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Abstract

A GIS-based risk index model was developed to quantify EEEV transmission risk to horses in the

State of Florida. EEEV is a highly pathogenic arbovirus that is endemic along the east coast of the

United States, and it is generally fatal to both horses and humans. The model evaluates EEEV

transmission risk at individual raster cells in map on a continuous scale of 0 to 1. The risk index is

derived based on local habitat features and the composition and configuration of surrounding land

cover types associated with EEEV transmission. The model was verified and validated using the

locations of documented horse cases of EEEV. These results of the verification and validation

indicate that the model is able to predict locations of EEEV transmission to horses broadly across

the state. The model is relatively robust to regional variation in EEEV transmission and habitat

conditions in Florida, and it accurately predicted nearly all verification and validation cases in the

Panhandle, North, and Central regions of the state. The model performed less accurately in the

South, where relatively few cases are documented. Despite these differences, the model provides a

useful way to assess EEEV risk both from a regional perspective and at more localized scales. The

resulting predictive maps are designed to guide EEEV surveillance and prevention efforts by

county mosquito control districts.

1 Introduction

The most pathogenic arbovirus—or arthropod-borne virus—to affect the United States is

Eastern Equine Encephalitis virus (EEEV). Viral transmission of EEEV is found

predominately along the east coast of the United States from Maine to Florida with cases of

neuro-invasive EEE reported in 20 states (Bigler et al., 1976). EEEV circulates in a

transmission cycle involving freshwater swamp mosquitoes, competent avian reservoirs, and

mammals (Crans, 1962; Moncayo, Edman, & Finn, 2000; Morris, 1988). The mosquito

Culiseta melanura is thought to be the primary enzootic vector for EEEV in North America,

although numerous other species can carry the virus. The primary reservoir hosts are thought
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to be passerine songbirds for which the virus is generally non-fatal. Recent studies have also

implicated reptiles as potential hosts of the virus (Bingham et al., 2012). The transmission

cycle also involves bridge vectors—mosquitoes that feed on both birds and mammals—

which transmit EEEV to humans, horses, and other mammals during epizootic

outbreaks(Weaver, 2005).

Currently, there is no approved human vaccine or effective treatment available for those

infected with EEEV. Symptoms of EEEV in humans include swelling of the brain, chills,

fever, and malaise, among others. The case fatality rate of symptomatic humans can be 35%

or more with surviving cases often suffering from neurological complications, including

brain impairment, and resulting in million dollar health care costs (Villari, Spielman,

Komar, McDowell, & Timperi, 1995). Therefore, prevention and surveillance still remain

the best options for controlling the risk of infection to humans. A vaccine is available to

protect horses, although horse fatalities are still common in North America. Florida has the

greatest burden of EEE cases in the United States, accounting for 25% of all human fatalities

since 1964 (CDC, 2010). In Florida, EEEV claims an average of 70 horse fatalities a year

(P. T. Vander Kelen et al., 2012). EEEV continues to be widespread across Florida, with

transmission reported in 64 of Florida's 67 counties (Lobo, Jimenez-Valverde, & Real, 2008;

Zweig & Campbell, 1993). Unlike the Northeast and Central United States, which observe

epizootic outbreaks of human and horse cases in August and September (Letson, Bailey,

Pearson, & Tsai, 1993), EEEV transmission in Florida occurs throughout the year, with most

human and horse cases occurring in June and July (Bigler, Lassing, Buff, Lewis, & Hoff,

1975).

In addition to EEEV, Florida has several other endemic mosquito borne diseases, including

West Nile Virus (WNV) and St. Louis encephalitis virus (SLE). As a result, most counties in

Florida maintain active surveillance and control programs aimed at reducing the threat of

arboviruses. The surveillance activities undertaken by these programs involve mosquito

collections to monitor increases in putative vector populations and screening of sentinel

chicken flocks to monitor virus activity. These data are used to guide mosquito control

activities. Florida spends approximately $150 million per year on these activities (Jaing,

2010), which represents one of the largest state expenditures in the country. Traditionally,

the locations of many of the sentinel chicken flocks in Florida were determined based upon

the proximity to human cases of SLE during the last major human outbreak of this virus in

the 1970s (Monath & Tsai, 1987; Nelson et al., 1983). Since EEEV, SLE, and WNV do not

necessarily share the same environmental risk variables (LaBeaud et al., 2008; Moncayo et

al., 2000), it is important to modify existing surveillance efforts to improve public protection

from multiple arboviruses.

Geographic information systems (GIS) are commonly used to map disease occurrence and

predict potential high risk areas for arboviral disease transmission. For instance, a number of

studies have used climate, vegetation, elevation, and other environmental variables to

predict West Nile Virus (Crowder et al., 2013; Day & Shaman, 2008; LaBeaud et al., 2008;

Rochlin, Turbow, Gomez, Ninivaggi, & Campbell, 2011; Ruiz et al., 2010; Yoo, 2013;

Young, Tullis, & Cothren, 2013). Similar approaches have also been used to map Dengue

(Dickin, Schuster-Wallace, & Elliott, 2014; Machado-Machado, 2012) and Malaria (Fuller,
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Troyo, Alimi, & Beier, 2014) risk, as well. While risk maps developed to predict arboviral

transmission can be used to guide prevention efforts such as chemical spraying (Chu, Chan,

& Jao, 2013), such a model has not previously been developed to predict EEEV in Florida.

Developing a model capable of identifying EEEV foci would be very useful in assisting the

county mosquito control districts in targeting their surveillance and vector control efforts to

those areas most likely to support viral transmission. Such a targeted surveillance and

control program would result in more efficient detection of viral activity, thereby providing

increased protection to Florida's residents.

This study reports development and application of a risk index model for predicting EEEV

transmission to horses in the state of Florida. This is the first reported attempt, to our

knowledge, to predictively map EEEV transmission risk. The model incorporates previously

published habitat risk variables derived from Florida's 2005-2010 horse cases (P. T. Vander

Kelen et al., 2012). The GIS-based model is applied using publicly available land use-land

cover data. The index model estimates transmission risk to horses on a continuous scale

from 0 to 1. The risk index model was verified using the previously published dataset and

validated with independent cases documented during 2004 and 2011. The overall goal is to

develop an accurate model that can be applied to assist county mosquito control districts in

their EEEV surveillance and prevention efforts.

2 Methods

A spatially-explicit GIS-based risk index model was developed to quantify EEEV

transmission risk to horses in Florida. The model inputs and parameters were derived from a

recent study published by Vander Kelen et al. (2012) that quantified habitats associated

EEEV horse cases in Florida (hereinafter referred to as the previous study). The previous

study examined habitat composition and configuration associated with 438 horse cases of

EEEV reported during 2005-2010 within four regions of the state: Panhandle, North,

Central, and South (Figure 1). Development of the risk index model was consistent with that

for spatially-explicit habitat suitability index (HSI) models used to evaluate habitat for

wildlife, where suitability is measured on a continuous scale that ranges from 0 (unsuitable)

to 1 (optimal) (Brooks, 1997; Dijak, Rittenhouse, Larson, Thompson, & Millspaugh, 2007;

Downs, Gates, & Murray, 2008; Rickers, Queen, & Arthaud, 1995; Roloff & Kernohan,

1999). The risk index model assesses EEEV transmission risk for horses on a similar scale

extending from 0 (minimal risk) to 1 (maximal risk), where intermediate values measure

relative levels of risk. The model relies on land cover data in raster format and assesses

EEEV transmission risk at each grid cell. Land cover data at a 30 m spatial resolution

generated by the Florida Department of Environmental Protection's Bureau of Watershed

Restoration and distributed by the state's five Water Management Districts was used in both

this and the previous study. This dataset includes land use and cover classified at four levels,

with Level 1 being the most generalized and Level 4 the most specific. This study utilized

Level 2 descriptions, as they differentiated between various wetland types and residential

classes which were necessary for the model. The forty-two Level 2 classes were aggregated

into 14 classes (Table 1) relevant to the model. Coastal habitats were excluded, as the

vectors for EEEV are freshwater species of mosquito. EEEV risk is quantified based on the

local land cover at each cell, as well as habitat composition and configuration in the
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surrounding area. The developed model includes five individual risk variables—all scaled 0

to 1—which are integrated into a final index that assesses overall risk on the same scale.

These risk variables include: local habitat, wetland proximity, wetland composition, tree

plantation-coniferous forest proximity, and tree plantation-coniferous forest composition.

2.1 Risk Model Formulation

2.1.1 Risk Variable 1 (RV1): Local habitat—RV1 measures EEEV transmission risk

associated with the land cover type at each cell. Values for RV1 were derived from the

proportions of documented horse cases that fell within each land cover type. The highest

proportions were found in low density residential (0.34) and crop-pastureland (0.21). Since

these classes represent the most likely places to find horses, raster cells with those cover

types were assigned maximal values of 1.0 for RV1. Values for other cover types were

calculated by dividing the observed proportion of cases by 0.21, the smaller of the latter two

values. This assigns risk values to the other cover types based on the relative proportion of

cases found in each type. Calculated values for RV1 for all cover types are summarized in

Table 1, with the next highest values including tree plantations, upland hardwood forests,

and medium density residential.

2.1.2 Risk Variable 2 (RV2): Wetland proximity—RV2 measures EEEV transmission

risk associated with wetland proximity. The previous study indicated that EEEV horse cases

were strongly associated with close proximities to wetlands. Although there were small

variations among the four regions of the state, more than half of the cases occurred within

400 m of some type of wetland, with most located within 1500 m. Additionally, cases in all

regions were located closer to wetlands than expected at random. Therefore, RV2 is

calculated based on the distance from the focal raster cell (i.e. the raster cell being

evaluated) to the nearest wetland in meters, dw, where:

Effectively, if a cell is less than 400 m from the nearest wetland, it is assigned a risk value of

1. If it is located between 400 and 1500 m, it receives a value that extends from 0 to 1,

inversely proportional to the distance away. If a cell is more than 1500 m from the nearest

wetland, it is assigned a 0. Note this 1500 m threshold also coincides with the distance that

many of the EEEV bridge vector mosquito species typically disperse (Estep, Burkett-

Cadena, Hill, Unnasch, & Unnasch, 2010) (Morris, Larson, & Lounibos, 1991) .

2.1.3 Risk Variable 3 (RV3): Wetland composition—RV3 measures EEEV

transmission risk associated with the amount of wetland surrounding each raster cell.

Wetland habitats are known to be associated with EEEV, since they frequently support

vectors of the virus (Moncayo et al., 2000). The previous study found that the proportion of

wetlands within a 1500 m buffer—or radius—of a horse case averaged 0.18. RV3 is

calculated from the proportion of wetlands within 1500 m of each focal cell, pw, where:
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In other words, if the calculated proportion of wetlands in the focal area (i.e. circular

window with a radius of 1500 m centered at the focal cell) is greater than 0.18, the focal cell

receives a value of 1 for RV3. For values less than 0.18, the cell receives a value

proportional to the amount. For example, if the calculated proportion is 0.09, the cell

receives a RV3 value of 0.5. Cells not surrounded by any wetlands receive 0.0.

2.1.4 Risk Variable 4 (RV4): Tree plantation-coniferous forest proximity—RV4

measures EEEV transmission risk associated with proximity to tree plantations and other

upland coniferous forests. The previous study indicated that EEEV horse cases were

strongly associated with close proximities to tree plantations and other coniferous forests,

which was further supported by Vander Kelen et al. (2012). Although there were variations

among the four regions of the state, more than half of the cases occurred within 250 m of

tree plantations or other coniferous forests; most occurred within 1500 m. Additionally,

cases in northern and central Florida were located significantly closer to coniferous forests

than expected at random, while median distances were about 600 and 1300 m for the

panhandle and south, respectively. RV4 is calculated based on the distance from the focal

raster cell to the nearest tree plantation or coniferous forest in meters, dc, where:

If a cell is less than 250 m from the nearest tree plantation or coniferous forest, it is assigned

a value of 1. If it is located between 250 and 1500 m, it receives a value that extends from 0

to 1, inversely proportional to the calculated distance. If a cell is more than 1500 m away, it

is assigned a 0, or minimal risk.

2.1.5 Risk Variable 5 (RV5): Tree plantation-coniferous forest composition—
RV5 measures EEEV transmission risk associated with the amount of tree plantations and

coniferous forest surrounding each raster cell. Other studies have identified a relationship

between the abundance of tree plantations and EEEV (P. Vander Kelen, T. et al., 2012). The

previous study found that the proportion of tree plantations and coniferous forests within a

1500 m buffer of a horse case averaged 0.20. RV5 is calculated from the proportion of tree

plantations and coniferous forests within 1500 m of each focal cell, pc, where:
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If the calculated proportion of these habitats in the focal area is greater than 0.20, the focal

cell receives a value of 1 for RV5. For values less than 0.20, the cell receives a value

proportional to the amount calculated.

2.1.6 Risk index model—The final risk index model assesses EEEV transmission based

on the five risk variables identified above. The model consists of two parts that are

multiplied together to generate a final risk index (RI) value for each grid cell, where:

The first part—simply RV1—represents the transmission risk at the grid cell based on its

cover type. The reason that RV1 operates as a multiplicative factor is that the local habitat

type plays a controlling role in EEEV transmission. In other words, if a cell has a cover type

likely to be occupied by horses, such as low density residential, crop-pastureland, or others

associated with numerous reported horse cases of EEEV, then those cells initially are

assigned higher risk values. Cells with habitats unlikely to support horses, such as open

water, start with very minimal risk values.

The second part of the equation calculates risk based on the surrounding habitat which also

plays a role in transmission. Here, the other four risk variables calculated for each cell—

RV2, RV3, RV4, and RV5—are averaged. When averaged, cells located in close proximity

to an abundance of wetlands and tree plantations-coniferous forests will receive the highest

risk based on surrounding habitat, since they will have high risk values for the latter four

risk variables. Similarly, cells that are not located near any wetlands or tree plantations-

coniferous forests will receive a low average for these four risk variables. Averaging also

allows low values for some risk variables to be partially compensated by higher values in the

others, generating intermediate values for the second half of the equation. Although other

formulations are possible, averaging produces less restrictive output than would occur for

instance by multiplying them together; in that case a zero for any risk variable would always

produce a final index value of zero.

Then, the final RI value is calculated by multiplying RV1 by the resulting average of the

other four RVs. Multiplying these two portions of the equation ensures that cells only

receive high index values if high risk values are calculated for both parts of the equation—in

other words if the calculated risk is high for both the local habitat and the surrounding

landscape. For example, if the focal cell is classified as medium density residential, RV1

equals 0.27 based on Table 1. If the average of the other four risk variables equals 0.9 as

calculated from the surrounding landscape, the estimated risk index value is 0.243,

moderately low risk. On the other hand, if a focal cell is classified as low density residential,

where RV1 equals 1, then a 0.9 calculated from the surrounding landscape would yield a

final risk index of 0.9, a very high risk. The EEEV transmission risk index model was

applied using a geographic information system (GIS), ArcMap v. 10.0 (ESRI, Inc), with the

land cover data described in section 2.1 to produce a map of risk index values for the state of

Florida (excluding the Florida Keys).
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2.2 Risk Model Verification and Validation

Verification and validation procedures are commonly used to assess the accuracy of

suitability and risk models (Brooks, 1997; Roloff & Kernohan, 1999). Verification involves

evaluating how well the model predicts the sample data used to generate the model. In this

case, locations of the 438 horse cases analysed in the previous study were used to verify the

computed risk index values. The point locations for these cases were overlaid with the risk

index map in the GIS, and the values at each location were extracted. Basic summary

statistics were calculated. For comparison, the same statistics were generated for random

points in the state (n ~ 4700). The random points were generated in proportion to the number

of cases documented within each of the four regions, excluding coastal areas, such that they

would mimic the overall distribution of EEEV in the state (Panhandle: 19.9%, North: 48.5%,

Central: 27.9%, South: 3.7%; Figure 1). A Mann-Whitney test was used to evaluate if higher

risk values were recorded at the known case locations than expected at random, which

would suggest the model predicts transmission of EEEV to horses. Additionally, since the x-

y spatial coordinates of the horse cases are subject to potential geo-referencing errors (GPS

or geocoding errors, x-y coordinates recorded at owner's residence rather than horse's

location, etc.), the analysis was repeated using a 100 m error radius for each case. Here, the

maximum RI values within 100 m of the horse cases were analysed to assess if the model

predicted cases when considering a relatively small amount of positional error. The

maximum RI values within 100 m of the random points were used in the comparison, as

well. The analysis was completed both state-wide and by region.

Validation involves testing how well a model predicts independent data. Here, documented

horse cases of EEEV in Florida during 2004 and 2011, data not analysed in the previous

study, were used to validate the risk index model. There were 41 cases observed during 2004

and 6 during 2011, so the sample represents cases from both high and low transmission

years. Risk index values were extracted for these locations, summarized, and compared to

the same values for random points in the state using the same procedures as for the

verification analysis. The analysis was also repeated using the 100 m error radius around

each location in the same manner, both state-wide and by region. Figure 1 illustrates both

the horse cases from the previous study and the test cases within the four regions of Florida.

3. Results

3.1 Risk Model Application

Figure 2 shows individual risk variables and the final risk index for EEEV transmission to

horses across the state of Florida. The state-wide mean value for RV1, the local habitat

variable, is 0.36 (s=0.37) with higher values more concentrated in rural portions of the

Panhandle, North, and Central regions. RV2, which measures wetland proximity, averaged

0.28 (s=0.44), with high values distributed patchily across the state. The mean value for

RV3, wetland composition, was 0.66 (s=0.41), with maximal values distributed widely

across the state, including the South where the Everglades are located. Values for RV4, tree

plantation-coniferous forest proximity, averaged 0.22 (s=0.39), with higher values more

frequent in the Panhandle, North, and portions of the Central region. The average for RV5,

tree plantation-coniferous forest composition, was 0.52 (s=0.45), with maximal values more
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concentrated in the Panhandle and North. Finally, risk index values computed from

overlaying these five risk variable maps averaged 0.28 (s=0.29). High risk index values are

patchily distributed across the state and are predominately located in the Panhandle, North,

and Central regions.

Figure 2 only shows broad-scale patterns in the individual risk variables and the final risk

index, partially obscuring variability that occurs at more localized scales. Figure 3 illustrates

all five risk variables and the risk index for a small portion of the Panhandle, which are

displayed at a larger cartographic scale such that individual 30 m grid cells in the maps can

be discerned. The figure highlights how cells are initially assigned risk values based on the

habitat classification at each cell (RV1), and those values are reduced by the average of the

other four risk variables (RV2-RV5) to achieve a final risk index (RI). For example, the

darkest cells in the map of RV1 with values of 1 are either low density residential or crop-

pastureland. In the final map, some of those cells retain a risk index of 1 based on the

composition and configuration of the surrounding landscape with respect to wetlands and

tree plantations-coniferous forest, while others show drastically reduced RI values because

they are not near either of those habitats. This illustrates how EEEV transmission can be

assessed at a fine spatial resolution. Figure 3 also illustrates the model output relative to two

validation sites, which fall in high risk areas, as described in the next section.

3.2 Risk Model Verification and Validation

Table 2 summarizes the mean and median risk index values for the horse cases from the

previous study (2005-2010) and those from 2004 and 2011 used to verify and validate the

model, respectively, as compared to random locations in the state. The first three rows of the

table summarize the results of the state-wide analysis. When the RI value at each location is

examined, horse cases from the previous study had RI values that have a mean of 0.54 and a

median of 0.48. This compares to state-wide mean and median values of 0.31 and 0.24 for

random points distributed proportionally by region. When a radius of locational error is

included, the horse cases have a mean of 0.72 and a median of 0.84. This compares to a

mean of 0.44 and a median of 0.48 for random points. A Mann-Whitney test indicated the

median RI values for the horse cases were statistically higher than the random cases for both

the local cell and error radius comparison (p<0.001), verifying that the risk index predicts

the cases used to generate the model.

When the analysis was used to validate the model using horse case data from 2004 and

2011, the results were very similar. When the RI value at each location was examined, horse

cases from the independent data set had RI values that have a state-wide mean of 0.56 and a

median of 0.54, values very similar to the original cases. When the error radius was

included, these test cases had a mean of 0.75 and a median of 0.89. When compared to the

medians for the random points, the Mann-Whitney test also indicates that risk index values

are higher at the 2004 and 2011 horse case locations than expected at random (p<0.001).

This validates that the risk index model is able to predict locations of EEEV transmission

risk to horses in Florida broadly across the state.

Table 2 also summarizes how the model performed in each of the four regions of the state.

For the risk index values extracted directly from each location, horse cases from the

Kelen et al. Page 8

Appl Geogr. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



previous study had similar averages across all four regions, ranging from 0.49 to 0.56. The

mean for random points were similar in the Panhandle, North, and Central regions

(0.32-0.36) but much lower in the South, averaging 0.11. Median risk index values for the

cases were 0.64 in both the Central and South and 0.48 in the Panhandle and North. Medians

for the random points varied more by region, ranging from 0.04 in the South to 0.38 in the

Panhandle. Similarly, the validation cases displayed higher risk index values in the

Panhandle, North, and Central regions—with means ranging from 0.44 to 0.73 and medians

from 0.40 to 0.90—and lower values in the South with two of those three cases recorded as

0.0. Mann-Whitney tests indicated that the median values were higher than expected at

random for cases from the previous study in all regions and the validations in both the North

and Central regions (p<0.001).

The differences between the horse cases and random locations are much more pronounced

when a 100 m error radius is considered. The means for cases from the previous study in the

Panhandle, North, and Central regions ranged from 0.54 to 0.78, with medians from 0.71 to

0.96. The validation cases had mean values of 0.72 to 0.86 and median values of 0.75 to

0.96 for these same three regions. Mean and median values were considerably lower in the

South, 0.14 and 0.00, respectively. The means and medians for random points were also

higher in the upper three regions (mean values from 0.43 to 0.49) and much lower in the

South, with a mean of 0.18. Mann-Whitney tests indicated that the median values were

higher than expected at random for cases from the previous study. The median values were

also higher than expected at random in all regions except the South.

4. Discussion and Conclusions

This research produced a state-wide risk index model that assesses EEEV transmission risk

for horses in Florida based on local habitat features and the composition and configuration

of surrounding land cover. The model is relatively simple to apply can be derived solely

from detailed land cover. The results of the model show considerable amounts of high risk

locations in the upper three regions of the state and relatively little in the South. The model

is relatively robust to regional variation in EEEV transmission and habitat conditions in the

state, and accurately predicted nearly all verification and validation cases in the Panhandle,

North, and Central regions of the state. The model performed less accurately in the South,

where relatively few cases are documented. Despite these differences, the model provides a

useful way to assess EEEV risk both from a regional perspective and at more localized

scales of individual farms.

In terms of local predictions, the model performed better when factoring very modest

locational errors of 100 m for the documented cases. In practice, horse cases are often geo-

referenced based on the owner's residence, while the animal may actually be housed on

another portion of the owner's property or farm. The process of geo-coding municipal

addresses in a GIS also introduces additional error (Zandbergen, 2009). These types of

errors may explain why the model did not predict some of the documented horse cases,

particularly two cases in the South that were not located within 1.5 km of wetlands or tree

plantations-coniferous forests. One explanation for the low risk index values is that there
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may be some errors in the land cover data set, as habitat classification accuracy can be low

for wetlands and other cover types.

Alternatively, it is possible that those horses became infected with the virus at another

location, such as if the horse was transported to another farm or recreational area for some

time period. In these cases, it would be more useful to geo-reference the case to the location

of infection, if known. Another explanation for some lower risk values recorded for

documented cases is that they were located in habitats less likely to support horses and thus

received low index values due to low values associated with RV1, the local habitat risk

variable. This is an important consideration if the risk map is to be used to evaluate if a

particular owners’ horses are likely to be at high risk for EEEV infection in situations where

they are located in a cover type assigned low RV1 values. In these cases, since horses are

known to be present, the model could be modified to assign a value of 1.0 for that risk

variable, with the other risk variables used to evaluate overall risk based on the surrounding

habitat.

The risk model formula is flexible and allows for the possible inclusion of additional

variables. For example, meteorological variables such as precipitation, water table depth,

and temperature could improve the models performance. Studies in Florida have shown that

hydrologic conditions can provide accurate temporal predictions for arboviral transmission

(Day & Shaman, 2008; Shaman, Day, & Stieglitz, 2004). The possible inclusion these kinds

of variables into this model could improve the EEEV prediction efforts by adding a temporal

dimension; EEEV activity could be predicted both in space and in time. However,

incorporating more dynamic variables like temperature and precipitation, both of which

fluctuate day to day, may offer refinement but the model will have to be run more

frequently. Further research is needed to determine the usefulness of adding more variables

to the risk index model.

One of the biggest obstacles to EEEV research is determining where to direct field work,

both in terms of surveillance and prevention efforts. The risk index model addresses this

issue by focusing on the spatial location of risk. A state wide risk model that provides

accurate local predictions of horse cases could be adapted to predict human cases of EEE.

Florida accounts for 25% of all human EEE fatalities in the U.S. and the locations of these

cases could be used to determine if the risk index model can accurately predict both horse

and human cases, since humans and horses often reside in the same land cover types. This

could provide local mosquito control districts with the opportunity for targeted surveillance.

Relocating some of the chicken sentinel sites to high risk areas could be another method for

validating the model while increasing the surveillance's effectiveness. The model offers an

opportunity to reevaluate how surveillance for EEEV is being conducted at state and county

levels as well as in individual mosquito control districts. Using a targeted approach to

mosquito control could reduce the cost of operations while providing better public health

prevention for Florida's residents.
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Highlights

• A GIS-based risk model was developed to predict EEEV

• The model was verified and validated using documented cases

• The model accurately predicted horse cases in Florida

• The results can be used to guide mosquito control efforts
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Figure 1.
Locations of documented horse cases of EEEV during 2005-2010 (Vander Kelen et al. 2012a) and 2004 and 2011 (validation

sites) within four regions of Florida.
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Figure 2.
State-wide maps of five risk variables (RV1 through RV5) used to generate risk index (RI) values for EEEV transmission to

horses in Florida.
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Figure 3.
Localized maps of five risk variables (RV1 through RV5) used to generate risk index (RI) values for EEEV transmission to

horses in Florida. The starred locations indicate two horse cases used to validate the model.
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Table 1

Risk values for local habitat (RV1) for 14 land cover types.

Land cover type at raster cell RV1

Low density residential 1.00

Crop-pastureland 1.00

Tree plantations 0.48

Upland hardwood forest 0.41

Medium density residential 0.27

Commercial 0.20

High density residential 0.14

Upland coniferous forest 0.13

Wetland mixed forest 0.11

Wetland coniferous forest 0.08

Shrubland and brushland 0.08

Vegetated nonforested wetland 0.07

Wetland hardwood forest 0.07

Water 0.04

Urban 0.03

Mining 0.02

All others 0.01
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