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Abstract

The adverse health effects of ambient ozone are well established. Given the high sensitivity of

ambient ozone concentrations to meteorological conditions, the impacts of future climate change

on ozone concentrations and its associated health effects are of concern. We describe a statistical

modeling framework for projecting future ozone levels and its health impacts under a changing

climate. This is motivated by the continual effort to evaluate projection uncertainties to inform

public health risk assessment. The proposed approach was applied to the 20-county Atlanta

metropolitan area using regional climate model (RCM) simulations from the North American

Regional Climate Change Assessment Program. Future ozone levels and ozone-related excesses in

asthma emergency department (ED) visits were examined for the period 2041–2070. The

computationally efficient approach allowed us to consider 8 sets of climate model outputs based

on different combinations of 4 RCMs and 4 general circulation models. Compared to the historical

period of 1999–2004, we found consistent projections across climate models of an average 11.5%

higher ozone levels (range: 4.8%, 16.2%), and an average 8.3% (range: −7% to 24%) higher

number of ozone exceedance days. Assuming no change in the at-risk population, this corresponds

to excess ozone-related ED visits ranging from 267 to 466 visits per year. Health impact

projection uncertainty was driven predominantly by uncertainty in the health effect association

and climate model variability. Calibrating climate simulations with historical observations reduced

differences in projections across climate models.
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INTRODUCTION

Tropospheric ozone is an ambient air pollutant regulated world-wide due to its adverse

effects on human health (Anenberg et al. 2010) and vegetation (Van Dingenen et al. 2009).

As a secondary pollutant, ozone is produced through photochemical oxidation of carbon

monoxide and volatile organic compounds in the presence of nitrogen oxides and sunlight.

Consequently, ozone concentrations are highly sensitive to meteorological conditions and

emissions pathways that affect the availability of precursors. Empirical studies have

demonstrated associations between observed ozone levels and (1) precursor levels (Nail et

al. 2011; Blanchard et al. 2012), and (2) meteorological variables including temperature, air

stagnation, wind speed, and cloud cover at various spatial and temporal scales (Jacob and

Winner 2009).

Coherent evidence from climate model simulations suggests that the growing anthropogenic

greenhouse gas emissions will likely result in higher surface temperatures and more frequent

extreme weather events in the future (Intergovernmental Panel on Climate Change (IPCC)

2012). These environmental changes have the potential to increase future ambient ozone

concentrations, which may have important public health implications including increased

mortality and morbidity (Murazaki and Hess 2006). Timely knowledge on the health

impacts of climate change can play an important role in supporting regulatory policies that

protect public health and maintain environmental sustainability (Menne and Ebi 2005;

Frumkin et al. 2008). While numerous studies have examined projections of future heat-

related health outcomes (Huang et al. 2011, Peng et al. 2011), the number of studies on

future air pollution-related outcomes is more limited (Sujaritpong et al. 2013).

Previous studies on future ozone projections have predominantly utilized chemical transport

models (CTM) driven by climate model outputs (Hogrefe et al. 2004; Knowlton et al. 2004;

Bell et al. 2007; Tao et al. 2007; Tagaris et al. 2009, Lei et al. 2012; Orru et al. 2013). These

studies have consistently reported global and regional increases in future ozone levels.

CTMs are 3-dimensional numerical models that use emissions inventory and meteorological

data to simulate the complex atmospheric chemistry and physics involved in ozone

formation. While CTMs provide large spatial coverage and incorporate current scientific

knowledge on environmental processes, one limitation is that their outputs are deterministic

and thus provide only a single projection for a given scenario with no associated measure of

uncertainty. Therefore uncertainty quantification on health impact projections based on

CTMs has mainly focused on the sensitivity of outputs in response to different emission

scenarios and inter-model comparisons (Post et al. 2012).

In this paper we describe a statistical framework for projecting future ozone levels and

corresponding emergency department (ED) visit health impacts. In contrast to CTMs, our

statistical approach is motivated by its ability to provide measures of uncertainty (in terms of

standard errors) for projections under a given scenario. Our approach is also motivated by

the increasing interest in evaluating air pollution projection uncertainties that can be used in

public health risk assessment (Mastrandrea et al. 2010).
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Our framework involves the following steps. First, using historical observations for the

period 1999–2004, we develop a statistical prediction model of daily ozone concentrations

as a function of meteorological variables and important ozone precursors: non-methane

volatile organic compounds (VOC), and nitrogen oxides (NOx). Our prediction model builds

upon the extensive literature on statistical models for ambient ozone (Thompson et al. 2001;

Cheng et al. 2007; Camalier et al. 2007; Chang et al. 2010). Findings from these models

have been used for obtaining air quality forecasts, as well as providing insights on factors

that influence ozone concentrations. Second, future ozone concentrations for the period

2041–2070 are then projected using future meteorology from climate model simulations and

projected precursor levels as predictors. Finally, using a locally-derived concentration-

response function, health impact projections due to climate- and precursor-related changes

in future ozone levels are made. Uncertainties in the modeled ozone-meteorology/precursor

relationship are propagated through the projection stages and quantified. The approach is

applied to the 20-county Atlanta metropolitan area, a region currently with ozone levels

exceeding the US National Ambient Air Quality Standards.

An additional important advantage of projecting ozone concentrations using a statistical

model is that it requires considerably less computational effort compared to CTMs.

Variation in climate simulations by different models is a well-recognized source of

uncertainty (Jun et al. 2008; Knutti 2010). Due to the effort required for running CTMs,

previous analyses using these models have typically only examined outputs from one

general circulation model (GCM) or one regional climate model (RCM), which makes

synthesizing findings across studies difficult. In this analysis using our statistical approach,

we made ozone projections based on simulations from multiple climate models. Climate

model outputs were obtained from the North American Regional Climate Change

Assessment Program (NARCCAP) (Mearns et al. 2009), which is an international

collaboration examining projection variability due to the choice of GCM and RCM. In this

study 8 different GCM-RCM combinations were examined.

MATERIALS AND METHODS

Data Collection

We acquired individual records of ED visits to acute care hospitals in the 20-county Atlanta

metropolitan area for 1999–2004. The ED database is part of the larger Study of Particles

and Health in Atlanta (SOPHIA) (Strickland et al. 2010). Using International Classification

of Diseases 9th Revision (ICD-9) diagnosis codes, total ED visits due to asthma and wheeze

(ICD-9 codes 493 and 786.07) were aggregated on each day. We restricted the study period

to the warm months of March to October.

Daily 8-hour maximum ozone, 24-hr average VOC, and 24-hr average NOx concentrations

for 1999–2004 were obtained from the Jefferson St. site, a centrally-located monitor in the

SouthEastern Aerosol Research and Characterization (SEARCH) network. Daily

meteorological conditions for 1999–2004, including minimum, maximum and average

temperature, dew-point temperature, total precipitation, and total solar radiation (global

horizontal irradiance), were obtained from the National Climatic Data Center and the
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National Solar Radiation Data Base for monitors located at the Hartsfield-Jackson Atlanta

International Airport.

Climate model outputs of daily maximum surface temperature, 3-hour precipitation and 3-

hour solar radiation were obtained from NARCCAP for the historical period of 1999–2000

and for the future period of 2041–2070. NARCCAP is a public database of RCM

simulations available as 50km by 50km gridded output. All NARCCAP simulations were

conducted under the IPCC Special Report on Emissions Scenarios (SRES) A2 emissions

scenario (Nakicenovic 2000). The A2 scenario represents the higher end of IPCC emission

scenarios and entails large population increases, high carbon dioxide emissions, and weak

environmental concerns.

To assess uncertainties in RCM projections, we examined NARCCAP simulations from 8

combinations of different RCMs driven by boundary conditions of different GCMs, as

available at the time of this analysis. The RCMs include: the Canadian Regional Climate

Model (CRCM, http://www.cccma.ec.gc.ca/data/crcm.shtml), the Handley Regional Model

3 (HRM3, http://www.metoffice.gov.uk/precis/), the Regional Climate Model version 3

(RCM3, users.ictp.it/~pubregcm/RegCM3), and the Weather Research & Forecasting model

(WRFG, http://www.wrf-model.org/index.php). The GCMs include: the Community

Climate model version 3 (CCSM3), the Canadian Global Climate Model version 3

(CGCM3), the Geophysical Fluid Dynamics Laboratory (GFDL) Climate Model version 2.1,

and the United Kingdom Hadley Centre Climate Model version 3 (HadCM3). Detailed

descriptions on the RCM and GCM characteristics are summarized by NARCCAP online

(http://www.narccap.ucar.edu/). The following 8 RCM-GCM combinations were conducted

by NARCCAP and examined in this study: CRCM-CCSM, CRCM-CGCM3, HRM3-GFDL,

HRM3-HadCM3, RCM3-CGCM3, RCM3-GFDL, WRFG-CCSM, and WRFG-CGCM3.

For each combination, we extracted data for the one grid cell that contained the airport

monitoring station, as calibrations were not improved when considering data from all grid

cells. The 3-hour data were processed to obtain daily total precipitation and total solar

radiation for the historical and future periods.

Ozone Prediction Models

We considered the following process-based statistical model for predicting daily 8-hr

maximum ozone concentrations: on each day t,

(Equation 1)

where Yt is the square-root of daily 8-hr maximum ozone and εt represents daily variation

(residual error) not explained by the predictors. The above model is based on work by Nail

et al. (2011) and it is intended to account for the complex non-linear relationship between

ozone and its precursors. We further assume the regression coefficients are linearly

dependent on meteorology. Based on best prediction performance (as described below), in

the final model we parameterized β0 as a function of maximum temperature, solar radiation,

and precipitation; β1 as a function of maximum temperature and precipitation; β2 as a

function of maximum temperature; and β3 as a function of precipitation. These
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meteorological variables were selected because of their availability in climate model

outputs. We included all main effects of the meteorology, even though some are weakly

correlated with ozone, because these variables are related to the ozone production and

removal process (Jacob and Winner 2009). See Supplementary Material Section 1 for

detailed model specification. Finally, we allowed for autoregressive residual errors vt in

order to model additional temporal-dependence due to other unmeasured variables. The

residual error accounts for additional physical and chemical processes that are not captured

by the predictors. We assumed vt = αvt−1 + εt, where coefficient is a parameter that controls

the strength of temporal correlation, and component εt represents independent Normal error.

Additional model formulations such as inclusion of relative humidity and wind speed as

predictors, transformation of the meteorological variables, and non-linear effects of the

meteorological variables, did not improve model fit or prediction performance.

We assessed the prediction performance of the ozone models using an out-of-sample cross-

validation approach. Specifically, we divided the complete dataset into ten parts of equal

sample size. Repeating the process for each part, one part was then treated as a test dataset

while the other nine parts were used for model fitting. Root-mean-squared errors (RMSE)

between the back-transformed predicted levels and observed levels for each left-out dataset

were evaluated, as well as the empirical coverage probabilities of the prediction intervals.

Climate Model Calibration

Prior to application in ozone projections, we performed a statistical calibration of the

NARCCAP climate model outputs. This was accomplished by modeling the differences

between climate model outputs and observed meteorology during the historical period of

1999–2000 for each parameter of interest (i.e., daily maximum temperature, total

precipitation, and total solar radiation). For CRCM-CCSM and WRFG-CCSM, only data

during 1999 were available for calibration. Because our objective was not to project daily

meteorology, but to assess climate change over a long future period, we considered a rank-

based approach that resolves the distributional difference between two variables.

Specifically, let x[i] and z[i] denote the ith largest value of the observed value and the climate

model output, respectively. The rank-based bias correction assumes x[i] = G(z[i]), where G

denotes a calibration function. We modeled G as a non-linear function using penalized cubic

splines. We also constrained G to be non-decreasing in order to maintain a one-to-one

mapping between observed and modeled values. In our application, the numbers of observed

and modeled values were the same; hence the rank-based approach is equivalent to methods

based on sample quantiles (Maurer 2007; Zhou et al. 2011). This calibration procedure was

carried out for each of the three meteorological variables from each RCM-GCM

combination separately. The resulting calibration functions were applied to corresponding

climate model outputs for the future 2041–2070 period to obtain calibrated future daily

meteorological data. We note that one central assumption in this calibration approach is that

the bias function estimated using historical data remains unchanged in the future period.

Ozone Projections

Future VOC and NOx levels were obtained by multiplying the 1999–2004 VOC levels by

8% and NOx levels by 29%, based on the A2 scenario comparing 2050 to 2000 emission
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levels for industrialized countries (OECD90) (IPCC 2000, Hogrefe et al. 2004). To cover the

30-year future period, we repeated the 6-year historical VOC/NOx time series (increased by

8 and 29%, respectively) 5 times. These data where then combined with future daily

meteorological variables (raw and calibrated variables from each of the 8 RCM-GCM

combinations) and used as predictors in the ozone prediction models to obtain time-series of

daily ozone forecasts for March to October during the period 2041–2070. Because the

statistical model was developed based on historical observations, our estimates represent a

counterfactual experiment of what ozone levels would have been if future meteorology,

VOC and NOx levels had occurred in the historical period.

Uncertainties in the ozone predictions were quantified by Monte Carlo simulations.

Specifically, we first generated 5,000 realizations of the regression coefficients from a

multivariate Normal distribution based on the parameters’ estimated values and covariance

matrix. For each parameter realization, we generated a corresponding time-series of the

autoregressive vt errors. The future VOC, NOx, and meteorological variables were then

applied to the 5,000 regression equations for each ozone prediction model, resulting in a

total of 5,000 simulated time-series of future daily ozone levels for each climate model

combination from which the projection intervals were obtained. In the end, for each RCM-

GCM combination, our approach incorporated ozone projection uncertainties from two

sources: (1) estimation of the ozone model parameters (uncertainty in β’s); (2) variations in

daily ozone not explained by the predictors (uncertainty due to vt)

Health Impact Projections

Finally, annual excess ED visits (EED) for asthma/wheeze attributable to future climate-

related changes in ambient ozone levels was estimated by

where M is the expected number of annual ED visits; λ is the estimated association between

3-day moving average 8-hr maximum ozone concentrations obtained from a Poisson time-

series analysis (See Supplementary Material Section 1); and ΔX is the estimated change in 3-

day moving average of 8-hour maximum ozone levels between the future period (2041–

2070; projected levels) and the historical period (1999–2004; observed levels). Again a

Monte Carlo approach was used to obtain estimates of EED and their associated

uncertainties. Specifically, 5,000 simulations of λ were generated from a Normal

distribution based on its estimated value and standard error from the Poisson model. Then,

for each RCM-GCM combination, 5,000 realizations of EED were obtained by randomly

combining realizations of the 5,000 β’s and 5,000 ΔX’s based on the ozone projections. Here

we report the mean, the 2.5% quantile, and the 97.5% quantile of the EED sampling

distribution as the estimated value and its 95% projection/prediction interval (PI) for EED,

respectively.

Additional details on all the statistical model formulation and estimation algorithms are

provided in the Supplementary materials Section 1.
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RESULTS

The study included 178,645 asthma/wheeze ED visits (mean of 146 per day) for the 1999–

2004 period. Table 1 gives the summary statistics for the observed ozone, NOx, and VOC

levels, and meteorological variables. During this period, the average daily 8-hr maximum

ozone level at the Jefferson St. monitor was 51.8 ppb (range: 2.2 – 139 ppb). NOx and VOC

levels were only weakly correlated with the three meteorological variables (correlation <

0.20).

We estimated that an interquartile range (IQR, 22 ppb) increase in three-day moving average

8-hr maximum ozone concentration was associated with a 1.033 (95% confidence interval,

CI95: 1.017, 1.049) increase in daily asthma/wheeze ED visits during March to October. The

relative risk estimates were robust against increasing temporal control (Supplementary

Figure S1).

Parameter estimates in Equation (1) are given in Supplementary Table S1. Figure 1 shows

daily 8-hour maximum ozone levels as a function of NOx and VOC, given fixed values of

maximum daily temperature, solar radiation, and precipitation. The contour lines denote the

ozone levels predicted by the model and show clear non-linear relationship. Also higher

maximum temperature was associated with higher ozone levels (panel A versus B); and

precipitation was associated with lower ozone levels (panel B versus C). We found evidence

of moderate temporal correlation between daily ozone levels with the autoregressive

parameter α estimated to be 0.54 (CI95: 0.49, 0.58). Our prediction algorithm resulted in an

RMSE of 12.6 ppb (range: 12.4 – 20.0) in daily ozone concentrations. Prediction intervals

obtained from the ozone models were also well calibrated where the 95% PI’s included the

true daily ozone levels 94.3% of the time. Across the entire study period, the out-of-sample

predictions gave an average daily 8-hour maximum ozone level of 52.4 ppb (95% PI: 51.2 –

53.7 ppb), which is similar to the true observed average value (Table 1).

Across RCM-GCM combinations, the range of correlation between daily observed and

simulated meteorological variables during 1999 – 2000 were 0.62 – 0.71 for maximum

temperature, 0.15 to 0.34 for solar radiation, and −0.06 to 0.06 for precipitation. To compare

the distribution differences between the observations and climate model output,

Supplementary Figures S2, S3, and S4 show the empirical cumulative distribution function

for each meteorological variable for each RCM-GCM combination. In our study region,

climate simulations consistently produced higher than observed daily total solar radiation.

The distributions of simulated daily total precipitation differed considerably from the

observed data, largely due to discrepancies in simulating no or low precipitation days.

Table 2 presents the changes in maximum temperature, solar radiation, and precipitation

(March – October) between the future period (2041–2070) and the historical period (1999–

2004) based on climate model outputs from the 8 NARCCAP RCM-GCM combinations.

Calibration of climate model outputs reduced variability among the projections as measured

by the lower between-model standard deviation. Direction of the projected changes also

changed for several models and meteorological variables. Overall, using calibrated climate

model outputs, we found consistent projections of increased future maximum temperature
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(3.6%) and solar radiation (2.4%) and decreased future precipitation (9.8%) in the Atlanta

region compared to observed levels in 1999–2004.

Table 3 presents projected average daily 8-hr maximum ozone levels for 2041–2070 using

the raw and calibrated climate model outputs. The 95% projection intervals account for

uncertainties in the associations between daily ozone levels, and meteorology and precursor

levels. The ensemble estimates were obtained by pooling Monte Carlo simulations from all

RCM-GCM pairs. Overall, average ozone levels were projected to be 6.0 ppb (11.5%)

higher in the period 2041–2070 compared to the historical period when using calibrated

climate model outputs. Again, we found that using calibrated climate model outputs reduced

the variability of average projected ozone levels across the different climate model

combinations (range: 54.3–60.2 ppb, SD: 1.90 ppb) relative to using the raw outputs (range:

54.0–74.6 ppb, SD: 6.71 ppb). Since most of the PIs of the ozone projections overlapped, it

was not possible to identify systematic differences in results by RCM or GCM. We also note

that the projection intervals are relatively low (about 3ppb) and are similar across RCM/

GCM.

As an indication of the regulatory and health relevance of these projected ozone levels, we

examined the number of days per year during March-October with daily 8-hr maximum

ozone concentrations exceeding 75 ppb. This threshold corresponds to the US National

Ambient Air Quality Standard for ozone, above which levels are considered to be unhealthy

for sensitive groups by the US EPA Air Quality Index. The number of exceedance days

during the historical period was 34 per year. Calibrated climate simulations projected an

increase in the number of exceedance days ranging from −2.6 to 8.3 (−7% to 24%) with

mean 2.8 (8.3%) per year between 2041–2070 and 1999–2004. Climate model specific

estimates and 95% projection intervals are given in Supplementary Table S2.

We estimated an expected annual ED visit count for asthma/wheeze of M = 33,551 based on

observed data. Figure 2 shows the estimated annual EED visits attributable to climate and

precursor-related changes in future ozone levels relative to the historical ozone level of 52

ppb (i.e., the 3-day moving average 8-hour maximum ozone concentration during 1999–

2004). Across RCM-GCM pairs, we found consistent increases in estimated EED visits in

the future compared to historical period, especially when calibrated model outputs were used

(range of EED visits point estimates: 267 to 466; average of 377 across GCM/RCM

combinations). We also considered health impact projections that did not incorporate

uncertainties in future ozone levels (indicated by grey color). Specifically, for each RCM-

GCM combination, we averaged the projected changes across the 5,000 Monte Carlo

simulations and used them directly in the EED visit calculations. This only led to a minor

reduction in the interval lengths.

DISCUSSION

This paper presents an analytic framework that combines observed air pollution,

meteorological, and health data, and climate model simulations for estimating future health

impacts of air quality. For predicting future ozone concentrations, the advantages and

disadvantages associated with using an empirical statistical model versus a CTM are
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analogous to that between statistical and dynamical downscaling of numerical model outputs

(Murphy 1999; Cooney 2012). One limitation of a statistical model is that prediction

performance can depend on the choice of predictors. Therefore it is crucial that the

projection estimates incorporate prediction standard errors that can reflect lack of fit, as

done here. A statistical model may also not fully account for the complex non-stationary

spatial relationship between ozone and its predictors. To minimize this effect, the study area

should be restricted to a geographical region where all variables exhibit limited spatial

heterogeneity, as is the case for ozone and meteorology in Atlanta (Wade et al. 2006).

Consequently, the local projection provided here does not account for changes in transport

of ozone and its precursors, which can contribute to large projection uncertainties (Lei et al.

2012). Moreover, the statistical model developed for projection is specific to both the study

location and the chosen reference period. The complex relationship between precursors,

other chemicals, and meteorology for ozone production is likely to vary across region and

time (Lei and Wang 2014).

CTM simulations are known to exhibit bias due to errors in inputs and inadequate

mathematical representation of the underlying atmospheric processes. For example, Davis et

al. (2011) showed that the Community Multiscale Air Quality Model (CMAQ) tends of

underestimate how ozone increases with temperature. In the health impact analysis by

Hogrefe et al. (2004), the R2 value between observed and CMAQ modeled daily 8-hour

maximum ozone values was 0.63, while our ozone prediction model had a slightly higher

average R2 value of 0.66. For CTM projections, changes in ozone levels are obtained by

comparing CTM simulations conducted between a historical and a future period. Here the

algorithms describing atmospheric processes are assumed to be identical in both periods. In

contrast, a statistical modeling approach is based on the empirical association between ozone

and meteorology/precursors, which is assumed to hold in the future period.

The gain in computational efficiency for projection of future ozone levels allowed us to

examine EED visits from 8 GCM-RCM combinations under the common IPCC A2

emissions scenario. There is evidence that the numerical biases in GCM can be amplified by

RCM (Noguer et al. 1998). Our results demonstrate that by calibrating and downscaling

gridded raw climate model output against historical observations, we reduced disagreement

in the projection estimates from different climate models. Similar findings have been shown

recently for modeling extremes (Ahmed et al. 2013). An important future research direction

is developing ensemble approaches to synthesize results from different climate models

(Kang et al 2012).

This work has potentially significant public health implications. EDs are likely to be

particularly stressed under climate change based on the specific populations that they serve,

including the very young, elderly, and underserved (Hess et al. 2009). Characterizing acute

morbidity via ED visits is thus central for public health planning and emergency

preparedness related to climate change. We note that our applied findings of 377 EED visits

per year attributable to climate-related changes in ozone levels in the future compared to

historical period in Atlanta suggest only a small percentage (≈1%) increase over the current

expected annual ED visit numbers of 33,551. However, our estimates should be viewed as

conservative from a public health impacts perspective for several reasons. ED visits more
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likely represent severe asthma exacerbation, and do not account for less severe morbidity

experienced by the broader population, for which patients may self-medicate or visit

outpatient clinics.

Previous analyses on the health impacts of future ozone levels have mainly focused on

mortality and hospital admissions due to cardiovascular and respiratory disease and over a

larger geographical domain. Nonetheless, our results are consistent with several studies

using CTMs in the United States. Under the A1B business-as-usual emission scenario,

Tagaris et al. (2009) found a moderate increase in annual daily maximum 8-hour ozone

between 2050 and 2001 in the state of Georgia. Under the A2 emissions scenario, both

Hogrefe et al. (2004) and Bell et al. (2007) found an increase in summertime daily

maximum ozone in the 2040’s and 2050’s over the Atlanta region compared to historical

levels. For example, focusing solely on the impact of altered future climate, Bell et al.

(2007) observed a 4–8% increase in summertime 1-hr daily maximum ozone levels between

the 2050’s and 1990’s in Atlanta using current-day precursor levels. The average number of

8-hr maximum ozone NAAQS exceedance days per summer were estimated to increase to

approximately 34 in the 2050’s compared to approximately 28 in the 1990’s (a 21%

increase) (Bell et al., 2007), similar to the estimated increase in ozone exceedance days of

−7% to 24% per year in the current analysis. Across 50 eastern US cities in the Bell et al.

study, climate-related changes in ozone were projected to result in an average 2.1% increase

in hospital admissions for asthma. This estimated percentage increase in hospital admissions

was larger than observed in the current analysis for ED visits. Comparison of results,

however, is difficult considering the different geographic scales, health outcome types, and

ages considered (e.g., focus on the nonelderly by Bell et al.) and differences in specificity of

the concentration-response function (e.g., Bell et al. applied a previously published function

observed for the Seattle population).

The proposed framework to project future ozone levels can also be utilized to examine

additional uncertainties. First, this study only examined the SRES A2 scenario in order to

compare variation due simulations from different GCM/RMC combinations; however

different emission scenarios can contribute large variability in projections (Tao et al. 2007,

Lei et al. 2012). Second, we only considered one scenario for future VOC and NOx levels.

Other future projections of changes in VOC/NOx levels can be used to account for

technological development and policy implementations in response to climate change (Liao

2007 et al, Wardekker et al. 2012). Particularly, we did not distinguish biogenic versus

anthropogenic VOC. Because biogenic emission is more sensitive to climate change, a more

in-depth account of VOC associated with future vegetation growth is desirable (Guenther et

al. 2012).

For the IPCC 5th Assessment Report, future climate simulations have been conducted under

4 representative concentration pathways (RCPs), reflecting a range of possible trajectories of

future greenhouse gas concentrations (Moss et al. 2010). The A2 scenario in this study falls

within the higher end of the RPC projections based on future temperature increases (Rogelj

et al. 2013). Concurrently, a set of Shared Socio-economic Pathways (SSPs) have been

developed to examine how various socioeconomic scenarios can result in future climates

associated with the 4 RCPs (van Vuuren et al. 2012). Under different storylines, the SSPs
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include quantitative projections in population demographics (accounting for fertility and

migration), urbanization, and economic development from different projection models. The

SSP data will play an important role in evaluating additional uncertainties related to health

impact assessment not examined in this study. For example, health impact projections can be

sensitive to age-structure because children and the elderly may be more susceptible to the

acute health effects of air pollution (Silverman and Ito 2012, Park et al. 2013). Sensitivity to

changes in wealth distribution is also possible as ED utilization varies across socioeconomic

strata (Largent et al. 2012), possibly due to disparity in effective asthma management and

access to health care (Ungar et al. 2011). Finally, population growth and the influence of

increasing asthma prevalence, especially in vulnerable populations, should also be

considered (Moorman et al. 2012.) In this study, uncertainty in the health effect of ozone

contributes considerably in the health impact interval estimates. This underscores the need

of continual epidemiological research on identifying vulnerability to environmental stressors

among sub-populations and obtaining the corresponding concentration-response functions

for health impact assessment.

In summary, we describe a computationally efficient statistical modeling approach to project

future ozone level and its health impacts. We found an increase in ED visits due to asthma

and wheeze that is attributable to future increases in ambient ozone concentrations during

2041–2070 in the Atlanta metropolitan area. Sensitivity of EED projections to choice of

climate model combination, climate model calibration, and ozone projection uncertainty was

assessed. Ultimately, uncertainties in the EED projections were mainly due to uncertainties

in the health association and climate model variation.
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Highlights

• A statistical framework to estimate future ozone level is developed.

• Ozone projections based on outputs of 8 climate model simulations are

examined.

• Calibrated model outputs can reduce projection variation across climate models.

• Higher ozone level and asthma emergency department visit are projected in

Atlanta.
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Figure 1.
Contour plots of estimated 8-hour maximum ozone as a function of NOx and VOC at fixed values of maximum daily

temperature (TMAX), solar radiation (SR), and daily precipitation (PR). The overlayed scatter plot shows the observed NOx and

VOC values that occurred on days for which TMAX, SR, and PR values were within 7 °F, 1000 W/m2, and 0.015 mm of the

TMAX, SR, and PR values used to calculate the contour plots, respectively. These ranges were selected as half the IQR for each

meteorology distribution. Therefore the points represent observed combinations of precursor levels and depict the range of

ozone levels associated with these meteorology conditions.

Chang et al. Page 16

Atmos Environ (1994). Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Projected annual excess number of asthma/wheeze emergency department visits within March to October attributed to changes

in average ambient ozone levels between 2041–2070 and 1999–2004. 95% projection intervals are given in parenthesis.
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Table 1

Summary statistics of daily 8-hour maximum ozone, 24-hour NOx, and 24-hour VOC levels and

meteorological variables for 1999–2004 (March – October).

Mean Median SD

Ozone (ppb) 51.8 49.5 21.1

Maximum Temperature (°F) 79.1 81.0 10.1

Solar Radiation (W/m2) 5128 5484 1787

Precipitation (mm) 0.12 0.00 0.38

NOx (ppm) 0.037 0.028 0.030

VOC (ppmc) 0.255 0.209 0.161

1
SD: standard deviation.
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Table 3

Projected average daily 8-hour maximum ozone concentrations (ppb) (March – October) for the 2041–2070

period. 95% projection intervals are given in parenthesis. Estimates are based on 5,000 Monte Carlo

simulations from ozone prediction model estimated during 1999 – 2004.

Climate Models Raw Calibrated

CRCM-CCSM 74.6 (72.6, 76.7) 54.3 (52.8, 55.8)

CRCM-CGCM3 65.0 (63.2, 66.7) 57.5 (56.0, 59.2)

HRM3-GFDL 65.7 (63.9, 67.4) 56.9 (55.3, 58.4)

HRM3-HADCM3 61.1 (59.5, 62.8) 58.8 (57.3, 60.4)

RCM3-CGCM3 56.8 (55.2, 58.4) 60.2 (58.6, 61.9)

RCM3-GFDL 54.0 (52.5, 55.5) 59.9 (58.3, 61.6)

WRFG-CCSM 65.4 (63.6, 67.2) 56.8 (55.3, 58.4)

WRFG-CGCM3 56.4 (54.8, 58.0) 57.7 (56.1, 59.2)

Between-model SD1 6.71 1.90

Pooled ensemble 62.4 (53.3, 75.5) 57.8 (53.7, 61.1)

1
Calculated using the point estimates.
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