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ABSTRACT

Human papillomavirus 45 (HPV45) is a member of the HPV18-related alpha-7 species and accounts for approximately 5% of all
cervical cancer cases worldwide. This study evaluated the genetic diversity of HPV45 and the association of HPV45 variants with
the risk of cervical cancer by sequencing the entire E6 and E7 open reading frames of 300 HPV45-positive cervical samples from
36 countries. A total of 43 HPV45 sequence variants were identified that formed 5 phylogenetic sublineages, A1, A2, A3, B1, and
B2, the distribution of which varied by geographical region. Among 192 cases of cervical cancer and 101 controls, the B2 sublin-
eage was significantly overrepresented in cervical cancer, both overall and in Africa and Europe separately. We show that the
sequence analysis of E6 and E7 allows the classification of HPV45 variants and that the risk of cervical cancer may differ by
HPV45 variant sublineage.

IMPORTANCE

This work describes the largest study to date of human papillomavirus 45 (HPV45)-positive cervical samples and provides a
comprehensive reference for phylogenetic classification for use in epidemiological studies of the carcinogenicity of HPV45 ge-
netic variants, particularly as our findings suggest that the B2 sublineage of HPV45 is associated with a higher risk of cervical
cancer.

There are over 100 types of human papillomavirus (HPV), of
which 12 have been classified as “carcinogenic to humans,”

or group 1, by a working group of the International Agency for
Research on Cancer (IARC) Monographs (1). While most HPV
infections are asymptomatic and eventually cleared by the im-
mune system, in some cases the infection will persist and, in
rare cases, lead to cancer (reviewed in reference 2). Evidence
suggests that not only HPV type but also sequence variations
within high-risk HPVs may influence viral persistence and
clinical outcome (3–8).

HPV45 is a high-risk HPV type that was first described in 1987
when it was cloned from a recurring cervical lesion found in a
woman in the United States (9). In addition to being a member of
the same phylogenetic species (alpha-7) as HPV18 (10, 11),
HPV45 is similarly more common in adenocarcinoma than in
squamous cell carcinoma of the cervix (12, 13). Approximately
5% of cervical cancers worldwide are positive for HPV45, al-
though this proportion was reported to vary from 3% in Eastern
Asia up to 9% in Africa (14). Based upon its level of enrichment in
cervical cancer compared to cytologically normal women, HPV45
has been suggested to be the third most carcinogenic type after
HPV16 and -18 (15).

Genetic variants of HPV45 have been classified into two
major lineages, A and B, and five sublineages, A1, A2, A3, B1,
and B2 (16). The whole-genome sequence of a variant lineage
differs by approximately 1.0% from another variant lineage of
the same HPV type, and differences of 0.5 to 0.9% define sub-
lineages (17).

In contrast to other high-risk HPV types (e.g., HPV16 [18]), no
studies exist on the association of HPV45 variants with cervical
cancer risk. The aims of the current study, therefore, were to char-
acterize the genetic diversity of HPV45 worldwide and to explore

the association of HPV45 variant sublineages with the risk for
cervical cancer.

MATERIALS AND METHODS
Origin of clinical specimens. The IARC has coordinated cervical cancer
case series, cervical cancer case-control studies, and population-based
HPV prevalence surveys in a large number of countries around the
world (19–35; also as-yet-unpublished studies from Fiji and Bhutan).
The collection of samples has spanned a period of over 20 years from
1989 until 2012 and predates the introduction of HPV vaccines. In-
formed consent was obtained from all participants, and the studies
were approved by the IARC Ethical Review Committee. Cervical sam-
ples (exfoliated cells or tissue biopsy specimens) derived from these
studies have been comprehensively genotyped for HPV type by using a
standardized and well-validated protocol (general primer GP5�/6�
PCR-enzyme immunoassay [EIA] followed by reverse line blot assay)
(36) in one centralized laboratory (Molecular Pathology Unit, Depart-
ment of Pathology, VU University Medical Center, Amsterdam, The
Netherlands). All HPV45-positive cervical samples in the IARC bio-
bank were selected for the current analysis, without exclusion. Forty-
seven of these specimens were used in the context of a previous study
(37). All specimens were categorized into the following regions: Africa,
Asia and Oceania, Europe, North America, and South America. Coun-
try-specific details are noted in Table 1.

PCR and DNA sequencing. DNA extraction from stored samples
was performed using the High Pure PCR template preparation kit
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(Roche, Mannheim, Germany), and DNA isolates were subjected to
�-globin PCR to assess sample quality, as described previously (38).
Sequencing of the entire HPV45 E6 and E7 region (nucleotides 102 to
907) was performed as described previously (37) using a series of
HPV45-specific primer pairs that were designed to amplify overlap-
ping regions of the HPV45 E6 and E7 open reading frames in order to
cover the entire E6 and E7 region.

To reveal single nucleotide polymorphisms (SNPs), sequences of the
specimens were aligned with the prototype HPV45 sequence (NCBI
accession number X74479) using multalin software (http://multalin
.toulouse.inra.fr/multalin/). SNPs that were observed in only one sample
were confirmed by reexamination of the sequence traces. Isolates that did
not fall into existing lineage categories were confirmed by manual reex-
amination of the sequencing traces and with additional sequencing, where

necessary. Multiple sequence traces for each sample were compiled to
provide one sequence encompassing the entire HPV45 E6 and E7 region.

Phylogenetic analysis. Unrooted consensus trees were built using the
Phylogeny Inference Package (PHYLIP), version 3.69 (39). This included
generating 10,000 bootstraps using the F84 model of DNA distances, clus-
tering with the unweighted pair group method with arithmetic mean
(UPGMA), and applying the majority rule extended, or greedy, method of
consensus. Trees created with a maximum-likelihood method showed
similar results and are not described further. All unique sequence variants
found in the IARC samples, as well as two unique variants reported in the
literature (40), were included in the trees.

Case-control analysis. Samples were classified as either controls (in-
cluding normal [n � 79], atypical squamous or glandular cells of unde-
termined significance [ASCUS; n � 2], or low-grade intraepithelial lesion
[LSIL; n � 7]) or cases (squamous cell carcinoma [n � 138], adenocarci-
noma [n � 11], adenosquamous cell carcinoma [n � 7], or unspecified
invasive cervical cancer [n � 36]). Samples from population-based HPV
prevalence studies for which histology and cytology were unavailable were
also classified as controls (n � 13). Samples reported as cervical intraepi-
thelial neoplasia (CIN) grade 3 or high-grade squamous intraepithelial
lesion (HSIL) were excluded from the case-control analysis (n � 7) but
were included in the previously described phylogenetic analysis. There
were no samples reported as CIN1 or CIN2. Region-specific associations
between variant sublineage and case-control status were assessed by
2-sided P values arising from Fisher’s exact test without combining sub-
lineages. Region-specific odds ratios (ORs) and 95% exact confidence
intervals (CIs) were calculated for the B2 sublineage versus the combina-
tion of all other sublineages. A conditional logistic model stratified by
region was used for the calculation of the worldwide OR and exact CI,
comparing the B2 sublineage against all other sublineages combined. All
statistics were calculated with SAS version 9.3 (SAS Institute, Cary, NC,
USA).

Nucleotide sequence accession numbers. All specimen sequences are
available in GenBank (accession numbers KF591342 to KF591384).

RESULTS
Sequencing. The entire E6 and E7 genes were sequenced in a total
of 300 HPV45-positive cervical samples from 36 countries, in-
cluding 10 countries in Africa, 12 countries in Asia/Oceania, 4
countries in Europe, 2 countries in North America, and 8 coun-
tries in South America (Table 1).

A total of 44 SNPs were identified across the E6 and E7 open
reading frames. The combinations of these SNPs resulted in 43
unique sequences, which will be called variants (Table 2). Two
additional variants (including 4 additional SNPs) were identified
from the literature (40) and were included in the phylogenetic
analysis. In E6, there were 28 SNPs (5.9% nucleotide variation), 15
resulting in amino acid changes. In E7, there were 20 SNPs (6.2%
nucleotide variation), 12 resulting in amino acid changes. There
were no SNPs observed in the 8-nucleotide region between the E6
and E7 open reading frames. The maximum pairwise difference of
the E6 and E7 sequence between any two variants was approxi-
mately 2%.

Phylogenetic analysis. The 45 unique variants clustered into 5
groups in the phylogenetic tree (Fig. 1) that corresponded to the
previously described sublineages A1, A2, A3, B1, and B2 (16).
Twelve variants, representing 39 samples (variants ID 3 to 14 in
Table 2), plus one variant from the literature (variant ID 2Ch
[40]), were of the same A1 sublineage as the prototype variant
(NCBI accession number X74479, variant ID 1, n � 38). Eight
variants, representing 85 samples (variant IDs 15 to 22), corre-
sponded to the previously reported A2 sublineage, and 6 variants,
representing 9 samples (variant IDs 23 to 28), corresponded to the

TABLE 1 Geographic distribution of 300 HPV45-positive cervical
samplesa

Region and country No. of samples

Africa 108
Algeria 9
Guinea 17
Kenya 19
Mali 12
Morocco 6
Nigeria 13
Senegal 9
South Africa 17
Tanzania 4
Uganda 2

Asia/Oceania 104
Bhutan 10
China 4
Fiji 10
India 12
Indonesia 4
Iran 3
South Korea 1
Mongolia 14
Nepal 1
Philippines 36
Thailand 7
Vanuatu 2

Europe 43
Georgia 22
Italy 8
Poland 11
Spain 2

North America 5
Canada 3
USA 2

South America 40
Argentina 3
Bolivia 4
Brazil 8
Chile 4
Cuba 2
Panama 6
Paraguay 10
Peru 3

a The regions and regional subtotals are in boldface type.
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previously reported A3 sublineage. In the B lineage, we observed 8
variants, representing 55 samples (variant IDs 29 to 36), that cor-
responded to the previously reported B1 sublineage and 8 vari-
ants, representing 74 samples (variant IDs 37 to 45), plus one

variant from the literature (variant ID 38Ch [40]) that corre-
sponded to the previously described B2 sublineage.

There were 5 and 1 nucleotide positions in E6 and E7, respec-
tively, which discriminated at least one sublineage from another

TABLE 2 HPV45 variants based on the sequence of the E6 and E7 regions of HPV45-positive cervical samplesa

a Light gray shading highlights the SNPs that are diagnostic for one lineage or sublineage. Nucleotide positions with dark gray shading are able to discriminate at least one (sub)lineage from
one other (sub)lineage. Variant identifiers correspond to those in Fig. 1. AA, amino acid; Nucl., nucleotide; Ch, additional unique E6/E7 variant identified from the literature (40).
b The SNP at nucleotide 162 was always found in conjunction with the SNP at nucleotide 163. With both changes, the amino acid at position 21 is threonine (T).
c The SNP at nucleotide 599 was always found in conjunction with the SNP at nucleotide 600. With both changes, the amino acid at position 5 is lysine (K).

FIG 1 Phylogenetic tree of HPV45 variants based on E6 and E7. The numbers at the end of the branches correspond to the variant identifiers (IDs) listed in Table
2. The prototype sequence is variant 1 in sublineage A1.
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(dark gray background for nucleotide positions in Table 2). Fur-
thermore, 4 of these SNPs in E6 were “diagnostic” (i.e., consis-
tently present and unique) for one sublineage only (light gray
background for nucleotide bases in Table 2), but no such diagnos-
tic SNP existed in E6 or E7 for the A1 or B1 sublineages. Based on
our data, by genotyping a minimum of four nucleotide positions
(e.g., 124, 150, 487, and 497), it is possible to correctly classify an
isolate into one of the five sublineages.

The distribution of HPV45 sublineages varied by geographical
region (Fig. 2), with a predominance of the A1 sublineage in Af-
rica, the A2 sublineage in Asia/Oceania, and the B1 sublineage in
Europe. The number of North American samples was low, but 3
out of 5 samples were of the A2 sublineage. The A3 sublineage was
rare and was seen in Africa and South America only.

Case-control analysis. The distribution of HPV45 variant sub-
lineages was compared between cases (n � 192) and controls (n �
101) (Table 3). To avoid misclassification, samples diagnosed as
HSIL or CIN3 (n � 7) were excluded (although their inclusion as
cases in a sensitivity analysis did not change the results; data not
shown). The distribution of the variant sublineages differed sig-
nificantly between the cases and controls among the samples from
Africa (P � 0.01) and Europe (P � 0.02). In both regions, it ap-
pears that this difference was driven by the overrepresentation of
the B2 lineage in cases with a relative risk of 6.2 (95% CI � 1.3 to
57.1) for African samples and 5.7 (95% CI � 0.9 to 60.0) for
European samples. Although not statistically significant, Asia/
Oceania showed a similar pattern, with a relative risk of 2.4 (95%
CI � 0.8 to 7.6). The absence of controls from the Americas pre-
cluded a similar analysis. When the cases and controls from all
regions were combined, the relative risk of cervical cancer for the
B2 sublineage was 3.7 (95% CI � 1.8 to 8.5) compared to all other
sublineages.

To be certain that the cases were associated with HPV45 and
not another HPV type, the analyses were repeated excluding the
cases with multiple high-risk HPV infections. This resulted in a
loss of 12, 7, 3, 1, and 6 cases from Africa, Asia/Oceania, Europe,
North America, and South America, respectively. Despite the re-
duction in the number of samples, the associations between the B2
sublineage and cervical cancer remained significant for Africa
(P � 0.03) and Europe (P � 0.02).

Approximately 10% of the cases were adenocarcinomas
(n � 18). Results were consistent when restricting the case-
control analyses to only squamous cell carcinomas (results not
shown).

FIG 2 Geographical distribution of HPV45 sublineages shown as a propor-
tion of the total number of HPV45-positive samples collected from each re-
gion, irrespective of case-control status.
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DISCUSSION

Given the uniquely large and diverse collection of HPV-geno-
typed cervical samples at the IARC, we were able to evaluate the
genetic diversity within high-risk HPV types and report on the
geographic distribution of variants, as well as measure their
association with cervical cancer. By sequencing the entire E6
and E7 open reading frames of 300 HPV45-positive cervical
samples, we were able to confirm all previously reported
HPV45 sublineages (A1, A2, A3, B1, and B2) (16, 37, 40, 41)
and to further characterize the genetic diversity in the E6 and
E7 genes of HPV45. The amount of genetic variation in E6 and
E7 captured in the present study (5.9% and 6.2% of nucleo-
tides, respectively) was twice that of the largest previous report
(2.9% and 3.1%) (40). For example, we identified five new
variants belonging to the A3 sublineage in addition to the single
previously known variant (40).

As has been shown previously for HPV16 and HPV33 (42, 43),
the distribution of HPV45 variant lineages varies around the
world. The HPV45 A1 sublineage was largely specific for Africa,
similar to the AFR1 and AFR2 lineages (now known as lineages B
and C) of HPV16 and the B lineage of HPV33. In contrast, the B1
and B2 sublineages of HPV45 were present in all regions, similar
to the Eur (A1/A2) sublineage of HPV16 and the A1 sublineage of
HPV33. Thus, HPV45 phylogenetic separation may have been
partly driven by forces similar to those for other HPV types during
the coevolution with human populations.

Due to such geographic heterogeneity of the variant sublin-
eages, we performed the case-control comparison stratified by re-
gion, as was done for previous similar studies of HPV variants.
Using this approach, we were able to identify significant associa-
tions between HPV45 variant sublineages and cervical cancer risk.
This difference appeared to be predominantly driven by a signifi-
cant overrepresentation of the B2 sublineage in cervical cancer,
notably in Africa and Europe. Furthermore, given that this effect
was not heterogeneous by region, we also present the significant
pooled estimate worldwide. The only other study of the outcome
of infection with HPV45 variants, a cohort study in Costa Rica,
reported B lineages to be associated, albeit nonsignificantly, with
persistent HPV45 infection and development of CIN3� (6). Un-
fortunately, our study was not able to compare cervical cancer risk
specifically for the Americas due to a lack of HPV45-positive con-
trols.

By comparing the amino acid sequence of HPV45 to that of the
better-characterized HPV16 and -18, we can surmise that there

are not any observed changes in amino acids at the critical posi-
tions in E6/E7 (Fig. 3). For example, the HPV45 E6 protein ap-
pears to have two zinc binding domains that begin at amino acid
positions 32 and 105, a PDZ binding domain (at amino acid po-
sitions 154 to 158), and a tyrosine at amino acid position 56 and
isoleucine at position 130 that may be part of the LXXLL binding
motif critical for association with LXXLL proteins such as E6AP
(similar to Y54 and I128 in HPV16 [44]). The HPV45 E7 protein
appears to have an RB1 binding site at positions 26 to 30, a casein
kinase II (CKII) recognition site with serines at positions 33 and
35, and a zinc binding domain that begins at position 66. The lack
of mutations in these biologically relevant positions for HPV45 is
similar to what was seen in the analysis of HPV16 E6 variants (42;
I. Cornet, personal communication) and HPV33 E6 and E7 vari-
ants (43). Additionally, there were no SNPs observed at the E6*
splice sites (45) at positions 226 to 230 (donor) and 413 to 417
(acceptor) or at the neighboring intronic nucleotides. Nonethe-
less, it is possible that there are significant biological effects caused
by the changes that we observed in the amino acids of E6 and E7
that have not yet been mapped to a specific biological or onco-
genic function. It is also possible that SNPs in other regions of the
HPV genome linked to those we describe for E6 and E7 are re-
sponsible for differences in oncogenic potential.

Whole-genome sequencing remains the gold standard for
complete phylogenetic characterization. However, it is not always
feasible to do so. Importantly, our data suggest that it is possible to
characterize the sublineage of HPV45 isolates through the geno-
typing of only four nucleotide positions in E6 (e.g., 124, 150, 487,
and 497). This not only reduces the cost and complexity of phy-
logenetic studies but also allows one to include samples in which
the DNA is not of sufficient quality or quantity for full-genome
sequencing.

The major limitation of the current study was the relative rarity
of HPV45 and, hence, the limited sample sizes within individual
regions. The distribution of the lineages and the significant ORs
that we report should, therefore, be interpreted with caution be-
cause of the broad CIs and the possibility that there is heterogene-
ity between the countries grouped together by region given that
the distributions of cases and controls were not balanced by coun-
try (Table 4).

In summary, the present study provides a practical approach
for phylogenetic classification for use in epidemiological studies of
the natural history and carcinogenicity of HPV45 genetic variants.
The findings of this study suggest that the B2 sublineage may be

FIG 3 Positions of SNPs resulting in amino acid changes (red triangles) in HPV45 E6 and E7 open reading frames. Putative biologically relevant positions (green
bars) based on sequence homology with HPV16 and HPV18 and E6* splicing sites (orange bars) are shown. CxxC is a zinc binding motif, RETQV is a PDZ
binding motif, LxCxE is an RB1 binding motif, and SxxE is a casein kinase II recognition site. Y56 and I130 may be part of an LXXLL binding motif. Numbering
of select amino acids is provided for reference.
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associated with a higher risk of cervical cancer. Understanding the
genetic basis of differences in the carcinogenicity of HPV45 vari-
ants may help us unravel the mechanisms of HPV infection and its
malignant consequences.
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TABLE 4 Country-specific distribution of HPV45-positive cases, controls, and samples excluded from case-control analyses (CIN3 and HSIL)

Region and country

No. of samples

Case Control CIN3 or HSIL

A1 A2 A3 B1 B2 A1 A2 A3 B1 B2 A1 A2 A3 B1 B2

Africa
Algeria 1 3 1 3 1
Guinea 6 10 1
Kenya 8 3 8
Mali 9 1 2
Morocco 1 4 1
Nigeria 10 1 2
Senegal 6 3
South Africa 10 2 1 3 1
Tanzania 4
Uganda 2

Asia/Oceania
Bhutan 1 1 3 4 1
China 1 1 2
Fiji 6 3 1
India 3 2 5 1 1
Indonesia 1 3
Iran 1 1 1
South Korea 1
Mongolia 12 1 1
Nepal 1
Philippines 1 27 2 5 1
Thailand 7
Vanuatu 1 1

Europe
Georgia 6 4 9 2 1
Italy 1 3 4
Poland 3 1 7
Spain 1 1

North America
Canada 2 1
USA 1 1

South America
Argentina 1 1 1
Bolivia 3 1
Brazil 1 7
Chile 1 1 2
Cuba 1 1
Panama 3 1 1 1
Paraguay 2 2 1 4 1
Peru 3

Total 46 54 5 27 60 29 30 4 27 11 2 1 0 1 3
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