bio-Rad, Hercules, CA). Electrophoresis was performed
(constant 60 V at 58°C for 16 h) in Tris-acetate-EDTA (TAE) buffer (pH
8.5). After electrophoresis, the gels were stained with ethidium bromide
(0.5 mg/ml). The DGGE profile images were captured digitally using an
AlphaImager 3300 system (Alpha Innotech, San Leandro, CA).

HOMIM assay. The bacterial genomic DNA samples were analyzed
for identification of specific microbial species using the human oral mi-
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crobial identification microarray (HOMIM) assay (Forsyth Institute,
Cambridge, MA). The HOMIM assay allowed simultaneous detection of
�300 predominant oral bacterial species in a single hybridization exper-
iment. The quality of the bacterial DNA was verified with PCR using a new
set of universal 16S rRNA primers (forward, AACTGGAGGAAGGTGG
GGAT; reverse, AGGAGGTGATCCAACCGCA). A nested PCR was per-
formed to incorporate the fluorescent materials (Cy3-dCTP) into the
targeted DNA (46). The labeled 16S rRNA amplicons were loaded on
aldehyde-coated glass slides containing �430 unique 16S rRNA-based
reverse-capture oligonucleotide probes targeting �300 bacterial taxa
(Forsyth Institute, Cambridge, MA) and were hybridized overnight at
55°C (46). The slides were washed with buffer (2� saline sodium citrate,
10% sodium dodecyl sulfate) at 55°C, dried, and scanned (Axon GenePix
4000B microarray scanner; Molecular Devices, Sunnyvale, CA). The raw
data were normalized by comparing individual signal intensities with the
average signal from universal probes for 16S rRNA genes (GenePix Pro
software; Molecular Devices, Sunnyvale, CA) (46). The final microarray
data were graded (range, 0 to 5) based on the presence or absence of the
hybridization signals and the degree of signal intensity and were imported
to software for analysis (MeV v4.8.1 software; Dana-Farber Cancer Insti-
tute, Boston, MA) (47).

Statistical analysis. Bacterial CFU for each targeted microorganism,
viral loads, CD4� and CD8� T cell counts, dental caries, and periodontal
status scores were evaluated with the nonparametric Mann-Whitney test
for mean comparisons and the Spearman rank correlation test for corre-
lation analyses between HIV-positive and HIV-negative groups, as well as
within the HIV-positive group before and after HAART. The DGGE mi-
crobial flora profiles were analyzed with BioNumerics 6.0 software (Ap-
plied Maths, Austin, TX). Levels of similarity between the fingerprints
were calculated based on the Dice coefficient for pairwise comparisons.
Cluster analyses were performed and dendrograms were constructed
based on the Ward method and algorithm (48). The numbers of detected
DGGE bands and their frequency distribution patterns were determined
and compared between groups. Shannon diversity index values were cal-
culated on the basis of the relative abundance and evenness of the 16S
rRNA gene fragments detected by DGGE.

HOMIM data were correlated to identify the relative abundance of
oral microbial genes of interest and were compared among the three

groups based on the presence or absence of genes and the HOMIM hy-
bridization intensities. Hierarchical clustering analysis was performed
based on the presence or absence of bands and the average linkage method
(49). Dendrograms were constructed by clustering correlation matrices
that included all elements of gene comparisons. An experiment-wise false
discovery rate (FDR) of 5% was used. The final P values for the analysis
were adjusted for multiple comparisons using Holm’s method (50). Prin-
cipal-component analysis was performed using MeV v4.8.1 software.

All data analyses were performed with statistical software (SAS/STAT
software [SAS Institute, Cary, NC] or SPSS Statistics software [IBM Corp.,
Somers, NY]). The nonparametric Wilcoxon-Mann-Whitney test was
used to compare the results for HIV-positive subjects and HIV-negative
controls. To compare the data for HIV-positive subjects before and after
HAART, Friedman’s chi-square rank test, equivalent to the Cochran-
Mantel-Haenszel chi-square test, was used.

RESULTS
HIV infection status. A schematic diagram of the study design is
presented in Fig. 1. No significant difference in the mean age was
observed between the two groups. HIV-seropositive subjects had
more dental caries (mean DFS score) but similar levels of gingivitis
and periodontitis (mean BOP score) (Table 1). Among the HIV-
positive subjects, HIV loads ranged from 9.0 � 103 to 7.1 � 105

copies/ml, but these results were markedly reduced for each sub-
ject after HAART (P � 0.001, Mann-Whitney test) (Fig. 2A). At 6
months after HAART, the mean CD4� T cell count was increased
by 36% (before therapy, 313 � 192 cells/�l; after therapy, 426 �
194 cells/�l), and the mean ratio of CD4� T cells to CD8� T cells
(CD4/CD8 ratio) was increased by 33% (before therapy, 0.43 �
0.41; after therapy, 0.57 � 0.29) (Fig. 2B). All HIV-positive sub-
jects, with the exception of subject 10, experienced improved
CD4� T cell counts. The CD4� and CD8� T cell counts before
HAART were highly correlated with the cell counts after HAART
for each HIV-seropositive subject (Fig. 2C).

Study Population 
Sample Collection

HIV+ (N=10)

After TherapyBefore Therapy HIV- (N=10)

Total Genomic DNA ExtractionCulture

Cultivable Bacteria

Enumeration

(CFU)

Analysis
(SPSS V20)

ETSA ........... Total Cultivable 
MS ................ Streptococci
ROGOSA..... Lactobacilli
MSB.............. S. mutans
CHROM....... Candida

16S rRNA gene (V4-V5)
 with a GC clamp 

Fingerprinting
(DGGE/DCODE)

16S Amplicon

 Hybridization

(425 unique ot-ID probes)
Microbial Profile

Analysis
(BioNumerics V11)

HOMIM

Analysis
(TM4/MeV 4.8.1)

16S rRNA gene (V3-V5) 
incorporated with Cy3-dCTP

Amplification 

Bacteria Processing and Isolation

FIG 1 Schematic diagram of the study design. Three methods were used to
evaluate the oral microbial composition in saliva, i.e., one method based on
culture and two methods based on genomic DNA extraction. DGGE, denatur-
ing gradient gel electrophoresis; HOMIM, human oral microbe identification
microarray.

TABLE 1 Demographic and clinical characteristics of HIV-seropositive
and HIV-seronegative subjects

Characteristic Seronegative
Seropositive, before
HAART

No. of patients 10 10
Age (mean � SD) (yr) 43 � 13 39 � 10

Sex (no.)
Male 5 7
Female 5 2
Transgender 0 1

Ethnicity (no.)
Non-Hispanic 9 9
Hispanic 1 1

Race (no.)
Black/African American 6 7
White 2 3
Asian 2 0

Oral examination results
DFS score (mean � SD)a 18 � 20 29 � 26
BOP score (mean � SD)b 0.4 � 0.1 0.4 � 0.4

a DFS, decayed and filled tooth surfaces, for assessment of the dental caries status based
on the total number of tooth surfaces examined in the oral cavity.
b BOP, bleeding on probing, for assessment of the periodontal status of the oral cavity
based on the 6 Ramfjord index teeth.
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Oral microbial colonization. Of the 30 salivary samples, 24
were collected between 10 a.m. and 12 p.m.; only 6 samples were
collected between 1 p.m. and 4 p.m. The salivary cultures showed
that HIV-seropositive subjects had greater CFU counts for total

cultivable microbes, total oral streptococci, Lactobacillus species,
S. mutans, and Candida in saliva than did HIV-seronegative sub-
jects. Significant correlations were noted between CD4� T cell
counts and both total cultivable microbial CFU counts (	 
 0.608,
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FIG 2 HIV loads, CD4� T cell counts, and CD8� T cell counts before and after HAART in HIV-seropositive subjects. (A) After HAART, decreased viral loads
and partial immune restoration for CD4 were observed. It is noteworthy that all of the HIV-infected subjects except subject 10 experienced improved CD4� T
cell counts. (B) After HAART, all of the HIV-infected subjects except subject 10 (arrow) experienced improved CD4/CD8 ratios; however, the difference was not
statistically significant. (C) Nonparametric correlation analysis showed that the CD4� T cell counts (	 
 0.770, P � 0.001) and CD8� T cell counts (	 
 0.855,
P � 0.001) before HAART were highly correlated with the cell counts after HAART.
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P � 0.01) and total oral streptococcal CFU counts (	 
 0.684, P �
0.01) (Table 2). BOP scores (indicators of tissue inflammatory
responses to bacterial pathogens) were positively correlated with
CD8� T cell counts (	 
 0.584, P � 0.01). A bivariate linear
relationship was also observed between Candida levels and DFS
caries scores (	 
 0.478, P � 0.01) (Table 2).

Denaturing gradient gel electrophoresis. After PCR amplifi-
cation, the 16S rRNA gene fragments (�300 bp) were separated by
DGGE and stained, and DNA fingerprint profiles (banding pat-
terns) were obtained. Based on the relative distribution and inten-
sities of the banding patterns detected on the DGGE gels, the pro-
file analysis showed that the samples from HIV-negative subjects
clustered separately from the samples from HIV-positive subjects
before HAART (Fig. 3A). In addition, the samples from HIV-
positive subjects before HAART were clustered separately from
the samples after therapy (Fig. 3B). Simultaneous comparison of
samples from all 3 sample groups (HIV-negative group, HIV-pos-
itive group before therapy, and HIV-positive group after therapy)
showed that 60% to 70% of samples from the same group were
clustered in one branch (Fig. 3C). A total of 42 distinct amplicons
(bands) were detected from all DGGE profiles. The mean num-
bers of bands were 33 � 6 bands for the HIV-negative group, 31 �
3 bands for the HIV-positive group before therapy, and 27 � 5
bands for the HIV-positive group after therapy (Fig. 4A). Com-
pared with the HIV-negative group, fewer bands were found in the
HIV-positive group before therapy and the HIV-positive group
after therapy (P 
 0.05, Mann-Whitney U test). The differences
between groups were confirmed by Shannon diversity index val-
ues; the HIV-positive group had significantly lower Shannon di-
versity scores than did the two other groups (P 
 0.025, Mann-
Whitney U test) (Fig. 4B).

Human oral microbe identification microarray assay. The
HOMIM assay was performed to distinguish the observed differ-
ences in DGGE findings for the 30 DNA samples. Among the 423
bacterial probes included in the DNA microarray, 121 (29%) were
detected with positive hybridization with scores of �1. They were
categorized in 6 bacterial phyla (see Fig. S1A in the supplemental
material), 11 classes (see Fig. S1B), 14 orders (see Fig. S1C), 23
families (see Fig. S1D), 34 genera (see Fig. S1E), and 90 species (see
Fig. S1F). The heat map showed the top 94 positive probe reac-
tions and their distributions among the 3 sample groups (Fig. 5A).
The principal-component analysis of all 121 positive probes
showed clear separation among the HIV-negative group, the HIV-
positive group before therapy, and the HIV-positive group after
therapy, as well as between the HIV-negative group and the HIV-

positive group after therapy (Fig. 5B). The predominant phyloge-
netic characteristics included the phylum Firmicutes (65%), more
specifically Streptococcus species (34%) and Veillonella species
(11%) (Table 2). Although the prevalence and distribution of the
bacterial genera differed among the three sample groups (Fig. 6),
the difference in microbial composition (Table 3) was statistically
significant only when the HIV-positive group before therapy
was compared with the HIV-positive group after therapy (chi-
square 
 5.0, P 
 0.025, nonparametric Friedman test). More
specifically, 30 genera of bacteria, on average, were identified in
the oral cavities of HIV-negative individuals. Three genera, Veil-
lonella, Synergistetes, and Streptococcus, were present in all 30 saliva
samples. Only minor or no changes in the prevalence of Neisseria,
Haemophilus, Gemella, Leptotrichia, Solobacterium, Parvimonas,
and Rothia were observed. Seven genera, including Capnocy-
tophaga, Slackia, Porphyromonas, Kingella, Peptostreptococcaceae,
Lactobacillus, and Atopobium, were present only in HIV-negative
controls and not in the HIV-positive group. Additionally, several
genera, such as Fusobacterium, Campylobacter, Prevotella, Capno-
cytophaga, Selenomonas, Granulicatella, Actinomyces, and Atopo-
bium, were notably increased after HAART. In contrast, Aggre-
gatibacter was significantly decreased in HIV-positive groups.
Using a P value of �0.05 as a cutoff for selecting candidates of a
specific phylum or genus for the comparison, we found that 2
phyla (Bacteroidetes and Actinobacteria) and 5 genera (Actinomy-
ces, Atopobium, Aggregatibacter, Fusobacterium, and Prevotella)
were significantly different (Table 3). When the analysis was ad-
justed for multiple comparisons, only 3 genera (Actinomyces,
Atopobium, and Aggregatibacter) were significantly different from
baseline values after HAART.

DISCUSSION

Even though HIV infection has been associated with increased
risks of opportunistic oral infections, dental caries, and aggressive
periodontal diseases, reports of oral microbial characterization
among immunocompromised individuals are limited. Since the
immunodeficiency that results from HIV infection is character-
ized by the depletion of CD4� lymphocytes, the main objective of
HAART is to improve CD4� T cell levels in order to decrease the
HIV burden and to prevent opportunistic infections. In this study,
we first demonstrated that the HIV-positive subjects, after 6
months of HAART, experienced significant decreases in viral
loads and 0.4- to 3-fold increases in CD4�/CD8� T cell ratios.
These findings were expected and were consistent with previous
studies that showed inverse correlation of CD4�/CD8� T cell ra-

TABLE 2 Correlations between microbial CFU values, DFS scores, BOP scores, and HIV infection

Parameter

Correlation coefficient for:

CD4� cell count CD8� cell count DFS score BOP score S. mutans Oral streptococci Lactobacilli Candida

CD8� cell count 0.032
DFS score �0.329 0.081
BOP score �0.160 0.584a 0.207
S. mutans �0.085 0.068 0.160 0.439b

Oral streptococci 0.684a �0.172 �0.137 0.121 0.249
Lactobacilli �0.101 0.222 0.176 0.436b 0.590a 0.325
Candida �0.163 0.103 0.478a 0.173 �0.008 �0.218 0.127
Total cultivable microbes 0.608a �0.170 �0.063 0.132 0.274 0.900a 0.392b �0.171
a Spearman’s correlation, P � 0.01 (2-tailed).
b Spearman’s correlation, P � 0.05 (2-tailed).
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tios with antiretroviral therapy (51–53). As the particular focus of
the present study, the microbial analysis data showed differences
in oral microbial colonization among HIV-seronegative subjects,
HIV-seropositive subjects before HAART, and HIV-seropositive
subjects 6 months after HAART. We found correlations between
CD4� T cell counts and levels of total cultivable bacteria or total
oral streptococci at the early stages of HAART, supporting our
initial hypothesis that HIV infection can affect salivary microbial
colonization and hence contribute to increased risks of declining
oral health in individuals living with HIV.

While evidence has indicated increased CD4� T cell counts
after HAART, it has also been reported that noncytotoxic CD8� T
cell anti-HIV responses may contribute significantly to immune
system reconstitution by suppressing HIV replication (54). Clin-
ical studies have demonstrated the use of the CD4/CD8 ratio as an
indicator of immunocompromise in HIV-infected individuals,
with high sensitivity (98%) and specificity (�98%), particularly
for children �2 years of age (55, 56). However, a recent study by
Leung et al. concluded that CD4/CD8 ratio normalization might
not have additional short-term predictive value for clinical out-
comes after accounting for other risk factors, such as age and HIV
load (57). In our study, we found only 1 subject who did not
experience an increased CD4/CD8 ratio after HAART, most likely
as a result of antiretroviral resistance or treatment nonadherence
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(58), as evidenced by low CD4� and CD8� T cell counts during
the 6 months after treatment. Our findings that correlated de-
creased viral loads with increased CD4/CD8 ratios support the
notion that the CD4/CD8 ratio can be used as an additional
marker to monitor treatment and prognosis.

HIV infection is also associated with changes in the diversity of
genital flora, including increased diversity of the genital flora in
HIV-infected women with bacterial vaginosis (59). In patients
with cystic fibrosis, increased lung microbial diversity has been
suggested to be beneficial for overall health status improvement
(60). In the present study, we hypothesized that immunocompro-
mise resulting from HIV infection can significantly disrupt the
normally constituted commensal bacterial colonization in the oral
microbiota. Such disruption might cause an increase in microbial
diversity, but it has also been suggested that impairment of sys-
temic defense mechanisms by reduction of CD4� T cells below
protective levels and impairment of local immunity by reduction
of the levels of salivary IgA, defensins, or epithelial cell-mediated
cytokines in the saliva might lead to the conversion of commensal
microorganisms, e.g., Candida, to microorganisms with increased
pathogenicity, causing an imbalance in the host oral microbial
composition and hence increased risk for opportunistic infections
(20, 21). On the other hand, HAART might reverse such HIV-
associated microbial alterations in saliva and improve oral health.
Unexpectedly, our data showed a decrease in microbial diversity,
along with changes in the overall oral microbiota in HIV-positive
samples. Since the levels of Candida species and a number of gen-
era, including Dialister, Aggregatibacter, Atopobium, and Actino-
myces, were increased in the HIV-positive samples, we postulate

that decreased diversity may be attributed to increased propor-
tions of opportunistic microbes as a result of immunocompro-
mise. In our previous study of caries-associated microbial flora, it
was demonstrated that microbial diversity was decreased in the
dental plaque of children with severe caries, compared with caries-
free children (35). We believe that the reduced diversity may be
attributed to increased proportions of acidogenic and aciduric
bacteria, which may become dominant in the oral cavity during
the progression of caries lesions. The notion that microbial diver-
sity is closely associated with an individual’s health status was
supported by a study showing that children with Crohn’s disease
were characterized by significant decreases in oral microbial di-
versity (61). The same study also suggested that specific phyla and
oral microbial compositions might represent a specific disease sta-
tus (61).

The present study used two 16S rRNA methods, i.e., DGGE
and the HOMIM assay, to determine the effects of HIV infection
and HAART on microbial diversity. Findings of the two ap-
proaches were consistent, suggesting complementarity. DGGE
analysis of the numbers of bands, band intensities, and migration
distributions of the 16S rRNA gene amplicons clearly showed that
the microbial profiles were similar within each group but remark-
ably different among groups. These findings were similar to those
of a periodontal microbial study in which the microbial profiles in
subgingival plaque associated with putative pathogens were dif-
ferent in HIV-seropositive subjects versus HIV-seronegative sub-
jects, even though different molecular approaches were used (62).

HOMIM analysis, based on 121 positive DNA hybridization
reactions, showed that 30 genera of bacteria, on average, were

FIG 6 Comparison of microbial distribution. Differences in the prevalence of oral bacteria at the genus level were observed among the 3 sample groups. About
30 genera of bacteria were identified in the oral cavities of HIV-negative individuals. HIV infection and HAART showed no effects on the prevalence of Veillonella,
Synergistetes, and Streptococcus groups. Seven genera were present only in HIV-negative controls. The prevalence of Fusobacterium, Campylobacter, and Lepto-
trichia were decreased in the HIV-positive group but increased in the HIV-positive group after therapy. The differences in the overall prevalence and distribution
of the bacteria before and after HAART were statistically significant (chi-square 
 5.0, P 
 0.025, nonparametric Friedman test).
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identified in the oral cavities of HIV-negative healthy controls.
However, changes in microbial composition did occur in the three
sample groups. Specifically, among the 34 identified genera, Strep-
tococcus (33.5%) and Veillonella (11.1%) were the predominant
groups. Although both genera are commensal components of oral
flora, they include numerous clinically important species that may
cause infections in humans (63, 64). Interestingly, 7 genera were
present only in HIV-negative controls and not in the HIV-positive
group. HIV infection and HAART showed no effects on the prev-
alence of Streptococcus and Veillonella, along with Synergistetes and
Rothia groups, which are commonly detected in patients with

periodontitis (65–67). We also observed the increased prevalence
of Aggregatibacter, Achromobacter, Dialister, Shuttleworthia, and
Gemella in the HIV-positive group, compared with the HIV-neg-
ative control group. Several groups of bacteria, such as Fusobacte-
rium, Campylobacter, Prevotella, Capnocytophaga, Actinomyces,
and Atopobium, were increased 6 months after HAART. In con-
trast, the prevalence of Aggregatibacter was significantly decreased
after HAART. We propose that these observed HIV- and HAART-
associated microbial changes might have resulted from immuno-
compromise induced by HIV infection, immune system reversal/
reconstitution by HAART, or direct effects of antimicrobial
prophylaxis in HIV-positive individuals (68).

Of the 90 identified species, 7% were detected only in HIV-
negative samples, while 24% were detected only in HIV-positive
samples. The group-characteristic composition shown in our
study also suggests that specific types of bacteria might be associ-
ated with HIV infection. Most of the species that showed signifi-
cant differences among the three sample groups were common
members of the human oral microbiota, as well as opportunistic
pathogens such as Actinomyces gerencseriae, Atopobium spp., and
Aggregatibacter segnis. Studies suggested that microorganisms that
were previously considered nonpathogenic can become opportu-
nistic pathogens in immunosuppressed patients receiving antibi-
otics (23, 69). HIV-associated changes in microbial composition
may favor pathogen selection (70) and play a role in increased
risks of opportunistic infections in HIV-infected patients. How-
ever, the mechanisms and clinical importance of such changes are
not fully understood and must be confirmed with large sample
sizes. It is also critical to define and to understand the “normal”
oral microbiota, so that any changes in the abundance of com-
mensal organisms that typically characterize the healthy state can
serve as indicators of oral cavity dysfunction.

HIV-positive individuals are at greater risk of dental caries and
periodontal diseases than are HIV-negative individuals (71–73).
The increased risk may be caused by depletion of CD4� and CD8�

lymphocytes and resultant decreased host immune responses (16,
74), increased S. mutans colonization (16), reduced salivary secre-
tion (75, 76), and/or poor oral hygiene (77). In the present study,
culture methods showed that HIV infection can increase salivary
microbial colonization. The total cultivable microbial counts were
positively correlated with the total oral streptococcal counts (data
not shown). A correlation was noted between S. mutans and Lac-
tobacillus, which have similar ecological niches and cariogenic
abilities. However, the positive correlation of CD4� T cell counts
with total cultivable microbial counts was unexpected. CD4� T
cell counts are markedly reduced in acute HIV infection but rap-
idly increase after HAART; therefore, it is unknown whether the
positive correlation between CD4� T cell counts and bacterial
levels reflects a true association between oral microbial coloniza-
tion and immunosuppression or immunoreconstruction.

Furthermore, our study showed that the CD8� T cell counts
were significantly correlated with the periodontal inflammation
scores (BOP scores) and that the levels of Candida in saliva were
significantly correlated with the caries scores. Moreover, we found
decreases in total Candida CFU counts in the saliva samples after
HAART and an increased prevalence of periodontal pathogens, as
well as various anaerobic groups of bacteria. These findings indi-
cate continuous interactions between HIV infection status, host
immunocompetence, microbial pathogens, and clinical out-
comes. Thus, different members of the microbial community

TABLE 3 Microbial profiles of HIV-seropositive and HIV-seronegative
subjects

Categorya

Prevalence (%)

Total Seronegative

Seropositive,
before
HAART

Seropositive,
after
HAART

Phylum
Actinobacteriab 5.82 5.35 3.67 7.79
Bacteroidetesb 7.65 5.61 6.78 9.89
Firmicutes 65.0 64.97 68.64 62.32
Fusobacteriac 5.32 6.68 4.24 5.05
Proteobacteria 13.72 14.71 13.84 12.84
Synergistetes 2.49 2.67 2.82 2.11

Genus
Actinomyces 0.67 0.0 0.0 1.69
Aggregatibacter 1.50 0.80 2.82 1.06
Atopobium 0.58 0.27 0.0 1.27
Achromobacter 0.83 0.27 1.13 1.06
Campylobacter 4.32 5.60 3.66 3.81
Capnocytophaga 0.75 0.80 0.0 1.27
Clostridiales 0.08 0.0 0.0 0.21
Dialister 2.16 1.07 2.82 2.54
Eubacterium 1.08 1.07 1.41 0.85
Filifactor 0.58 1.60 0.28 0.00
Fusobacterium 2.91 4.53 1.69 2.54
Gemella 4.32 4.53 4.23 4.23
Granulicatella 2.99 2.67 2.25 3.81
Haemophilus 3.41 4.0 3.10 3.17
Kingella 0.17 0.53 0.0 0.0
Lachnospiraceae 1.08 1.33 0.85 1.06
Lactobacillus 0.17 0.27 0.0 0.21
Leptotrichia 2.41 2.13 2.54 2.54
Megasphaera 1.25 0.53 1.41 1.69
Neisseria 3.49 3.47 3.10 3.81
Parvimonas 3.24 3.20 3.66 2.96
Peptostreptococcaceae 0.08 0.27 0.0 0.0
Porphyromonas 0.50 0.80 0.0 0.63
Prevotella 6.07 4.0 6.48 7.40
Rothia 4.24 4.80 3.94 4.02
Selenomonas 0.83 0.53 0.28 1.48
Shuttleworthia 0.33 0.0 0.56 0.42
Slackia 0.33 0.53 0.0 0.42
Solobacterium 2.24 1.87 2.25 2.54
Sphaerocytophaga 0.08 0.00 0.00 0.21
Streptococcus 33.50 35.47 36.34 29.81
Synergistetes 2.49 2.67 2.82 2.11
Tannerella 0.25 0.0 0.28 0.42
Veillonella 11.06 10.40 12.11 10.78

a Microbial identification was performed with the human oral microbe identification
microarray (HOMIM) assay.
b P � 0.05, nonparametric Wilcoxon-Mann-Whitney test, for comparisons between
HIV-positive and HIV-negative samples.
c P � 0.05, nonparametric Friedman’s chi-square rank test, for comparisons of HIV-
positive samples before and after HAART.
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might respond differently to HAART. Previously, a significant
correlation was noted between CD8� T cell activation levels and
total bacterial 16S rRNA gene levels in stool samples from HIV-
infected subjects (78). We demonstrated a positive association
between CD8� T cell counts and the level of S. mutans coloniza-
tion in HIV-infected individuals (16). In addition to known
pathogens associated with aggressive periodontal disease, other
microbial species, such as Gemella morbillorum, Saccharomyces
cerevisiae, and Candida albicans, may contribute to periodontal
disease in HIV-seropositive subjects (70). Longitudinal follow-up
studies are needed to clarify these complex microbe-microbe and
host-pathogen interactions and to determine factors associated
with HIV that may mediate oral microbial colonization.

The present study showed that salivary microbial colonization
and composition were changed in HIV-infected individuals, both
before and after HAART, in comparison with HIV-negative con-
trols. Although the sample size was limited, the effects of HAART
on the molecular phylogenetic characteristics of the bacterial pop-
ulation were compelling. Since all of the HIV-positive subjects
were carefully screened and enrolled before the initiation of
HAART, the study was able to minimize potential treatment bias
and presented exploratory evidence regarding the potential real
associations between host immunological changes, microbiologi-
cal interspecies interactions, and clinical outcome assessments.
More importantly, our findings suggest that HAART may be able
to directly or indirectly reverse salivary microbial alterations asso-
ciated with HIV infection, allowing reconstitution of the oral mi-
crobiota. However, the polymicrobial characteristics of the oral
microbiota and their association with HIV infection and HAART
remain challenging. Elucidating the molecular mechanisms un-
derlying the responses of the oral microbiota to changes in the
host immune system will be useful for monitoring HIV infection
and evaluating disease prognosis.
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