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ABSTRACT: Researchers are increasingly turning to label-free
MS1 intensity-based quantification strategies within HPLC−ESI−
MS/MS workflows to reveal biological variation at the molecule
level. Unfortunately, HPLC−ESI−MS/MS workflows using these
strategies produce results with poor repeatability and reproduci-
bility, primarily due to systematic bias and complex variability.
While current global normalization strategies can mitigate system-
atic bias, they fail when faced with complex variability stemming
from transient stochastic events during HPLC−ESI−MS/MS
analysis. To address these problems, we developed a novel local normalization method, proximity-based intensity normalization
(PIN), based on the analysis of compositional data. We evaluated PIN against common normalization strategies. PIN
outperforms them in dramatically reducing variance and in identifying 20% more proteins with statistically significant abundance
differences that other strategies missed. Our results show the PIN enables the discovery of statistically significant biological
variation that otherwise is falsely reported or missed.
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■ INTRODUCTION

Differential quantification of complex mixtures using high-
performance liquid chromatography coupled to electrospray
ionization and tandem mass spectrometry (HPLC−ESI−MS/
MS) can help researchers study biological variation at the
molecular level and gain insights into the molecular machinery
of cellular activity and disease progression.1,2 Researchers reveal
biological variation most often by comparing two or more
populations, typically collecting data for thousands of distinct
molecules in each population, for example, genes, peptides, or
metabolites, and then statistically analyzing the differences
among populations. Here a population comprises biological or
technical replicates having a biological state in common, for
example, healthy or diseased.
HPLC−ESI−MS/MS workflows aimed at discovering bio-

logical variation fall into two categories: labeled and label-free
quantification strategies. Labeled quantification strategies are
popular because they allow researchers to analyze multiple
peptide mixtures (often derived from protein samples) in a
single HPLC−ESI−MS/MS run. (While we use peptide as a
representative analyte, the set of analytes is not limited to
peptides.) Researchers compute relative abundance (fold
changes) of resulting ion intensities between the concurrently
analyzed samples and determine which peptides (or inferred

proteins) are differentially abundant. Unfortunately, labeled
strategies require expensive labeling reagents. Furthermore, the
number of unique labels is limited. Thus, labeling strategies do
no scale to the level required for large-scale comparative
studies, for example, a clinical study with tens, hundreds, or
even thousands of biological samples.
Because labeled strategies do not scale, researchers are

increasingly turning to label-free quantification strategies, either
intensity-based (MS1) or spectral counting (MS2). Spectral
counting is straightforward but is biased toward peptides
derived from high abundance proteins because spectral
counting requires multiple MS2 scans matched to each protein
to obtain statistically valid results. Intensity-based quantification
is less straightforward than spectral counting, requiring the area
under the curve computation using MS1 scans. However,
intensity-based quantification is well-suited to study lower
abundance peptides,3 which are often more interesting than
higher abundance peptides.
Intensity-based strategies require repeatability and reprodu-

cibility,4 which are inherently problematic in HPLC−ESI−MS/
MS workflows and lead to excessive false-positive and false-
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negative results. Researchers will eventually discard the false-
positive peptides via hypothesis-driven experiments, such as
selected reaction monitoring (SRM), but false-negative results
are detrimental because these candidates are never pursued. As
a result, poor repeatability and reproducibility cause researchers
to miss possible insights and draw incorrect inferences.
Poor repeatability and reproducibility in HPLC−ESI−MS/

MS chromatographic data stem from extraneous variability,
which includes systematic bias (sample variability and instru-
ment variability) and complex variability. Sources of sample
variability include incomplete enzymatic digestion and pipetting
errors made during sample preparation. It tends to be global,
affecting each peptide in a sample.5,6 Instrument variability can
stem from physical changes in the liquid chromatography, mass
spectrometry (MS) hardware, or environment, including HPLC
performance degradation, MS calibration drift, and volatiles in
the lab air that affect ionization efficiency. Instrument variability
is global in nature because each change similarly affects each
ion’s intensity in a run.
Complex variability is local in nature. It stems from signal

distortion due to transient stochastic events that occur during
an HPLC−ESI−MS/MS run. For example, variability in ESI
performance due to the mobile phase composition or flow rate
fluctuations distorts the measured ion signal.7,8 It is complex
because each event affects only a narrow temporal window
within an HPLC−ESI−MS/MS run, where window widths vary
and can overlap among runs when analyzing separate samples.
Normalization strategies in HPLC−ESI−MS/MS workflows

attempt to remove systematic biases from the data before
statistical inference.9 Traditionally, normalization strategies use
a combination of a global scaling function and a peptide
selection method. Global scaling functions include median
scale, mean scale, quantile, ranking, and least-squares fitting
using linear or polynomial regression.5,6 Unfortunately, these
global scaling functions often require a complete matrix on
which to compute, specifically, no missing data. However,

missing data are prevalent in HPLC−ESI−MS/MS work-
flows.9,10 While it is possible to impute missing values, it is
recommended to do so after normalization.9 Thus, the selection
of peptides for inclusion in the global scaling function is critical.
Peptide selection methods include: (1) common within sample
(CWS);5 (2) top L order statistics (LOS);6,11 (3) percentage of
peptides present (PPP);12 and (4) peptides with rank invariant
peptide (RIP).10 Webb-Robertson et al. developed a useful
application named Statistical Procedure for the Analyses of
LC−MS proteomics Normalization Strategies (SPANS), which
recommends the best global scaling function and peptide
selection method combinations based on rigorous statistical
tests.10 Unfortunately, SPANS only includes global scaling
functions and, regardless of the peptide selection method,
global scaling functions cannot capture and mitigate complex
variability.11

Although largely unexplored,13 complex variability during an
HPLC−ESI−MS/MS run seems inevitable, even when
researchers follow strict protocols. The National Cancer
Institute’s Clinical Proteomic Tumor Analysis Consortium
(CPTAC) studies provide an example. CPTAC established
standard operating procedures to enable interlaboratory
comparisons of proteomic studies, particularly in the context
of cancer biomarker discovery.14 In their sixth study, they used
their standard operating procedures to produce publicly
available, community reference data sets generated from a
yeast proteome digest with 48 spiked-in proteins (UPS1
standard from Sigma Aldrich). Rudnick et al. found
irregularities attributed to electrospray instability14 in one of
the technical replicates (sample C, replicate 2) from this data
set generated by the instrument aliased LTQ-XL-OrbitrapP@
65. The chromatogram’s distinctive sawtooth pattern (Supple-
mental Figure 1 in the Supporting Information) is a textbook
example of complex variability. While Rudnick et al. reported
modestly diminished peptide identification performance for this

Figure 1. Complex variability in technical replicates. Extracted chromatograms (Experimental Procedures) from three HPLC−ESI−MS/MS
technical replicates (CPTAC Study 6, LTQ-XL-OrbitrapP@86) show that even well-controlled HPLC−ESI−MS/MS experiments are vulnerable to
complex variability. (a) Extracted chromatogram for Sample C’s replicate 2’s un-normalized data (EXP C − REP 2, long-dashed red line) contains a
distinctive trough during the same time frame as the electrospray instability in its corresponding TIC (Supplemental Figure 1 in the Supporting
Information). (b) Same data normalized by median scale result in extracted chromatograms where the distinctive trough remains. Extracted
chromatograms for replicates 1 and 3 (EXP C − REP 1, solid blue line, and EXP C − REP 3, short-dashed orange line) only slightly diverge.
However, replicate 2’s (EXP C − REP 2, long-dashed red line) extracted chromatograms show that the complex variability is now exaggerated,
showing the adverse effects of median scale normalization. (c) Same data normalized by PIN result in similar extracted chromatograms for each of
the three replicates. PIN removes the trough in replicate 2 (EXP C − REP 2, long-dashed red line). This demonstrates PIN’s ability to mitigate
complex variability.
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replicate analysis, we suspected that the complex variability also
diminished intensity-based peptide quantification performance.
Further investigating this CPTAC data reveals shortcomings

in current normalization strategies. Examining the extracted
chromatograms plots (XCs), each representing all peptide
signals in a run (Experimental Procedures), reveals a trough in
replicate 2 (REP 2) (Figure 1a) corresponding to the same
time frame as the observed electrospray instability in the TIC
generated from the raw data (Supplemental Figure 1 in the
Supporting Information). Ideally, normalization would produce
nearly identical XCs between replicates. Unfortunately, global
scaling functions fail to mitigate complex variability (Figure 1b).
Furthermore, global normalization can have unintended
consequences and can adversely affect regions where no
complex variability exists. Figure 1b shows that two regions
of the XC for REP 2 now have more extraneous variability than
before normalization, potentially disguising true biological
variation.
In response to the shortcomings of current normalization

strategies exemplified in this data from CPTAC, we developed
proximity-based intensity normalization (PIN), which mitigates
complex variability and systematic bias in MS1 chromato-
graphic data. Here we describe the underpinnings of this
strategy and demonstrate that PIN improves repeatability and
reproducibility, allowing researchers to better detect biological
variation from biological MS data.

■ EXPERIMENTAL PROCEDURES

Saliva Sample Collection and Processing

We collected and processed salivary endogenous peptides as
previously described.15 In brief, we collected all saliva samples
according to protocols approved by the University of
Minnesota Institutional Review Board. Donors declared that
they were healthy nonsmokers and were free of confounding
conditions.
Endogenous Peptide Isolation. Clarified saliva was

prepared from fresh whole saliva samples by centrifuging at
3000g at 4 °C for 15 min, followed by 16 100g at 4 °C for 1
min. The supernatant was mixed in a 10:1 ratio with denaturing
buffer consisting of 4% SDS, 100 mol/L dithiothreitol, and 100
mmol/L Tris, pH 7.4. The samples were boiled for 5 min,
cooled to room temperature, then added to a centrifugal filter
(Amicon Ultra, 0.5 mL, 10 kDa, Millipore). Two hundred
microliters of buffered urea (8 mol/L urea with 100 mmol/L
tris pH 8.5) was added to the sample, and the mixture was
centrifuged at 14 000g at room temperature for 40 min. An
additional 200 μL of buffered urea was added, and the sample
was centrifuged at 14 000g at room temperature for 40 min.
The filters were discarded, and the collected peptides were
alkylated, by the addition of iodoacetamide in buffered urea to
50 mmol/L in the dark for 20 min. MCX (Oasis 3 cc, 60 mg,
Waters) cleanup was performed by diluting the samples to 3
mL with 2% formic acid and H2O to pH ≤3. The MCX
columns were equilibrated with 2 mL of 1:1 methanol: water
followed by the addition of the entire sample, then washed with
3 mL of 0.1% formic acid and 2 mL of methanol; peptides were
eluted with 1 mL of 95% methanol/5% ammonium hydroxide.
The eluted peptides were dried in a speed-vacuum, redissolved
in water, and quantified by a modified BCA assay (Thermo
Scientific, Waltham, MA) using trypsin-digested saliva as a
standard. Three micrograms of peptides were further purified
and concentrated using the STAGE-tip protocol.16

Instrument Variability Experiment Sample Prepara-
tion. Fresh saliva was collected from a single donor and
processed for isolation of endogenous peptides. Sufficient
sample quantity was loaded in a single autosampler vial to run
three replicate injections in succession.

Sample Variability Experiment Sample Preparation.
Fresh saliva was collected from a single donor and divided into
three portions. Each aliquot was processed for endogenous
peptide isolation with the identical protocol, placed into
individual autosampler vials and analyzed in succession.

Serial Dilution Experiment Sample Preparation. Fresh
saliva was collected from a single donor and processed for
isolation of endogenous peptides and aliquoted with increasing
amounts (0.5, 1.0, 1.5, 2.0, 2.5, and 3 μg) into individual vials.
Five hundred fmol of bradykinin was added to each vial.

HPLC−ESI−MS/MS. We analyzed the resulting peptide
mixtures by online HPLC−ESI−MS/MS on an LTQ-Orbitrap
XL mass spectrometer (Thermo Scientific, Waltham, MA)
equipped with an Eksigent (Eksigent Technologies, Redwood
City, CA) 1DLC nanoflow system and a MicroAS autosampler.
An in-house, pulled tip capillary column with a 100 μm inner
diameter was packed to 13 cm with Magic C18AQ 5 μm, 200 Å
pore particles (Michrom Bioresources). Peptide mixtures were
dissolved in an aqueous solution containing 2% ACN with 0.1%
formic acid and then separated by a 2−40% ACN gradient in
0.1% formic acid over 60 min at 250 nL/min. Full-scan mass
spectra were acquired in the Orbitrap at 60 000 resolution at
m/z 400, followed by tandem mass spectrometry (MS/MS) in
the LTQ of the five most intense ions from the full scan.
Further details of the mass spectrometer settings were
previously reported.15

Clinical Proteomic Tumor Analysis Consortium Study 6

National Cancer Institute’s CPTAC network’s Study 614 data
set LTQ-XL-OrbitrapP@65, which was downloaded from
Tranche, is now available at https://cptac-data-portal.
georgetown.edu/cptac/public. Because data acquisition for
this study was performed in profile mode, we converted the
.raw files to mzXML files using msConvert version 3.0.3364
specifying centroid = true.

Peptide Signal Extraction

Peptide signals were extracted using an in-house software
application. In brief, the software takes in a list of mzXML files
and processes the file sequentially. Each mzXML file was
processed scan by scan. First, monoisotopic peak clusters were
detected and deisotoped. Second, after all scans were processed,
extracted ion chromatograms (XICs) were constructed from
the deisotoped peaks. Next, peptide signals were then
constructed from XICs. The peptide signals’ m/z values and
retention times were adopted from the XIC’s apex peak. In lieu
of computing an XIC’s area under the curve, a peptide signal’s
intensity was computed by summing its XIC peak intensities.
(Note that XICs were truncated to eliminate the exceedingly
trailing chromatographic peaks. We arbitrarily selected 2 min
from the XICs apex peak.) Finally, corresponding peptide
signals were grouped across multiple analyses based on m/z
and retention time tolerances. As a quality measure, we
required at least two MS2 scans (among all sequentially
analyzed files) corresponding to each peptide signal. This
software and Thermo .raw files used for analyses are available
from the authors upon request.
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Protein and Peptide Identification

All MS/MS data were analyzed using Sequest version 27, rev 12
(Thermo Scientific). The steps for searches are described. First,
we downloaded the yeast Uniprot FASTA database (ftp://ftp.
uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/proteomes/YEAST.fasta.gz, February 3, 2012)
and the cRAP contaminant FASTA database (downloaded
from ftp://ftp.thegpm.org/fasta/cRAP, February 28, 2012).
The cRAP UPS entries were replaced with entries from an
updated UPS FASTA database (http://www.sigmaaldrich.com/
life-science/proteomics/mass-spectrometry/ups1-and-ups2-
proteomic.html, February 22, 2012). The YEAST and cRAP
FASTA databases were concatenated and designated as the
forward database. Each protein sequence was then reversed
with a perl script (Matrix Science, Boston, MA), designated as
the decoy database, and concatenated to the forward database.
The resulting database contained 13 532 proteins. For the C
versus E experiment, Sequest parameters included a fragment
ion mass tolerance of 1 Da, oxidation of methionine as a
variable modification, and 2 Da mass tolerance.
Scaffold version 3.6.1 (Proteome Software, Portland, OR)

was used to validate MS/MS-based peptide and protein
identifications. Peptide identifications were accepted if they
met minimum criteria 7 ppm precursor mass tolerance, one
tryptic terminus minimum, six amino acid minimum length,
and 90.0% probability as specified by the Peptide Prophet
algorithm.17 Protein identifications were accepted if they could
be established at >80.0% probability (Protein Prophet)18 and
contained at least one identified peptide. Proteins with similar
peptides that could not be differentiated based on MS/MS
analysis alone were grouped to satisfy the principles of
parsimony. The resulting false discovery rate (FDR) within
Scaffold was 1.4% at the protein level and 0.1% at the peptide
level (Supplemental Files 1 and 2 in the Supporting
Information).

Statistical Analysis

Unless otherwise specified, all statistical analyses were
performed using the R statistical package, version 2.14-0
2011-10-31, R.app 1.41 or 3.02 2013-09-25. Two sample t tests
were conducted using the R function t.test and the default
confidence level was 0.95. Prior to multivariate analyses, for
example, pooled estimate of variance, data were first log-
transformed to obtain a normal distribution prior to computing
variance.

Extracted Chromatograms

We generated XCs by first determining each peptide’s XIC and
then summing their recorded intensities within each scan. The
resulting summed intensities (y axis) were plotted over time (x
axis) using R’s lowess function (locally weighted polynomial
smoother); the smoothing span parameter set to 0.07 for
Figure 4 and 0.05 for Figure 6. All other lowess default
parameters were accepted.

Current Normalization Strategies

Linear Regression. Linear regression normalization was
performed by applying least-squares regression on minus versus
average (MA) scatter plots using a pairwise iterative
algorithm.5,6 First, the algorithm selected peptide signals
using the CWS method and then MA-transformed peptide
signal intensities for each pair of runs using eqs 1 and 2 in
Supplementary Note 2 in the Supporting Information. Fitted
data were generated in R with the function lm, for example,

lm(m∼a), and subtracted from observed ratios with eq 3. The
data then were deconvoluted using eq 4 in Supplementary Note
2 in the Supporting Information. We performed the iteration
process twice because the difference between the mean of all
intensity ratios from the previous iteration was <0.005, as
previously described.6

Loess. Author: Loess normalization was performed in R
using the normalizeCyclicLoess function found in the limma
package.19 The algorithm first selected peptide signals using the
CWS method; next, the algorithm selected log2 transformed
intensities (as required by normalizeCyclicLoess) prior to
submitting them to normalizeCyclicLoess using default
parameters. The algorithm returned results to their nonlog
scale.

Quantile. Quantile normalization was performed in R using
the normalizeQuantile function found in the limma package.19

The algorithm selected peptide signals using the CWS method
prior to normalizedQuantile analysis with default parameters.

Reference Run. Normalization was performed by selecting
a single run as a reference. Peptide signal intensities for all
nonreference data were normalized to the reference run. The
algorithm first selected signals using the CWS method prior to
computing the median of peptide signal intensity ratios, which
was used as a normalization factor.6 The first replicate was
arbitrarily selected as the reference run.

Median Scale (Central Tendency). Median scale was
performed by scaling peptide signal intensities values within
each run by the median of peptide signals selected using the
CWS method.
PIN Neighborhood Construction

While we mathematically define PIN’s neighborhood con-
struction (see Results and Discussion), in practice we define a
peptide signal’s neighborhood boundary using a retention time
window around the peptide signal’s retention time (Figure 2).
The retention time window can be static or dynamic. A static
retention time window is centered at the peptide signal’s

Figure 2. PIN’s neighborhood construction. XICs for three peptide
signals (A−C) are shown in three dimensions. Here peptide signal B’s
neighborhood boundaries (RT window depicted by the horizontal red
lines) are determined by its XIC width. Peptide signal B’s
neighborhood construction includes all XIC peaks within its retention
time window (peaks in red and blue). In this case, the neighborhood
includes a portion of peptide signals A’s XIC and a portion of peptide
signal B’s XIC.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr400866r | J. Proteome Res. 2014, 13, 1281−12921284

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/proteomes/YEAST.fasta.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/proteomes/YEAST.fasta.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/proteomes/YEAST.fasta.gz
ftp://ftp.thegpm.org/fasta/cRAP
http://www.sigmaaldrich.com/life-science/proteomics/mass-spectrometry/ups1-and-ups2-proteomic.html
http://www.sigmaaldrich.com/life-science/proteomics/mass-spectrometry/ups1-and-ups2-proteomic.html
http://www.sigmaaldrich.com/life-science/proteomics/mass-spectrometry/ups1-and-ups2-proteomic.html


retention time, plus and minus a specified time period, for
example, 2 min. A dynamic retention time window is based on
the width of a peptide signal’s XIC. Once the neighborhood
boundaries are established, the neighborhood is then populated
with all peptide signal XIC peaks within the retention time
window. A peptide signal’s intensity is then normalized by
computing the proportion of signal within the neighborhood.
The proportion is computed by dividing the peptide signal’s
intensity by the sum of neighborhood XIC peak intensities. For
all analyses discussed herein, neighborhood boundaries were
determined by a dynamic retention time window corresponding
to the peptide signal’s XIC width.

■ RESULTS AND DISCUSSION

Overview of the PIN Strategy

In PIN, we take a nontraditional approach. We observe that
complex variability, such as ESI instability, affects bounded
temporal regions within chromatographic data, as opposed to
systematic bias which affects the entire HPLC−ESI−MS/MS
run. Therefore, to mitigate complex variability, PIN normalizes
each peptide signal’s intensity by computing its proportion of
intensity relative to its neighboring peptide signals (Figure 2).
Mathematically, we define a peptide signal’s neighborhood as

∈n n N, ...,rt rtmin max

where N is the set of neighboring peptide signals, n is a peptide
signal, rtmin is the index of the peptide signal corresponding to
the neighborhood’s lower retention time boundary, and rtmax is
the index of the peptide signal corresponding to the
neighborhood’s upper retention time boundary. With the
neighborhood defined, a peptide signal’s normalized intensity,
that is, its proportion of neighborhood intensity, is

∑ =

n

n
j

i irt
rt

min

max

where nj is the intensity of peptide signal j and ni is the intensity
of peptide signal i falling within the neighborhood retention
time boundaries.
The premise for this new approach is that we view biological

samples and HPLC−ESI−MS/MS chromatographic data as
compositional. Mathematically, a composition is defined as “... x
of D parts is a D x 1 vector (x1, x2, ..., xD) of positive components
whose sum is 1”.20 Because the components’ quantities must
sum to 1, compositional data are an example of sum-
constrained data.21 While the concept of sum-constrained
data may seem foreign to most, sum-constrained data are
actually quite prevalent. For example, simple percentages and
parts per million (ppm) are sum-constrained measurements.
Percentages are sum-constrained because the total is con-
strained to 100, and ppm measurements are sum-constrained
because the total is constrained to one million.20,22

In analyzing compositional data, statistical analyses must be
done with care because naıv̈e analysis of compositional data can
lead to incorrect inferences.23 This is because compositional
data loses its absolute abundance information. The only
abundance information that remains for a single component
is relative to the other components making up the whole.21 In
other words, a component’s abundance is its proportion to the
whole. Prior to statistical analyses, compositional data must
meet two conditions: (1) the components of interest must be
relatively small parts of the whole; (2) components within the

whole must remain relatively constant in size and composi-
tion.22 When these conditions are met, univariate statistical
tests, such as a student’s t test, on compositional data should
not lead to incorrect inferences.22

The rationale for our treatment of biological samples as
compositions is two-fold. First, biological systems, whether at
the molecular, cellular, or organ level, are dynamic and
interactive. For example, within a proteome, the presence,
absence, or change in abundance of one or more proteins can
affect the presence, absence, or change in abundance of one or
more other proteins in the system. Therefore, the abundance of
a particular protein, relative to other proteins is important. As a
result, researchers reveal biological variation by finding
differences in a biological sample’s composition.24 Second,
sample collection and preparation impose constraints on the
number of proteins available for measurement.20,22 For
example, aliquoting a portion of a sample, perhaps based on
a Bradford assay, puts a cap on the amount of protein used for
comparison. As a result, we deem biological samples as
compositional.
The rationale for our treatment of chromatographic data as

compositional stems from the fact that constraints are imposed
within HPLC−ESI−MS/MS workflows. For example, during
ESI, coeluting peptides compete for a finite number of charges
and a limited space on droplets.25,26 The finite number of
charges and the limited space are constraints. As a result, mass
spectral intensities of ionized peptides depend on their
coeluting peptides,27 and thus we deem the resulting
chromatographic data are compositional.
Therefore, when we treat chromatographic data resulting

from the analysis of proteomic samples as compositional, we
can detect statistically significant differences in proportions
across populations. This compositional data meets the two
prerequisite conditions for its statistical analysis: (1) the
amount of a single component (peptide) is small relative to the
whole, which remains true in its corresponding chromato-
graphic data, and (2) in the vast majority of biological systems,
the core proteome and its digested peptides, accounts for more
than 90% of the measured protein mass in a sample; that is,
only 10% is compositionally different between similar biological
samples.28 This also remains true in the corresponding
chromatographic data. Thus, when we view complex biological
samples and chromatographic data as compositional, we can
use simple univariate statistics (such as student’s t test) to
reveal biological variation.
We also reason that temporal regions within in chromato-

graphic data generated by HPLC−ESI−MS/MS workflows are
subcompositions. This reasoning stems from the fact that when
using the same (or very similar) LC column, peptides elute in
approximately the same order.29 As a result, retention time
windows within resulting chromatograms will contain approx-
imately the same set of peptide signals when analyzing different
samples with overall similar composition. Thus, this region
becomes a subcomposition, which, for mathematical purposes,
is just another composition. We can do so even when complex
variability is present because complex variability similarly affects
peptide signal intensities within close temporal proximity.
Finally, when we view regions (also called neighborhoods) of

chromatographic data as compositional, we can detect statisti-
cally significant differences in peptide signal proportions across
populations. This is true because the data again meet the two
prerequisite conditions for comparisons of compositional data:
(1) provided that neighborhood boundaries are properly set, a
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peptide signal’s neighborhood population is large enough so
that the intensity of a peptide signal remains small relative to
the sum of its neighbors’ intensities and (2) provided that
similar LC (column type and gradient duration) is used,
neighborhoods will contain sufficiently overlapping popula-
tions.
With underlying assumptions as a basis, we assessed our PIN

strategy’s ability to mitigate systematic bias and complex
variability and reveal statistically significant biological variation.

Results

As an initial evaluation, we applied PIN to the CPTAC data
described in the Introduction − data that alluded to the
capabilities of global scaling functions and motivated our
development of a new method. Use of PIN on this data
produced the ideal result expected from normalization (Figure
1c): nearly identical XCs between replicates, even for the run
containing the complex variability due to electrospray
instability. Encouraged by these results, we further evaluated
PIN vis-a-̀vis median scale and other current normalization
strategies. We applied several different peptide selection
strategies and global scaling functions to archived data sets
from four experiments: Instrument Variability, Sample
Variability, Serial Dilution (as a proxy for loading amount
differences), and CPTAC Study 6. The results of these
experiments, when taken together, demonstrate PIN’s superior
mitigation of systematic bias and complex variability while
retaining biological variability.
Reduction in CV and PEV. To assess reduction in

instrument variability, we generated three replicates by
analyzing a single aliquot of salivary endogenous peptides

using an autosampler and HPLC−ESI−MS/MS three times
consecutively. (See Experimental Procedures and Supplemental
Tables 3 and 4 in the Supporting Information.) First, we
assessed reduction in variability between un-normalized data,
data normalized by five global scaling functions, and data
normalized by PIN. We used two commonly employed metrics:
pooled estimate of variance (PEV) and median standard
deviation coefficient of variance (CV). Although we evaluated
numerous scaling functions,5,6 we only report PIN and the five
best performing normalization strategies determined by PEV
and CV reduction. For the global scaling functions, we
employed the CWS peptide selection strategy prior to
normalization. For PIN, we employed the CWS peptide
selection strategy after normalization. Results are shown in
Figure 3. In the instrument variability experiment, PIN
outperformed the five best current normalization strategies by
reducing PEV by 73% and CV by 46%, compared with an
average of 13 and 19% respectively for the global scaling
functions.
To assess reduction in the variability resulting from sample

handling, we followed the same protocol as the instrument
variability experiment, except we prepared three aliquots of
salivary endogenous peptides in parallel and analyzed each
aliquot using an autosampler and HPLC−ESI−MS/MS. (See
the Experimental Procedures and Supplemental Tables 5 and 6
in the Supporting Information.) Again, we employed CV and
PEV and compared PIN’s results to the top five performing
normalization strategies. PIN continued to outperform these
normalization strategies by reducing PEV by 71% and CV by

Figure 3. PIN versus five current normalization strategies. Four experiments show PIN’s superior performance in reducing variance using two
commonly used measurements: pooled estimate of variance (PEV) and coefficient of variation (CV). (a,c) PIN (right-most column in each figure)
versus five common normalization strategies in reducing PEV for each of the four experiments. (b,d) PIN (again, right-most column in each figure)
versus the same five common normalization strategies in reducing CV for each of the four experiments.
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41% compared with an average of 11 and 8%, respectively, for
global scaling functions.
To assess reduction in variability resulting from loading

amount differences, we conducted serial dilution experiments
using a complex mixture of salivary endogenous peptides and
bradykinin as a spiked-in standard. (See the Experimental
Procedures and Supplemental Tables 7 and 8 in the Supporting
Information.) Traditionally, researchers have conducted serial
dilution experiments to determine peptide abundances in a
concentrated sample or produce calibration curves. We used
serial dilution experiments unconventionally, as a proxy for
loading amount differences We prepared six aliquots of this
mixture by combining increasing amounts (0.5, 1.0, 1.5, 2.0, 2.5,
and 3.0 μg) of salivary endogenous peptides with an equal
amount of bradykinin (50 fmol). We then analyzed the six
mixtures via HPLC−ESI−MS/MS. We again employ PEV and
CV and compared PIN to the top five performing normal-
ization strategies. PIN reduced PEV by 75% and CV by 55%
compared with an average of 34 and 23%, respectively, for
global scaling functions.
To assess reduction in variability in the face of biological

variation, we used data from the CPTAC Study 6 data set for
instrument aliased LTQ-XL-OrbitrapP@65. In brief, CPTAC
Study 6 evaluated mixtures of yeast with Sigma UPS1 spiked in
at five different levels (A−E), each level three times greater
than the previous level.14 Each sample was then analyzed three
times by HPLC−ESI−MS/MS. We selected samples C and E
because sample C contained complex variability and sample E
contained nine times the amount of UPS1 (Experimental
Procedures, Supplemental Tables 9 and 10 in the Supporting
Information). Using the C versus E data set, PIN again
outperformed global scaling function PIN reduced PEV by 61%
and CV by 19% while global scaling functions, on average, PEV
by 9% and surprisingly increased CV by 14% (Figure 3d, fourth
row). In this case, global scaling functions had a negative effect
rather than a positive effect in normalizing intensities.
PIN and Systematic Bias Mitigation. To assess PIN’s

ability to mitigate systematic bias, we employed MA plots.
Again, we used the serial dilution data set as a proxy for loading
amount differences. We chose to visualize loading amount
differences because it was a classic example of systematic bias
(Figure 4 and Supplementary Figure 2 in the Supporting
Information). When we plotted the un-normalized peptide
signal intensities, we observed divergent regression lines,
indicative of systematic bias due to loading amount differences
(Figure 4a). As described in Supplemental Note 1 in the
Supporting Information, data with no systematic bias would
result in regression lines lying on the horizontal line positioned
at 0 on the y axis. We then plotted the same data after
normalization using median scale as the global scaling function
(Figure 4b). We observed that the regression lines have slightly
converged and were repositioned below and above y = 0,
indicating improvement in systematic bias. Finally, we plotted
the data after normalization using PIN (Figure 4c). We
observed that the regression lines on the right end of the plot
were then positioned on or very near y = 0. However, we also
noted that the lines remained below the horizontal flat line on
the left end of the plot. Unlike median scale, the regression
lines converged, making the regression lines nearly indistin-
guishable. From these observations, we concluded that using
PIN performed well to mitigate the systematic bias, although a
small amount remains. Furthermore, we concluded that PIN

outperformed median scale normalization in making systematic
bias consistent between runs.

Absolute Abundance, Relative Abundance, and
Compositional Measurements. Typically, in a serial dilution
experiment, the data are normalized using an internal or spiked
in peptide with the goal of determining absolute abundance and
relative abundance, rather than composition. The standard
metric for absolute abundance is the coefficient of correlation
(R2), with the goal of perfect correlation (R2 = 1.0). The

Figure 4. Serial dilution - PIN versus median scale minus versus
average (MA) pots. (a) MA plot visually demonstrates that PIN
outperforms median-scale normalization in mitigating systematic bias.
(a) MA plot of un-normalized data for six different loading amounts
reveals systematic bias (regression lines diverge from y = 0). (b) MA
plot of median scale data for six different loading amounts
demonstrates a slight improvement in systematic bias (regression
lines begin to converge around y = 0). (c) MA plot for PIN normalized
data for six different loading amounts demonstrates a substantial
improvement in systematic bias (regression lines converge around y =
0).

Journal of Proteome Research Article

dx.doi.org/10.1021/pr400866r | J. Proteome Res. 2014, 13, 1281−12921287



standard metric for relative abundance is fold change, with the
goal of monotonically increasing fold changes corresponding
perfectly to the original amounts loaded. Here we expected fold
changes of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 corresponding to the
saliva peptide load amounts of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 μg,
respectively.
We first plotted the un-normalized intensity for a single

salivary peptide (GPGIFPPPPPQP), indicative of other salivary
peptides found in each of the six serial dilution runs and
computed the R2 and fold changes (Figure 5a,e). We noted that
R2 = 0.81, and fold changes were compressed and not
monotonically increasing. We then plotted the spike-in
normalized intensity (with 500 fmol bradykinin peptide) of
the same peptide and computed the R2 and fold changes
(Figure 5b,e). The measured correlation improved to R2 = 0.98,
and the fold changes were now monotonically increasing.
However, when we use the serial dilution experiment as a

proxy for loading amount differences, then, our goal should not
be to achieve perfect correlation to absolute amounts; rather,
our goal is to find no compositional differences (slope = 0.0).
This stems from the fact that even though overall loading
amounts varied between these samples, within each sample the
proportion of any given peptide to the whole did not change
because overall composition did not change. When considering

composition, a flat line indicates no systematic bias.
Furthermore, relative fold changes should all be equal to 1,
indicating no changes in the composition. We plotted the PIN-
normalized intensities for the same peptide and computed the
slope and fold changes (Figure 5c,e). We observed that
normalizing with PIN achieves a slope = 0.01, and fold changes
are near 1, indicating little change in biological variation.
Because we knew the loading amounts, we estimated the

absolute abundance of peptides initially loaded onto the HPLC
column by scaling PIN normalized intensities by the run’s
loading amount. Scaling PIN normalized data by the loading
amount showed R2 = 0.99 (Figure 5d) and monotonically
increasing fold changes (Figure 5e). We also observed fold
changes were compressed. In this case, scaled PIN out-
performed spike-in normalization for estimating absolute
peptide abundance and in estimating fold changes.
We next turned our attention from a single peptide fold

change to the analysis of composite XCs representing all
peptide signals in a run. When we plotted the un-normalized
XCs, we observed a clear separation of monotonically
increasing XCs, indicating the presence of systematic bias
(Figure 6a). However, upon closer inspection, we found that
the XCs for the 2.0 μg and 3.0 μg samples were not in the
expected order. (The 2.0 μg XC lay above the 3.0 μg XC.) We

Figure 5. PIN versus spiked-in standard normalization for a single peptide (GPGIFPPPPPQP) intensity with six different sample loading amounts.
(a) Un-normalized intensity plot shows mediocre correlation (R2 = 0.82). (b) Spiked-in (bradykinin) normalized intensity plot shows improved
correlation (R2 = 0.98) but does not remove systematic bias stemming from loading amount differences (slope is very high). (c) PIN normalized
intensity plot shows decreased correlation (R2 = 0.81) but removes systematic bias stemming from loading amount differences (slope = 0.01). (d)
PIN normalized data followed by original loading amount scaling shows improved correlation (R2 = 0.99), which is better than spiked-in standard
normalization. (e) Table showing fold changes for each intensity plot (a−d) using the 1.0 μg sample loading amount as the common denominator,
while PIN compresses the fold changes.
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then plotted the spike-in normalized XC and observed that the
3.0 μg XC shifted its position but still lay below the 2.0 μg XC
(Figure 6b). Next we plotted the XCs for the PIN normalized
data and observed a convergence of the XCs (Figure 6c).
Furthermore, we observed an undulation in the XCs, consistent
across the different runs. Finally, we plotted the PIN
normalized data scaled by loading amounts and observed that
the XCs became monotonically increasing and were in the
correct order for nearly all time points (Figure 6d), with the
exception of the lowest loading amounts.
Detecting Biological Variation. Finally, we assessed PIN

vis-a-̀vis common normalization strategies in the context of
detecting of biological variation. Again, we used the CPTAC
Study 6 and selected samples C and E. Here we used a
student’s t test to determine the number of differentially
abundant (or proportional) UPS1 and yeast proteins and
peptides found.
We used SPANS10 to recommend and perform the optimal

peptide select strategy and global scaling function combina-
tions. SPANS performed correctly, finding no global scaling
functions were appropriate for the CPTAC C versus E data set.
These results confirmed our previous findings that global
scaling functions cannot capture and mitigate complex
variability. Nonetheless, SPANS was run using three normal-
ization strategies: (1) LOS (5%) peptide selection strategy with
mean global scaling; (2) RIP peptide selection strategy with
mean global scaling; and (3) RIP peptide selection strategy
with median global scaling (Supplemental Table 11 in the

Supporting Information). We compared SPANS results to PIN
normalized results (Figure 7).
PIN outperformed median and mean global scaling functions

in finding statistically significant UPS1 proteins (Figure 7a).
With PIN, we found 36 statistically different UPS1 proteins
going up (true positives) and only 1 UPS1 protein going down
in E versus C (false-positive). Global scaling functions
performed abysmally, finding fewer UPS1 proteins as statisti-
cally different compared with the un-normalized data. PIN
found 20% more (6) UPS1 proteins as statistically different that
were false negatives in the un-normalized data (Figure 7c).
One important point is that when we treat chromatographic

data as compositional data, we also measure statistically
significant decreases in background yeast proteins in sample
C versus E. We assert these are true positives, reflecting
physical realities of these samples. Our reasoning is that when
viewing the proteome as compositional, then it follows that as
the proportion of UPS1 proteins goes up, the proportion of
yeast proteins must go down. It is also well known that
increasingly abundant peptides can suppress ionization of
coeluting peptides,30,31 leading to decreased proportional
intensities of some yeast peptides in response to increasing
load of UPS1 peptides. This may be even more prevalent an
affect within adding relatively large amounts of the UPS1
standard into the yeast background. Therefore, with PIN, we
expect to find a larger number of yeast peptides with reduced
proportion to the whole when compared with other scaling
functions (Figure 7b,c).

Figure 6. Peptide signal extracted chromatograms PIN versus spiked-in standard normalization for six different loading amounts. (a) Un-normalized
extracted chromatogram plot shows systematic bias. (The 2.0 and 3.0 μg extracted chromatograms are not in the correct order.) (b) Spiked-in
(bradykinin) normalized extracted chromatogram plots show that the 2.0 μg extracted chromatogram is now above the 1.0 μg extracted
chromatogram but is still below the 2.0 μg extracted chromatogram. (c) PIN normalized extracted chromatogram shows convergence, indicating the
removal of systematic bias. (d) Scaling PIN normalized data by the original loading amounts plot shows extracted chromatograms monotonically
increasing and in the correct order.
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Discussion

To our knowledge, we are the first to demonstrate that
biological variation can be revealed in proteomic chromato-
graphic data by viewing it as compositional. Here we also
introduce PIN, a new local method that normalizes a peptide
signal’s intensity by computing its proportional intensity
relative to its neighborhood. We show that PIN dominates
competing normalization strategies when measuring reduction
in variability and finding biological variation, even when
complex variability is present.
The only related work is very recent work by Lyutvinskiy et

al., which describes a new instrumental response correction
method, a local normalization method, for significant variations
in the eluent and analyte composition for improving accuracy of
predictive models.32 We compared and contrasted PIN with
their method and found some similarities and some striking
differences. Both methods employ temporally bounded
neighborhoods to normalize each peptide signal. However,
the composition of the neighborhoods is decidedly different in
the two methods. While PIN takes an unbiased approach to

populating its neighborhood by including all peptide signal XIC
peaks within a retention time window, their method takes a
biased approach by populating their neighborhoods using only
peptides confidently identified from MS2 spectra. Furthermore,
the method for correction is not clearly defined, making it
difficult to evaluate. In one instance, they describe an
abundance alignment method using unchanged peptides as
internal standards. In another instance, they report using the
square root of the median of all peptides within the retention
time window. Unfortunately, their report did not evaluate
performance vis-a-̀vis common normalization strategies, making
it difficult to compare to our PIN strategy. They did report that
their normalization strategy improved their predictive model,
but it is unclear to us whether the improvement stemmed from
the local nature of their strategy or if other common
normalization strategies would have produced similar results.
Regardless of the differences, we both agree on the central need
to account for complex variability in intensity-based quantifi-
cation.
A key benefit of PIN over common normalization strategies

is its simultaneous mitigation of multiple types of measurement
error, including systematic bias and complex variability. This
benefit stems from treating chromatographic data as
compositions and temporal regions within the data as
subcompositions. Thus, any bias affecting the composition as
a whole will also affect subcompositions. As a result, when PIN
mitigates complex variability within the subcomposition, it
inherently also mitigates systematic bias.
A second benefit of PIN over common normalization

strategies is that PIN requires no a priori knowledge of the
type or source of measurement error. For example, a pipetting
error doubling the amount of the sample does not necessarily
correspond to a linear response in corresponding ion intensities
in the resulting data. Therefore, simply normalizing by a single
global scaling factor, such as the median of measured ion
intensities, is not accurate. Computing the appropriate global
scaling factor to mitigate systematic bias involves a priori
knowledge of both absolute loading amounts and absolute ion
counts. However, because PIN treats chromatographic data as
compositional, the only information about peptide abundance
and ion counts is relative information; thus, PIN requires no
knowledge of absolute loading amounts or absolute ion counts.
A third benefit of PIN over common normalization strategies

utilizing global scaling functions is that PIN does require a
complete matrix on which to compute and thus implicitly
handles the missing value problem. PIN simply requires a
neighborhood populated with peptide signals. Then, to
compare a single peptide signal’s PIN normalized intensities
(proportions) across runs, its neighborhoods must be composi-
tionally similar. If needed, missing values can still be imputed
after normalization but prior to statistical inference, as is
recommended.9

Of course, as with any method, PIN’s performance depends
on some factors. First, PIN relies on high-resolution
instrumentation and accurate mass measurements (<10 ppm
error) to extract and quantify relevant chromatographic
information. Fortunately, such systems are routinely available.33

Second, as with other methods, the peptide elution order for
analyzed mixtures must be similar; PIN requires similar order
to form similar neighborhoods. This means mixtures analyzed
using different types of chromatographic systems may not be
easily compared. Third, although PIN tends to compress the
dynamic range of fold changes, the end results are unaffected

Figure 7. CPTAC C versus E statistically different UPS1 and yeast
proteins. The UP designation indicates proteins present lower
abundance (or proportion for PIN) in sample E compared with
sample C. The DOWN designation indicates lower abundance (or
proportion in PIN) in sample E compared with sample C. (a) UPS1
proteins statistically different between samples C and E. (b) Yeast
proteins that are statistically different between samples C and E. (c)
Number of true positives, false-positives, and false-negatives for UPS1
and yeast proteins.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr400866r | J. Proteome Res. 2014, 13, 1281−12921290



because it is fold change statistical significance (not numerical
value) that counts for determining biological variation.
However, if the original loading amount is known, for example,
in a serial dilution experiment, that information can be used to
scale results and accurately compute fold changes. Fourth, with
any normalization method, overfitting and underfitting data is a
concern. With PIN, we first construct neighborhoods using a
temporal window, and the width of this window primarily
controls data fitting quality. We conducted several experiments
(results not shown) varying the window width and found that
varying the window width between 2 to 5 min as well setting
window size to the temporal width of a true peptide signal’s
XIC made little difference in the results. However, setting the
window <2 min and >5 min tended to overfit and underfit the
data, respectively. We expect that optimal window width will
correlate somewhat with chromatographic characteristics,
primarily gradient duration. Therefore, we utilize the width of
the peptide signal’s XIC as input to a function dynamically
computing each peptide signal’s temporal boundaries.
Despite PIN’s improvements in reducing variability and the

number of false-negatives reported, MS-based results must still
be confirmed via hypothesis-driven experiments, such as a
Western blot or targeted MS. Targeted MS, for example, SRM,
is a powerful tool gaining popularity over traditional
biochemical analyses due to the ever-increasing scale of today’s
high-throughput experiments.13 Such experiments require as
input a transition list or an inclusion list containing feature
values (m/z − retention time pairs, which are simply peptide
signals). Because PIN operates on a list of peptide signals, each
with an associated MS/MS spectrum containing potential SRM
transitions, the software implementing PIN could easily be
extended to construct these lists. Thus, PIN is well-suited to
drive targeted MS experiments.
Given that common normalization strategies cannot capture

and correct systematic bias and complex variability inherently
present in HPLC−ESI−MS/MS workflows, we expect PIN to
dramatically improve intensity-based quantification from
HPLC−ESI−MS/MS data. Furthermore, although we studied
complex protein digests and endogenous peptide mixtures, we
believe PIN will be widely applicable to many omics fields using
HPLC−ESI−MS/MS to analyze complex mixtures, for
example, lipidomics, glycomics, and metabolomics. The upshot
will, we expect, be reproducibility- and repeatability-improved,
and otherwise falsely reported or missed statistically significant
biological variation will be discovered.
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