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ABSTRACT

Herpesviruses have evolved a unique mechanism for nuclear egress of nascent progeny nucleocapsids: the nucleocapsids bud
through the inner nuclear membrane into the perinuclear space between the inner and outer nuclear membranes (primary en-
velopment), and enveloped nucleocapsids then fuse with the outer nuclear membrane to release nucleocapsids into the cyto-
plasm (de-envelopment). We have shown that the herpes simplex virus 1 (HSV-1) major virion structural protein UL47 (or
VP13/VP14) is a novel regulator for HSV-1 nuclear egress. In particular, we demonstrated the following: (i) UL47 formed a com-
plex(es) with HSV-1 proteins UL34, UL31, and/or Us3, which have all been reported to be critical for viral nuclear egress, and
these viral proteins colocalized at the nuclear membrane in HSV-1-infected cells; (ii) the UL47-null mutation considerably re-
duced primary enveloped virions in the perinuclear space although capsids accumulated in the nucleus; and (iii) UL47 was de-
tected in primary enveloped virions in the perinuclear space by immunoelectron microscopy. These results suggested that UL47
promoted HSV-1 primary envelopment, probably by interacting with the critical HSV-1 regulators for viral nuclear egress and
by modulating their functions.

IMPORTANCE

Like other herpesviruses, herpes simplex virus 1 (HSV-1) has evolved a vesicle-mediated nucleocytoplasmic transport mecha-
nism for nuclear egress of nascent progeny nucleocapsids. Although previous reports identified and characterized several HSV-1
and cellular proteins involved in viral nuclear egress, complete details of HSV-1 nuclear egress remain to be elucidated. In this
study, we have presented data suggesting (i) that the major HSV-1 virion structural protein UL47 (or VP13/VP14) formed a com-
plex with known viral regulatory proteins critical for viral nuclear egress and (ii) that UL47 played a regulatory role in HSV-1
primary envelopment. Thus, we identified UL47 as a novel regulator for HSV-1 nuclear egress.

Morphogenesis of herpes simplex virus 1 (HSV-1), like that of
other herpesviruses, takes place in two different cellular

compartments (1, 2). Viral DNA replication and transcription,
capsid assembly, and packaging of nascent progeny virus genomes
into preformed capsids take place in the nucleus, and final envel-
opment takes place in the cytoplasm (1, 2). Since herpesvirus nu-
cleocapsids are too large to traverse the nuclear lamina or cross the
inner and outer nuclear membranes (INM and ONM, respec-
tively) through nuclear pores, these viruses appear to have evolved
a unique nuclear egress mechanism in which progeny nucleocap-
sids acquire primary envelopes by budding through the INM into
the space between the INM and ONM, the perinuclear space, and
then the enveloped nucleocapsids fuse with the ONM to release
de-enveloped nucleocapsids into the cytoplasm (1, 2).

In the present study, we focus on the first step of HSV-1 nuclear
egress, the process by which progeny nucleocapsids acquire pri-
mary envelopes by budding through the INM into the perinuclear
space (primary envelopment). It has been well established that a
heterodimeric complex of HSV-1 proteins UL31 and UL34, which
are conserved in all known herpesviruses, plays a crucial role in
HSV-1 primary envelopment (1–5). In the absence of the HSV-1
UL31/UL34 complex, nucleocapsids accumulate in the nucleo-
plasm, and progeny virus intermediates and virions are barely
detectable in the perinuclear space or cytoplasm or at the cell
surface (5, 6). The HSV-1 UL31/UL34 complex and its homologs

in other herpesviruses have been suggested to coordinate multiple
events in the primary envelopment of nucleocapsids, including
the following: (i) disruption of the nuclear lamina, which has been
suggested to facilitate herpesvirus nucleocapsid access to the INM,
by recruiting cellular protein kinases, such as protein kinase C
isoforms, and by direct binding to components of the nuclear
lamina (i.e., lamins A and C) and modifying their conformation
(1, 2, 7–11); (ii) recruitment of nucleocapsids into primary enve-
lopes by interaction of the UL31/UL34 complex and the capsid
vertex-specific component (CVSC), which consists of the con-
served capsid proteins UL17 and UL25 (12, 13); and (iii) budding
of nucleocapsids into the INM (14, 15). In addition to UL31 and
UL34, an HSV-1 serine/threonine protein kinase Us3 has been
suggested to be involved in HSV-1 primary envelopment since
Us3 phosphorylates and regulates proper localization of UL34 and
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UL31 at the nuclear membrane (4, 16, 17) and phosphorylates and
modifies lamins A and C (7, 8, 10).

UL47 (or VP13/VP14) is a major structural protein in HSV-1
virion tegument (18). UL47 is an RNA binding protein (19) and
shuttles between the cytoplasm and nucleus in HSV-1-infected
cells (20). It has been suggested that UL47 may be a positive reg-
ulator of viral replication and pathogenicity, based on studies
showing that recombinant UL47 mutant viruses have reduced
growth in cell cultures and reduced pathogenicity in a mouse
model (21, 22). Although the precise mechanisms by which UL47
functions in viral replication and pathogenicity remain largely un-
known at present, the mechanisms by which UL47 acts in HSV-1-
infected cells have been gradually elucidated as described below.
Thus, (i) it has been reported that UL47 can regulate subcellular
localization of some viral and cellular proteins that interact with it.
For example, UL47 together with the HSV-1 regulatory protein
ICP27 associates with and promotes nuclear translocation of the
major form of the polyadenylate-binding protein PABC1 (23),
and UL47 forms a complex with and promotes nuclear localiza-
tion of Us3 in HSV-1-infected cells (21). (ii) UL47 was also shown
to interact with capsid protein UL17 (24). As described above,
UL17 forms a CVSC complex with UL25, which was suggested to
recruit nucleocapsids for primary envelopes by interacting with
the UL31/UL34 complex (12, 13). (iii) Recently, it has been re-
ported that UL47 interacted with the viral endoribonuclease re-
sponsible for virus host protein synthesis shutoff (vhs) and atten-
uated vhs activity (25).

We previously reported that Us3 phosphorylated UL47 and
promoted its nuclear localization in HSV-1-infected cells (21). In
cells infected with an HSV-1 mutant encoding a Us3 kinase-dead
mutant or carrying a mutation in the Us3 phosphorylation site in
UL47, UL47 accumulated aberrantly in punctate structures at the
nuclear membrane (21). During the course of the study, we no-
ticed that the punctate structures containing UL47 induced in the
absence of Us3 kinase activity in HSV-1-infected cells were remi-
niscent of the discrete foci containing the UL31/UL34 complex
observed at the nuclear membrane in cells infected with HSV-1
mutants carrying a mutation abrogating either the expression or
catalytic activity of Us3 (4, 26). These observations raised the pos-
sibility that UL47 interacted with the UL31/UL34 complex at the
nuclear membrane and modulated the function(s) of the complex
in HSV-1-infected cells. In the present study, we examined this
possibility and showed that UL47 colocalized with UL31, UL34,
and Us3 at the nuclear membrane and formed a complex with
these viral proteins in HSV-1-infected cells. We also presented
the data demonstrating that the UL47-null mutation consider-
ably reduced primary enveloped virions in the perinuclear
space although capsids accumulated in the nucleus. These re-
sults suggested that UL47 promoted HSV-1 primary envelop-
ment, probably by interacting with the critical HSV-1 regula-
tors for nuclear egress, the UL31/UL34 complex and Us3, and
by modulating their functions.

MATERIALS AND METHODS
Cells and viruses. Vero, HEp-2, and rabbit skin cells were described pre-
viously (27, 28). The following viruses have been described previously (21,
29): HSV-1 wild-type strain HSV-1(F); recombinant virus YK524, encod-
ing UL47 fused to the monomeric red fluorescent protein mRFP1
(mRFP1-UL47); recombinant virus YK527, encoding mRFP1-UL47
and carrying the Us3K220M mutation (mRFP1-UL47/Us3K220M);

recombinant virus YK528, in which Us3K220M in YK527 was repaired
(mRFP1-UL47/Us3K220M-repair); recombinant virus YK523, encod-
ing mRFP1-UL47 and Us3 fused to the fluorescent protein VenusA206K
(VenusA206K-Us3/mRFP1-UL47); recombinant virus YK545, a UL47-
null mutant virus in which the UL47 gene was disrupted by insertion of a
foreign gene cassette just downstream of the UL47 start codon (�UL47);
and recombinant virus YK546, in which the foreign gene cassette inserted
into the UL47 locus of YK545 (�UL47) was excised (�UL47-repair)
(Fig. 1).

Plasmids. To generate a fusion protein of maltose binding protein
(MBP) and either part of HSV-1 UL31 or part of HSV-2 UL31, plasmid
pMAL-UL31-C or pMAL-UL31(2)-Pii, respectively, was constructed by
cloning the HSV-1 UL31 domain consisting of codons 50 to 307 amplified
by PCR from pBC1007 (30) or the HSV-2 UL31 domain consisting of
codons 183 to 306 amplified by PCR from pYEbac356, a full-length infec-
tious HSV-2 186 clone (31), respectively, into pMAL-c (New England
BioLabs) in frame with the MBP. To generate fusion proteins of MBP and
parts of UL47, plasmids pMAL-UL47-Pi, pMAL-UL47-Pii, and pMAL-
UL47-Piii were constructed by cloning the UL47 domain consisting of
codons 1 to 120, 121 to 390, and 380 to 693, respectively, amplified by PCR
from pBC1007 into pMAL-c.

Mutagenesis of viral genomes in Escherichia coli and generation of
recombinant HSV-1. To generate recombinant viruses YK536 with the
UL47 protein carrying an MEF (for myc tag, the tobacco etch virus pro-
tease cleavage site, and FLAG tag) tag (MEF-UL47), YK538 (MEF-UL34),
and YK539 (MEF-UL31) (Fig. 1), a two-step Red-mediated mutagenesis
procedure was carried out using E. coli GS1783 containing pYEbac102
(28), a full-length infectious HSV-1(F) clone, as described previously (29)
except with the primers listed in Table 1.

Production and purification of MBP fusion proteins in E. coli. MBP
fusion proteins MBP-UL31-C, MBP-UL31(2)-Pii, MBP-UL47-Pi, MBP-
UL47-Pii, and MBP-UL47-Piii were expressed in E. coli that had been
transformed with pMAL-UL31-C, pMAL-UL31(2)-Pii, pMAL-UL47-Pi,
pMAL-UL47-Pii, and pMAL-UL47-Piii, respectively, and purified as de-
scribed previously (16, 30).

Antibodies. To generate rabbit polyclonal antibody to UL31 or UL47,
rabbits were immunized, respectively, with purified MBP-UL31(2)-Pii or
with a mixture of MBP-UL47-Pi, MBP-UL47-Pii, and MBP-UL47-Piii as
described previously (27). Serum from the immunized rabbits was used as
anti-UL31 or anti-UL47 rabbit polyclonal antibody. To generate mouse
polyclonal antibody to UL31, BALB/c mice were immunized once with
purified MBP-UL31-C with TiterMax Gold adjuvant (TiterMax USA,
Inc.). Serum from the immunized mice was used as anti-UL31 mouse
polyclonal antibody. Commercial rabbit polyclonal antibody against
VP23 (CAC-CT-HSV-UL18; CosmoBio) and commercial mouse mono-
clonal antibodies against Flag (M2; Sigma), Myc (PL14; MBL), and �-tu-
bulin (DM1A; Sigma) were used in this study. Rabbit polyclonal antibody
to UL34 and chicken polyclonal antibody to UL34 were described previ-
ously (29, 31). Rabbit polyclonal antibodies to Us3, UL46, and UL48 were
described previously (29, 31, 32).

Ethics statement. All animal experiments were carried out in accor-
dance with the Guidelines for Proper Conduct of Animal Experiments,
Science Council of Japan. The protocol was approved by the Institutional
Animal Care and Use Committee (IACUC) of the Institute of Medical
Science, The University of Tokyo (IACUC protocol approval number
19-26).

Antibody analyses. Immunoprecipitation, immunoblotting, and im-
munofluorescence were performed as described previously (27, 30).

Electron microscopic analysis. Vero cells infected with wild-type
HSV-1(F), YK545 (�UL47), or YK546 (�UL47-repair) at a multiplicity of
infection (MOI) of 5 for 18 h were examined by ultrathin-section electron
microscopy as described previously (31). Immunoelectron microscopy
was performed as described previously (33, 34). Briefly, Vero cells infected
with wild-type HSV-1(F) or YK536 (MEF-UL47) at an MOI of 5 for 18 h
were fixed with 2% paraformaldehyde and 1% glutaraldehyde in 0.1 M
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cacodylate buffer (pH 7.4) on ice for 1 h. After a wash with the same buffer,
the cells were postfixed with 2% osmium tetroxide on ice for 1 h, washed
with distilled water, dehydrated with an ethanol gradient series, incubated
in propylene oxide, and embedded in an Epon 812 resin mixture. Ultra-
thin sections were prepared on nickel grids as described previously (34)
and incubated with a saturated sodium periodate solution (33), followed
by 0.2 M glycine in phosphate-buffered saline (PBS) buffer. After a PBS
wash, the sections were incubated with 1% bovine serum albumin in PBS
and then with anti-Myc mouse monoclonal antibody. The sections were
then washed with PBS and incubated with goat anti-mouse IgG conju-
gated to 10-nm gold particles. After immunostaining, the sections were
stained with 2% uranyl acetate and Reynold’s lead citrate and examined
by transmission electron microscopy.

RESULTS
Localization of UL47, UL31, and UL34 in the presence or ab-
sence of the Us3 catalytic activity in HSV-1-infected cells. As

described above, Us3 has been reported to phosphorylate UL31,
UL34, and UL47 (16, 17, 21) and to regulate their proper localiza-
tion at the nuclear membrane in HSV-1-infected cells (4, 21). In
the absence of the Us3 catalytic activity, the UL31/UL34 complex
and UL47 were shown to localize aberrantly in similar punctate
structures at the nuclear membrane in HSV-1-infected cells (4, 21,
26, 35). To examine whether UL47 colocalized with the UL31/
UL34 complex in the presence or absence of the Us3 catalytic
activity in HSV-1-infected cells, Vero cells were infected with
YK524(mRFP1-UL47)encodingmRFP1-UL47,YK527(mRFP1-
UL47/Us3K220M) encoding mRFP1-UL47, and Us3 with the
kinase-dead K220M mutation or YK528 (mRFP1-UL47/
Us3K220M-repair) in which the Us3 K220M mutation in YK527
was repaired (Fig. 1). At 18 h postinfection, infected cells were
fixed and stained with anti-UL34 or anti-UL31 antibody, and lo-

FIG 1 Schematic diagrams of the genome structures of wild-type HSV-1(F) and the relevant domains of the recombinant viruses used in this study. Line 1,
wild-type HSV-1(F) genome; line 2, domains of the UL46 to UL48 and Us2 to Us5 genes; line 3, domains of the UL47 and Us3 genes; lines 4 to 10, recombinant
viruses with mutations in the UL47 and/or Us3 genes; line 11, domains of the UL30 to UL35 genes; line 12, domains of the UL34 and UL31 genes; line 13,
recombinant virus encoding MEF-tagged UL31; line 14, recombinant virus encoding MEF-tagged UL34.

TABLE 1 Oligonucleotide primers used for construction of the recombinant viruses in this study

Mutation Primer Sequence (5=–3=)
MEF-UL34 Forward GAACCCTTTGGTGGGTTTACGCGGGCACGCACGCTCCCATCGCGGGCGCCATGGAGCAAAAGCTCATTTC

Reverse CCCTCGAAGGCGTCACCTGGGTGGCCGGTGTAGGGCTTGCCCAGTCCCGCATCTTTGTCATCGTCGTCCT

MEF-UL31 Forward CTCGATCTCGCTCCTGTCCCTGGAGCACACCCTGTGTACCTATGTATGACGAGCAAAAGCTCATTTCTGA
Reverse TCCTTGCCGTGATAGGGCCCGGGCCGGGAGCCGCGGCGATGGGGGTCGGTATCTTTGTCATCGTCGTCCT

MEF-UL47 Forward TTCTTTTTTGGGGGGTAGCGGACATCCGATAACCCGCGTCTATCGCCACCATGGAGCAAAAGCTCATTTC
Reverse CGGGGGCGGGTGGATGCGCGCCTCCTACGCCCCGCGGGTTCGCGAGCCGAATCTTTGTCATCGTCGTCCT
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calization of mRFP1-UL47 in combination with UL34 or UL31
was examined by confocal microscopy. It has been noted that the
anti-UL47 antibody reported to date was not useful for immuno-
fluorescence assays because it showed nonspecific staining (24). In
agreement with the report, the anti-UL47 antibody generated in this
study was not useful for immunofluorescence (data not shown).
Therefore, we used YK524 (mRFP1-UL47), YK527 (mRFP1-UL47/
Us3K220M), and YK528 (mRFP1-UL47/Us3K220M-repair) ex-
pressing UL47 tagged with the fluorescent protein mRFP1 (21) to
detect UL47 localization. The mRFP1 tag on UL47 appeared to
have little effect on the function(s) of UL47 in HSV-1-infected
Vero cells since we previously reported that YK524 (mRFP1-
UL47) showed growth kinetics similar to that of the wild-type
HSV-1(F) in Vero cells (21) and since, as shown in Fig. 2A, Vero
cells infected with YK524 (mRFP1-UL47) produced UL47 protein
at a level similar to that in cells infected with wild-type HSV-1(F).
As shown in Fig. 3, mRFP1-UL47 was localized throughout the
nuclei of Vero cells infected with YK524 (mRFP1-UL47) or YK528
(mRFP1-UL47/Us3K220M-repair) and colocalized at the nuclear
rim with UL31 and UL34, which were detected smoothly along the
nuclear rim. In Vero cells infected with YK527 (mRFP1-UL47/
Us3K220M), mRFP1-UL47 accumulated in the punctate struc-
tures at the nuclear rim and colocalized with UL34 and UL31 in
these punctate structures (Fig. 3).

Interactions among UL47, UL31, UL34, and Us3 in HSV-1-
infected cells. The data above showing that UL47 colocalized well
with UL31 and UL34 at the nuclear membrane in the presence or
absence of the Us3 catalytic activity in HSV-1-infected cells and
our previous observation that UL47 formed a complex with Us3 in
HSV-1-infected cells (21) raised the possibility that UL47 inter-
acted with UL31, UL34, and Us3 at the nuclear membrane in
HSV-1-infected cells. To test this possibility, we performed two
series of experiments. In the first series of experiments, Vero cells
were infected with wild-type HSV-1(F), YK536 (MEF-UL47) en-
coding MEF-tagged UL47, YK538 (MEF-UL34) encoding MEF-
tagged UL34, or YK539 (MEF-UL31) encoding MEF-tagged UL31
(Fig. 1) and, at 18 h postinfection, lysed and immunoprecipitated
with anti-Myc antibody; the immunoprecipitates were analyzed
by immunoblotting with antibodies to the viral proteins shown in
Fig. 4. As shown in Fig. 4A, anti-Myc antibody coprecipitated
UL31, UL34, and Us3 with MEF-tagged UL47 from lysates of
YK536 (MEF-UL47)-infected Vero cells but did not coprecipitate
capsid protein VP23. In contrast, the anti-Myc antibody did not
immunoprecipitate any of these viral proteins from lysates of
wild-type HSV-1(F)-infected cells (Fig. 4A). These results indi-
cated that UL47 formed a complex(es) with UL31, UL34, and/or
Us3 in HSV-1-infected cells. Similarly, anti-Myc antibody copre-

FIG 2 Characterization of the recombinant viruses used in this study. (A)
Vero cells mock infected or infected with wild-type HSV-1(F) or YK524
(mRFP1-UL47) at an MOI of 5 for 18 h were analyzed by immunoblotting (IB)
with antibody to UL47. (B) Vero cells mock infected or infected with wild-type
HSV-1(F) or YK536 (MEF-UL47) at an MOI of 5 for 18 h were analyzed by
immunoblotting with antibody to UL47. (C) Vero cells were infected with
wild-type HSV-1(F), YK539 (MEF-UL31), YK538 (MEF-UL34), or YK536

(MEF-UL47) at an MOI of 5. Total viruses from cell culture supernatants and
infected cells was harvested at the indicated times and assayed on Vero cells.
(D) Vero cells mock infected or infected with wild-type HSV-1(F) or YK539
(MEF-UL31) at an MOI of 5 for 18 h were analyzed by immunoblotting with
antibody to UL31. (E) Vero cells infected with wild-type HSV-1(F) or YK539
(MEF-UL31) at an MOI of 3 for 18 h were analyzed by immunofluorescence
with antibody to UL31. Scale bar, 5 �m. (F) Vero cells mock infected or in-
fected with wild-type HSV-1(F) or YK538 (MEF-UL34) at an MOI of 5 for 18
h were analyzed by immunoblotting with antibody to UL34. (G) Vero cells
infected with wild-type HSV-1(F) or YK538 (MEF-UL34) at an MOI of 3 for 18
h were analyzed by immunofluorescence with antibody to UL34. Scale bar, 5
�m. �, anti.

Liu et al.

4660 jvi.asm.org Journal of Virology

http://jvi.asm.org


cipitated UL34, Us3, and UL47 with MEF-tagged UL31 from ly-
sates of YK539 (MEF-UL31)-infected cells (Fig. 4B) and copre-
cipitated UL31, UL47, and Us3 with MEF-tagged UL34 from
lysates of YK538 (MEF-UL34)-infected cells (Fig. 4C). These re-

sults indicated that UL31 formed a complex(es) with UL34, Us3,
and/or UL47 and that UL34 formed a complex(es) with UL31,
Us3, and/or UL47 in HSV-1-infected cells. We noted that the MEF
tag on UL47, UL31, and UL34 appeared to have little effect on the

FIG 3 Effect of Us3 kinase activity on localization of mRFP1-UL47, UL31, and UL34 in HSV-1-infected cells. Vero cells were infected with YK524 (mRFP1-
UL47), YK527 (mRFP1-UL47/Us3K220M), or YK528 (mRFP1-UL47/Us3K220M-repair) at an MOI of 3, fixed at 18 h postinfection, permeabilized, stained with
anti-UL31 (A) or anti-UL34 (B) antibody, and examined by confocal microscopy. Scale bar, 5 �m.

FIG 4 Interactions among UL47, UL31, UL34, and Us3 in HSV-1-infected cells. Vero cells infected with wild-type HSV-1(F) (A to C) and YK536 (MEF-UL47)
(A), YK539 (MEF-UL31) (B), or YK538 (MEF-UL34) (C) at an MOI of 5 for 18 h were harvested, immunoprecipitated (IP) with anti-Myc antibody (�-Myc), and
analyzed by immunoblotting (IB) with the indicated antibodies. WCE, whole-cell extract.
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functions of these proteins in HSV-1-infected Vero cells, as fol-
lows: (i) YK536 (MEF-UL47), YK539 (MEF-UL31), and YK538
(MEF-UL34) showed growth kinetics similar to that of the wild-
type HSV-1(F) in Vero cells (Fig. 2C); (ii) Vero cells infected with
YK536 (MEF-UL47), YK539 (MEF-UL31), and YK538 (MEF-
UL34) produced UL47, UL31, and UL34 proteins, respectively, at
levels similar to those in cells infected with wild-type HSV-1(F)
(Fig. 2B, D, and F); and (iii) localization of UL31 and UL34 pro-
teins in Vero cells infected with YK539 (MEF-UL31) and YK538
(MEF-UL34), respectively, was identical to that in cells infected
with wild-type HSV-1(F) (Fig. 2E and G).

In the second series of experiments, we examined whether
UL47 colocalized with not only UL31 and UL34 but also Us3 at the
nuclear membrane in HSV-1-infected cells. As with the anti-UL47
antibody described above, it has also been noted by us and by
other laboratories that the anti-Us3 antibodies reported to date
were not useful for immunofluorescence assays because they
showed nonspecific staining (29, 36). Therefore, we used YK523
(VenusA206K-Us3/mRFP1-UL47) expressing Us3 and UL47
tagged with fluorescent proteins VenusA206K and mRFP1 (21),
respectively, to detect Us3 and UL47 localizations (Fig. 1). Vero
cells infected with YK523 (VenusA206K-Us3/mRFP1-UL47) were
fixed at 18 h postinfection and stained with anti-UL34 or -UL31
antibody to enable simultaneous localization of combinations of
these proteins to be observed by confocal microscopy. As shown in
Fig. 5, VenusA206K-Us3 and mRFP1-UL47 colocalized with
UL34 and UL31 at the nuclear rim in Vero cells infected with
YK523 (VenusA206K-Us3/mRFP1-UL47). Similar results were
also obtained with YK523 (VenusA206K-Us3/mRFP1-UL47)-in-

fected Vero cells at 12 and 24 h postinfection (data not shown).
These results indicated that these viral proteins colocalized at the
nuclear membrane in HSV-1-infected cells.

Effect of the UL47-null mutation on viral nuclear egress. The
data above showing the interactions of UL47 with the critical
HSV-1 regulators for viral nuclear egress including UL31, UL34,
and Us3 led us to hypothesize that UL47 played a role(s) in viral
nuclear egress. To test this hypothesis, we investigated the effect of
the UL47-null mutation on viral morphogenesis by quantitating
the number of virus particles at different morphogenetic stages by
electron microscopy of Vero cells infected with wild-type HSV-
1(F), YK545 (�UL47), or YK546 (�UL47-repair). In Vero cells
infected with wild-type HSV-1(F) and YK546 (�UL47-repair),
19.9 and 15.9%, respectively, of the total number of virus particles
were primary enveloped virions in the perinuclear space (Table 2).
However, cells infected with YK545 (�UL47) had almost no
(0.4%) primary enveloped virions in the perinuclear space, which
was 49.8- and 39.8-fold less than that in cells infected with wild-
type HSV-1(F) and YK546 (�UL47-repair), respectively (Table 2
and Fig. 6). In contrast, capsids appeared to accumulate in the
nucleus in cells infected with YK545 (�UL47) (Table 2). While
34.1 and 38.3% of total virus particles were capsids in the nucleus
in cells infected with wild-type HSV-1(F) and YK546 (�UL47-
repair), respectively, the fraction of total virus particles that were
capsids in the nucleus in cells infected with YK545 (�UL47) in-
creased to 63.8% (Table 2). Similar results were also obtained with
HEp-2 cells infected with wild-type HSV-1(F), YK545 (�UL47),
or YK546 (�UL47-repair) (Table 3). In addition, the UL47-null
mutation in YK545 (�UL47) had no effect on expression of the
neighboring UL46 and UL48 genes (Fig. 7). These results indi-
cated that the UL47-null mutation resulted in a decrease in the
fraction of virus particles that were primary enveloped virions in
the perinuclear space and an increase in the fraction of virus par-
ticles that were capsids in the nucleus.

Localization of UL47 in HSV-1-infected cells by immuno-
electron microscopy. UL31, UL34, and Us3 have been reported to
localize at the nuclear membrane and to be components of pri-
mary enveloped virions in the perinuclear space, and Us3 has been
reported to localize at cytoplasmic membranes and extranuclear
virions (36). Finally, we attempted to localize UL47 in HSV-1-
infected cells at the ultrastructural level. Preliminary experiments
indicated that the anti-UL47 antibody generated in this study was
not useful for immunoelectron microscopy (data not shown).
Therefore, we attempted to detect tagged UL47 in Vero cells in-
fected with YK524 (mRFP1-UL47) or YK536 (MEF-UL47) using

FIG 5 Localization of UL47, UL31, UL34, and Us3 in HSV-1-infected cells.
Vero cells were infected with YK523 (VenusA206K-Us3/mRFP1-UL47) at an
MOI of 3, fixed at 18 h postinfection, permeabilized, stained with anti-UL34
(upper panels) or anti-UL31 (lower panels) antibody, and examined by con-
focal microscopy. Scale bar, 5 �m.

TABLE 2 Effect of the UL47-null mutation on distribution of virus particles in infected Vero cells

Virus

Avg � SE (%) virus particles in the indicated morphogenetic stagea

Total no. of
particles
counted

Nucleocapsids in
the nucleus

Enveloped
virions in the
perinuclear space

Nucleocapsids in
the cytoplasm

Enveloped
virions in the
cytoplasm

Extracellular
enveloped
virions

HSV-1(F) 34.1 � 2.5d (1,040) 19.9 � 3.2d (606) 11.0 � 1.4b (336) 13.7 � 1.6d (419) 21.3 � 2.4e (650) 3,051
YK545 (�UL47) 63.8 � 2.4 (662) 0.4 � 0.2 (4) 5.3 � 1.2 (56) 3.8 � 0.9 (39) 26.7 � 2.7 (277) 1,038
YK546 (�UL47-repair) 38.3 � 2.3d (1,102) 15.9 � 3.0c (458) 9.8 � 2.2e (281) 12.3 � 1.8c (356) 23.7 � 2.0e (684) 2,881
a Numbers in parenthesis are the numbers of virus particles. A total of 20 cells were counted in each case.
b Statistically significant difference from YK545 (�UL47) at P � 0.05.
c Statistically significant difference from YK545 (�UL47) at P � 0.0005.
d Statistically significant difference from YK545 (�UL47) at P � 0.00005.
e Statistically nonsignificant difference from YK545 (�UL47).

Liu et al.

4662 jvi.asm.org Journal of Virology

http://jvi.asm.org


various rabbit polyclonal and mouse monoclonal antibodies to
the mRFP1, Flag, and Myc tags. Among the antibodies tested, only
anti-Myc mouse monoclonal antibody bound significantly to
Vero cells infected with YK536 (MEF-UL47) (Fig. 8 and 9A to C)
but not to wild-type HSV-1(F)-infected Vero cells (Fig. 9D to F).
MEF-tagged UL47 was detected throughout the nucleus (Fig. 9A)
and at the nuclear membrane (Fig. 8A) by immunoelectron mi-
croscopy of YK536 (MEF-UL47)-infected Vero cells, in agreement
with the localization of mRFP1-UL47 by fluorescence microscopy

(Fig. 3 and 5). We noted that MEF-tagged UL47 was detected on
nuclear capsids, but the density of immunostained MEF-tagged
UL47 in nuclear domains with capsid aggregates was approxi-
mately the same as in domains without capsids (Fig. 9A). These
observations raised the possibility that MEF-UL47 was not specif-
ically associated with nuclear capsids. MEF-tagged UL47 was also
detected on most primary enveloped virions in the perinuclear
space, secondary enveloped virions in the cytoplasm, and extra-
cellular virions (Fig. 8C to G and 9B and C), suggesting that UL47
was a component of both primary and secondary enveloped
virions.

DISCUSSION

In this study, we showed the following: that MEF-tagged UL47
coimmunoprecipitated with UL34, UL31, and Us3; that MEF-
tagged UL31 coimmunoprecipitated with UL34, Us3, and UL47;
and that MEF-tagged UL34 coimmunoprecipitated with UL31,
UL47, and Us3. Taken together, these results indicated that UL47
formed a complex with UL34, UL31, and/or Us3 in HSV-1-in-
fected cells. This conclusion was in agreement with previous re-
ports (12, 21, 24) that, in HSV-1-infected cells, UL47 interacted
with viral capsid protein UL17, which further formed a complex
with UL31 and viral capsid protein UL25, and that UL47 inter-
acted with Us3. At present it remains to be determined whether
UL47, UL31, UL34, and Us3 form a high-order complex in HSV-

FIG 6 Ultrastructural analysis of the effect of UL47 on HSV-1 nuclear egress.
Vero cells infected with wild-type HSV-1(F) (A), YK545 (�UL47) (B), or
YK546 (�UL47-repair) (C) at an MOI of 5 were fixed at 18 h postinfection,
embedded, sectioned, stained, and examined by transmission electron micros-
copy. Nu, nucleus; Cy, cytoplasm; NM, nuclear membrane. Scale bar, 200 nm.

TABLE 3 Effect of the UL47-null mutation on distribution of virus particles in infected HEp-2 cells

Virus

Avg � SE (%) virus particles in the indicated morphogenetic stagea

Total no. of
particles
counted

Nucleocapsids in
the nucleus

Enveloped
virions in the
perinuclear space

Nucleocapsids
in the
cytoplasm

Enveloped
virions in the
cytoplasm

Extracellular
enveloped virions

HSV-1(F) 26.6 � 2.8c (579) 13.8 � 1.3c (300) 9.7 � 1.0b (211) 19.9 � 1.8c (434) 30.0 � 2.4d (652) 2,176
YK545 (�UL47) 61.7 � 3.0 (587) 0.3 � 0.3 (3) 5.8 � 1.3 (55) 4.8 � 1.1 (46) 27.4 � 2.7 (266) 952
YK546 (�UL47-repair) 30.2 � 2.2c (687) 13.1 � 1.2c (298) 9.2 � 0.9b (208) 19.4 � 1.6c (442) 28.1 � 2.3d (638) 2,273
a Numbers in parentheses are the numbers of virus particles. A total of 20 cells were counted in each case.
b Statistically significant difference from YK545 (�UL47) at P � 0.05.
c Statistically significant difference from YK545 (�UL47) at P � 0.0000005.
d Statistically nonsignificant difference from YK545 (�UL47).

FIG 7 Effect of the null mutation in UL47 on expression of neighboring genes
UL48 and UL46. Vero cells were mock infected or infected with wild-type
HSV-1(F), YK545 (�UL47), or YK546 (�UL47-repair) at an MOI of 5, har-
vested at 18 h postinfection, lysed, and analyzed by immunoblotting with
antibodies to the indicated proteins.
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1-infected cells. However, the reciprocal coimmunoprecipitation
experiments in this and previous studies (4, 21) showing coimmu-
noprecipitation of Us3 and UL47 and of UL31 and UL34 strongly
suggested that these interactions form a high-order complex of
UL47, UL31, UL34, and Us3 in HSV-1-infected cells. In particu-
lar, UL31 and UL34 have been shown to be predominantly de-
tected at the nuclear membrane in wild-type HSV-1-infected cells
by immunofluorescence microscopy (4). Therefore, it is likely that
the interactions of UL31 and UL34 with UL47 and Us3 observed
in this study occurred mainly at the nuclear membrane in HSV-
1-infected cells. Furthermore, we showed here that, in the absence
of Us3 kinase activity, UL47, UL31, and UL34 were all aberrantly
localized and colocalized in punctate structures at the nuclear
membrane. This result suggested that localization of UL47, UL31,
and UL34 at the nuclear membrane were all regulated by Us3
kinase activity and supported the hypothesis that these viral pro-
teins and probably Us3 formed a complex at the nuclear mem-
brane in HSV-1-infected cells. Based on the immunoelectron mi-
croscopy results in this and previous studies showing that UL47,
UL31, UL34, and Us3 are components of primary enveloped viri-
ons, it seemed possible that coimmunoprecipitation of UL31,

UL34, UL47, and Us3 indicated that these viral proteins may as-
sociate in intact capsids. However, since we found that none of
these MEF-tagged viral proteins coimmunoprecipitated with
HSV-1 capsid protein VP23, this possibility seemed less likely.

Quantitative electron microscopic analysis of HSV-1-infected
Vero and HEp-2 cells showed that, in the absence of UL47, pri-
mary enveloped virions in the perinuclear space were barely de-
tectable and that the prevalence of this type of virion was substan-
tially reduced. In contrast, the frequency of nuclear capsids
increased. The accumulation of nuclear capsids and the lack of
primary enveloped virions in the perinuclear space in the absence
of UL47 likely reflected an imbalance between the rate of virion
delivery into the perinuclear space and the rate of egress from this
region. Thus, it appeared that the rate of viral egress from the
nucleoplasm decreased in the absence of UL47 compared to that
in the presence of UL47, but the rate of egress from the perinuclear
space in the absence of UL47 was similar to that in the presence of
UL47. Based on these results, UL47 appeared to be required for
efficient primary envelopment of nucleocapsids in HSV-1 nuclear
egress. In support of this hypothesis, we showed that UL47 was
detected at the inner nuclear membrane by immunoelectron mi-

FIG 8 Localization of UL47 in HSV-1-infected cells by immunoelectron microscopy. Vero cells were infected with YK536 (MEF-UL47) at an MOI of 5, fixed at
18 h postinfection, embedded, sectioned, stained with mouse anti-Myc monoclonal antibody followed by goat anti-mouse IgG conjugated onto 10-nm gold
particles, and examined by transmission electron microscopy. UL47 was detected in the nucleoplasm (A), along the nuclear membrane (A), on capsids in the
nucleus (A and B) and cytoplasm (E), on primary enveloped virions in the perinuclear space (C and D), and on secondary enveloped virions in the cytoplasm (F)
and extracellular space (G). Nu, nucleus; Cy, cytoplasm; NM, nuclear membrane; PM, plasma membrane. Scale bar, 200 nm.
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croscopy. It has been reported that, in cells infected with a UL34-
or UL31-null mutant HSV-1, no enveloped virions were detected
in the perinuclear space or cytoplasm or at the cell surface (5, 6),
indicating that UL31 and UL34 functions were required for pri-
mary envelopment of nucleocapsids. In this study, primary envel-
oped virions in the perinuclear space were barely detected in cells
infected with the UL47-null mutant HSV-1, as was observed in
cells infected with the UL31- or UL34-null mutant HSV-1, but the
prevalence of enveloped virions in the cytoplasm of cells infected
with the UL47-null mutant HSV-1, although detectable, was de-
creased. These observations suggested that UL47 was not as essen-
tial for primary envelopment of nucleocapsids at the nuclear
membrane as UL34 and UL31 but played a regulatory role in this
process. UL47 may regulate the optimal primary envelopment
activity of the UL34/UL31 complex by interaction with the com-
plex. This hypothesis was supported by the observation in this
study that UL47 interacted with UL31 and UL34 in HSV-1-in-
fected cells and that UL47 was a component of primary enveloped
virions, which enabled UL47 to interact with the UL34/UL31
complex during primary envelopment. As described above, UL47
was reported to form a complex with UL17, a component of the
HSV-1 CVSC, and, therefore, may interact with UL31 to recruit
HSV nucleocapsids for primary envelopment (12, 13). Therefore,
UL47 may upregulate the primary envelopment of nucleocapsids
by promoting recruitment of nucleocapsids through interaction
with the UL17/UL25/UL31 complex, which may stabilize the as-
sociation of capsids with the UL34/UL31 complex at the nuclear

membrane. It was interesting that, although the frequencies of
virions in the perinuclear space and the cytoplasm in cells infected
with the UL47-null mutant HSV-1 were reduced compared to
those in cells infected with wild-type HSV-1, the prevalence rates
of extracellular virions were similar in cells infected with the mu-
tant and wild-type HSV-1. This observation raised the possibility
that UL47 might promote an HSV-1 virion maturation step(s)
after primary envelopment, probably de-envelopment, secondary
envelopment, and/or transport of secondary enveloped virions
from the cytoplasmic vesicles to the extracellular space.

Our immunoelectron microscopy data showing that HSV-1
UL47 was a component of both primary enveloped virions and
extracellular virions was not in agreement with previous reports
by Naldinho-Souto et al. (37) that HSV-1 UL47 tagged with yellow
fluorescent protein (YFP) was not detected in primary enveloped
virions by immunoelectron microscopy but was detected in extra-
cellular virions. A similar observation was also obtained with
VP22 tagged with green fluorescent protein (GFP) (37). However,
biochemical isolation and characterization of wild-type HSV-1
primary enveloped virions by Padula et al. (38) showed that un-
tagged VP22 was detected as a component of primary enveloped
virions. Therefore, it may be more difficult to detect a fluores-
cence-tagged protein component of primary enveloped virions by
immunoelectron microscopy than to detect it in extracellular vi-
rions. Since El Bilali et al. (39) recently reported that tagging teg-
ument proteins with a fluorescent protein had a significant effect
on incorporation of the tagged proteins into virions, UL47 tagged

FIG 9 Immunoelectron microscopy of Vero cells infected with YK536 (MEF-UL47) and wild-type HSV-1(F). Vero cells were infected with YK536 (MEF-UL47)
(A to C) or wild-type HSV-1(F) (D to F) at an MOI of 5, fixed at 18 h postinfection, embedded, sectioned, stained with mouse anti-Myc monoclonal antibody
followed by goat anti-mouse IgG conjugated onto 10-nm gold particles, and examined by transmission electron microscopy. UL47 was detected in the
nucleoplasm (A), on capsids in the nucleus (A) and cytoplasm (B), and on secondary enveloped virions in the cytoplasm (B) and extracellular space (C). Nu,
nucleus; Cy, cytoplasm; NM, nuclear membrane; PM, plasma membrane. Scale bar, 200 nm.
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with a fluorescent protein may be incorporated into primary en-
veloped virions much less efficiently than untagged UL47 or UL47
tagged with MEF, which is much smaller than the fluorescent
proteins. Our data also were not in agreement with a previous
report that pseudorabies virus (PRV) UL47 was not present in
primary enveloped virions (40). It appears that, despite their ge-
netic similarities, HSV-1 and PRV differ in the compositions of
their virions since HSV-1 primary enveloped virions contain gB,
gD, gH/gL, gM, VP22, VHS, VP16, and UL11, but PRV does not
(1, 37, 38, 41–45). Alternatively, UL47 may have been present in
PRV primary enveloped virions but could not be detected with the
antibody used in that study.

In conclusion, the data presented here begin to elucidate the
novel function of HSV-1 UL47 in regulating HSV-1 primary en-
velopment during viral nuclear egress. The vesicle-mediated viral
nuclear egress process may involve viral and cellular proteins
other than those reported to date. Further studies to identify other
novel viral and cellular proteins that regulate the vesicle-mediated
viral egress process and to elucidate the mechanisms of these reg-
ulatory proteins, including UL47, in this process will be needed
and are under way in this laboratory.
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