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Abstract

Objectives—The aim of this study is to develop a model based seizure prediction method.

Methods—A neural mass model was used to simulate the macro-scale dynamics of intracranial

EEG data. The model was composed of pyramidal cells, excitatory and inhibitory interneurons

described through state equations. Twelve model’s parameters were estimated by fitting the model

to the power spectral density of intracranial EEG signals and then integrated based on information

obtained by investigating changes in the parameters prior to seizures. Twenty-one patients with

medically intractable hippocampal and neocortical focal epilepsy were studied.

Results—Tuned to obtain maximum sensitivity, an average sensitivity of 87.07% and 92.6%

with an average false prediction rate of 0.2 and 0.15/h were achieved using maximum seizure

occurrence periods of 30 and 50 min and a minimum seizure prediction horizon of 10 s,

respectively. Under maximum specificity conditions, the system sensitivity decreased to 82.9%

and 90.05% and the false prediction rates were reduced to 0.16 and 0.12/h using maximum seizure

occurrence periods of 30 and 50 min, respectively.

Conclusions—The spatio-temporal changes in the parameters demonstrated patient-specific

preictal signatures that could be used for seizure prediction.

Significance—The present findings suggest that the model-based approach may aid prediction

of seizures.
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1. Introduction

As one of the most common neurological disorders, epilepsy affects more than

approximately 1% of the population worldwide (Engel, 1989). This wide-spread disorder is

characterized by episodic interruptions of cerebral electrical activities caused by abnormal
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hypersynchronous discharges of neuronal populations, commonly referred to as seizures

(Jackson, 1873). Further, 25% of epilepsy patients exhibit intractable epilepsy (Beghi et al.,

1986). Reliable seizure prediction systems may lead to new ways of controlling seizures and

hence improving the quality of life by assisting epilepsy patients in adjusting their

preventive behavior accordingly (Murray, 1993).

Due to its high temporal resolution, electroencephalography (EEG) is one of the effective

and widely used tools to investigate physiological and pathological activities of the brain.

Over the past decades, investigations using both linear and nonlinear analyses on seizure

prediction in intracranial or scalp EEG recordings have led to findings that show gradual

interictal-to-ictal transitions involving dynamical changes minutes to hours prior to

upcoming seizures (Lehnertz et al., 2003; Mormann et al., 2006). Although these

investigations have achieved high sensitivities in seizure prediction, these methods were also

limited by high false prediction rates, i.e., prediction alarms with no seizure occurring within

seizure occurrence periods (Mormann et al., 2006). From a clinical point of view, high false

prediction rates can increase the psychological stress of epilepsy patients. Accordingly, a

maximum false prediction rate per hour has been defined as a metric for quantifiably

assessing seizure prediction tools intended for clinical use (Winterhalder et al., 2003).

Due to the complexity of seizure-precipitating factors, current seizure prediction methods

may still be too rudimentary to extract all relevant parameters reflecting dynamical changes

in the EEG signals preceding epileptic seizures (Mormann et al., 2007). The seizure

prediction problem thus becomes exceedingly difficult when multiple regions of the brain

are involved in the preictal transition. Even if there is a well-defined spatiotemporal preictal

state as revealed by linear and nonlinear analyses of the EEG (Mormann et al., 2006), there

still remains no established physiological correlation between preictal changes and the

underlying neurophysiologic process taking place within the preictal state (Lopes da Silva et

al., 2003a,b).

In general, the dynamics of the preictal transition appear to be complex, as observed even in

a patient exhibiting preictal periods of different durations. Therefore, a different approach

incorporating physiological parameters is desirable to improve the performance of seizure

prediction. Such an approach has merits that it may explain why false predictions that

exhibit the same dynamical changes of neuronal networks as that of true predictions, do not

lead to epileptic seizures.

In the present study, our goal is to develop a model-based method to predict seizures in

patients with hippocampal and/or neocortical seizures. We used a neural mass model

incorporating biophysical parameters such as connectivity strengths (between excitatory and

inhibitory subpopulations), to investigate whether the periods preceding neocortical and

hippocampal seizures could be characterized by changes in the parameters of the model in

comparison with interictal periods far from seizures. Towards this objective, the model was

fit to the spectra of intracranial EEG (iEEG) data. A patient-specific rule-based system was

then designed to spatiotemporally integrate preictal changes in order to capture the essence

of the transition from interictal state to ictal activity. Finally, we assessed the system

performance for preictal identification at single-subject and group levels.
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2. Material and methods

2.1. Patient characteristics and iEEG recordings

In this study, we analyzed long-term iEEG data of 21 patients with medically intractable

epilepsy. The iEEG data were obtained from the publicly available Freiburg Seizure

Prediction EEG (FSPEEG) database (Maiwald et al., 2004) with permission. The data had

been recorded from grid, strip, and depth electrodes surgically placed on the cortex of the

patients or inserted in their brain. The patients underwent iEEG monitoring as part of a

presurgical evaluation for hippocampal and/or neocortical focal epilepsy, at the Epilepsy

Center of the University Hospital of Freiburg, Germany. Intracranial recordings had been

acquired using a Neurofile NT digital video-EEG system with 128 channels. A sampling

frequency of 256 or 512 Hz had been used to record the iEEG data using a common

referential montage relative to the contact recording with no epileptic activity. For each

patient in this database, six contacts had been selected by a certified epileptologist who

visually inspected iEEG data. Out of six contacts, three had been chosen from the contacts

inside the epileptogenic zone that exhibited the earliest signs of seizure activity, and three

contacts from the remote locations defined as either the cerebral regions, which were not

involved at all or the regions of which seizure activity was observed during the seizure

propagation. The expert had also determined the onset and offset times of seizures based on

identification of epileptic patterns preceding clinical manifestation of seizures in the iEEG

recordings.

For each patient, iEEG data with epileptic seizures including at least 50-min preictal data

were available. At least 24 h of seizure-free iEEG recordings had also been collected for

each patient. For 13 patients, the interictal iEEG data were continuous. However, for the

remaining eight patients interictal iEEG data were discontinuous including joined interictal

data of less than 24 h (Schelte et al., 2006).

In total, we analyzed 596 h of iEEG data containing 87 seizures. No hyperventilation or

photo-stimulation had been used to provoke seizures. However, medication had been

reduced in most patients during the recording period. Table 1 summarizes the patients’

characteristics and the iEEG data used in this study. It is of note that regardless of type and

number of seizures, location of seizure onsets in the brain, and record quality we analyzed

all iEEG records as provided in the FSPEEG database in which the data and channel

selection as well as the determination of onset and offset times of the seizures had been

carried out independently and objectively by the expert at the Epilepsy Center of the

University Hospital of Freiburg, Germany.

2.2. Model-based seizure prediction

At macroscopic scales, intracranial contacts placed on the cortex and/or inserted in the brain

measure the mean local field potentials generated by synchronous activity of large

assemblies of neurons including pyramidal cells as well as excitatory and inhibitory

interneurons located in the vicinity of the contact (Ullah and Schiff, 2009).

To date, many computational models incorporating explicit biophysical parameters have

been proposed to elucidate the mechanisms underlying the generation of physiological and
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pathological cerebral activity such as alpha activity, event related potential, and epilepsy

(Lopes da Silva et al., 1974; Jansen and Rit, 1995; Wendling et al., 2002; Suffczynski et al.,

2006; Moran et al., 2007). These computational models rest on four main assumptions

(Freeman, 1972; Wilson and Cowan, 1972; Suffczynski et al., 2006). First, it is assumed that

neurons inside the mass are densely distributed with random multi-scale inter-neuron

connections. Second, the neural activity of the mass is assumed to be the average of

postsynaptic potentials over all synchronously activated assemblies of neurons inside the

mass. In other words, the instantaneous single neurons within the neuronal population

receive the same average influence exerted to them from the ensemble. This assumption is

the so-called mean field approximation, which is crucial to determine the steady-state

behavior of the mass (Suffczynski et al., 2006; Daunizeau et al., 2011). Third, temporal

neural events are also assumed to be the ensemble average over the electrical activities of

the microscopic neural structure inside the mass. Therefore, relaxation times for action

potentials and synaptic potentials for individual neurons are ignored. In this case, the state

equations governing the model only describe the neural mass states at a macroscopic scale

with no explicit reference to action potentials, thresholds, and refractory periods (Freeman,

1972). Finally, the main assumption in developing these models is that the neural

mechanism is mainly dependent on the interaction of excitatory and inhibitory cells (Wilson

and Cowan, 1972; Suffczynski et al., 2006).

Among the computational models mentioned above, we were interested in the neural mass

model incorporating lumped parameters, originally developed by Lopes da Silva et al.

(1974) to explain the origin of the alpha activity. The model was later modified by Jansen

and Rit (1995) who developed a nonlinear model of a cortical column to simulate event-

related potentials. The modified model was built based on the incorporation of excitatory

Pyramidal Cells (PC) receiving inputs from Excitatory InterNeurons (ExIN), Inhibitory

InterNeurons (IbIN), and extrinsic input (u) coming from other cerebral regions (Fig. 1A). In

this model, the synapses of excitatory or inhibitory neurons convert the average density of

pre-synaptic action potentials into the average postsynaptic membrane potential by

convolving their respective impulse response functions he(t) and hi(t) with the input.

(1)

where He and Hi determine the maximum amplitude of the excitatory and inhibitory post-

synaptic potentials, respectively, and τe and τi represent the average time constants of

passive membrane and other spatially distributed delays in the dendritic tree in the excitatory

and inhibitory feedback loops, respectively. At mesoscopic scales of neuronal interactions,

the impulse responses of the synaptic junctions can be formulated through a state-space

representation by a second-order differential equation (David and Friston, 2003) as follows.

(2)
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where v is the average postsynaptic membrane potential for the excitatory or inhibitory

interneurons.

In the model proposed by Jansen and Rit, the average postsynaptic membrane potential is

converted to outgoing density of action potentials by a nonlinear static sigmoid function ζ(v)

(3)

where e0 represents the maximum firing rate of the neural population, v0 is the postsynaptic

potential achieved with a 50% firing rate, and r determines the steepness of the sigmoid

function.

The model configuration makes it unique for investigating preictal state in epilepsy patients

because the unbalanced interactions between PC, ExIN (positive feedback), and IbIN

(negative feedback) appear to play an important role in generating epileptic EEG activities,

as described by Suffczynski et al. (2006). Later, the Jansen and Rit model has been extended

and enhanced by Moran et al. (2007) by adding several specific parameters which met our

needs to design a model-based seizure predictor. The main advantage of this model over

others is that the model incorporates a recurrent connection (γ5 in Fig. 1B) added to the

inhibitory sub-unit. This self-feedback has been proven to be indispensible for the model to

replicate fast activities in the gamma frequency band, especially in the hippocampus

(Wendling et al., 2002; Moran et al., 2007). Not only can this structure be used to model the

neocortical networks, it can also replicate the activity generated by the hippocampus

containing a network of richly interconnected excitatory cells (e.g. pyramidal neurons) that

are regulated by a wide diversity of inhibitory interneurons (Freund and Buzsaki, 1996).

The state equations governing the extended model (see Moran et al. (2007) for more details)

are formulated as:

(4)

where v1–v5 represent the average postsynaptic membrane potentials for the excitatory

interneurons, pyramidal cells and inhibitory interneurons, respectively (Fig. 1B). φ is the

local field potential (herein the EEG signal), and ρ1 and ρ2 are the parameters that control

the shape and position of the sigmoid function ζ(ν). In this model, α is the spike-frequency

adaptation whose dynamics conforms to the universal model (see Benda and Herz (2003) for

a detailed description of the mechanisms for adaptation):

(5)
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The time constant τα determines how quickly α moves toward its steady state α∞, which

determines the rate beyond which the neuron stops firing. Since adaptation occurs over large

timescales (from a few 100 ms to 2 s), it has a slow trend independent of any spike-

generating process, the effect of the adaptation was therefore formulated as a shift in the

firing rate – input curve, ζ(ν−α) (Moran et al., 2007). Finally in the extended model only

the excitatory interneurons were considered to adapt to the extrinsic input (Fig. 1B).

ρ1, ρ2 and α are the unique parameters of the model that increase the adaptability of the

model and its ability to replicate the spectral power density of real EEG (Moran et al., 2008).

Table 2 describes the model parameters used in the state Eq. (4) and their physiological

interpretation. For the sake of simplicity, we refer to γ1 and γ2 as the coupling strengths of

the excitatory feedback loop. Similarly, γ3 and γ4 are referred as the coupling strengths of

the inhibitory feedback loop.

2.3. Seizure prediction system

Our model-based seizure prediction system comprises three stages (Fig. 2). First, the iEEG

data are band-pass filtered to remove dc offset components and high frequency noise and

divided into quasi-stationary segments. The neural mass model is then fitted to the

frequency spectrum of the iEEG segments on a channel-by-channel basis. The resulting

parameters are thresholded using the statistics of a reference window selected as the baseline

distant in time from any seizure. The thresholded parameters of single channels are then

spatially integrated using a rule-based patient-specific decision making approach to identify

seizure precursors. Each stage of the system is described in detail in the following sections.

2.4. Preprocessing

The EEG data were first band-pass filtered between 0.5 and 100 Hz, and then notch filtered

at 50 Hz to eliminate possible power line interference. Then, for each patient, the iEEG data

were split into independent training and testing sets. The training set included one randomly

selected sample seizure with a preictal period of 50 min and 4-h seizure free interictal iEEG

data used as the reference window. The 4-h reference window was considered large enough

to include intra-individual temporal variations of interictal activity. A shorter baseline had

strong impact on the Gaussianity of the distributions of the model parameters estimated

within the reference state (numerically tested). On the other hand, for each patient we tried

to keep the baseline as short as possible to use a large portion of interictal data for testing the

system. The testing sets containing the remaining seizures and interictal data as listed in

Table 1 were used to assess the performance of the system. The data included in the training

and testing sets were then broken down into nonoverlapping 10-s segments assumed to be

quasi-stationary as investigated by Esteller et al. (2001).

We computed the power spectral density of 10-s iEEG segments using the Welch spectral

estimation method (Welch, 1967) which divided the data into short segments overlapped by

50% and applied a Hamming window and the Fourier transform to each. The power

spectrum was then computed by taking the squared magnitude of the averaged transforms.
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The Welch spectral estimation method reduces noise as well as the variance of the iEEG

spectral estimate by windowing and averaging methods (Welch, 1967).

2.5. Model fit

For the sake of simplicity, we ignored connectivities between neuronal mass models used to

characterize the neural activities of the six intracranial contacts. Therefore, we only modeled

the iEEG activity of each contact separately. We used the Bayesian inference method

(Moran et al., 2008) to estimate the parameters of the model by inverting the power spectral

density of iEEG segments. The main assumption in the inversion process is that the spectral

profile of the measured signal (herein iEEG signal) is a linear mixture of different frequency

modes (Valdes et al., 1999; Friston, 2002; Zavaglia et al., 2008).

In brief, to invert the model, a linear transfer function is first provided in the state space by

linearizing the state Eq. (4) (Moran et al., 2007). This transfer function describes the

relationship between the steady-state spectral response of the neuronal population under

investigation and the model parameters. The endogenous input (u in Fig. 1) passing through

the transfer function of the neural mass model is assumed to be stochastic as a mixture of

white, pink or 1/f noise, with no sensory or event based inferences (Moran et al., 2008).

Then, the inversion method uses the specification of a likelihood model. The priors are used

as constraints on the parameters, and an Expectation Maximization method is employed to

estimate the posterior probability of the model parameters. The posterior distribution is

defined via Bayes’ Theorem as the normalized product of the prior density and the

likelihood. Defining the prior distributions (mean and covariance) ensured the stability and

convergence to a global minimum (Moran et al., 2008). We assigned the standard values

listed in Table 2 to the mean of the prior distributions. The same prior expectations for the

parameters as used by Moran et al. (2008) were used in this study to ensure positivity under

Gaussian priors.

We only applied the Bayesian inversion method as implemented in the SPM5 software (see

Moran et al. (2008) for more details) to seizure-free interictal activities as well as to preictal

periods. Thus, iEEG signals of ictal and postictal states were not analyzed. The model

parameters estimated from iEEG segments were then used for seizure prediction under two

assumptions. First, we assumed that the model parameters remained unchanged within the

quasi-stationary iEEG segments and the amplitude and frequency content of the iEEG signal

did not change by possible nonlinearity of the recording machine. Second, since the

inversion method used the linearized state equations to estimate the model parameters using

the power spectral density of EEG activity, the linearization process did not involve the

model nonlinear mechanism, which was indispensible to generate spike-like activity (Moran

et al., 2007). Therefore, the inversion process was unable to estimate the model parameters

for segments containing spikes. In general, spikes are considered as short-time isolated

events, which less contribute to the low frequency ranges. To ensure that the total spectral

power of the iEEG segments was not affected significantly by high-energetic spikes or series

of spikes, we rejected segments highly contaminated by spike-like activity. For this purpose,

we first used a simple amplitude thresholding method to identify segments affected by high

amplitude sporadic spikes. In order to determine the location of spikes for each segment, we
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computed the background amplitude of the segment by averaging the absolute values of the

amplitudes of the EEG signal in each segment (Gotman, 1985). Any waveforms with

amplitudes greater than four times the background amplitude were considered spikes. If the

average energy ratio of the segment was more than 5%, that segment was excluded from

further analysis. The average energy ratio (R) for a N-sample segment was defined as:

(6)

where M is the number of samples within the spiky portion of the segment, PSpikes is the

power of the spike-like activities within the segment, and PSegment is the power of the

segment.

2.6. Rule-based decision making

The time profiles of the twelve parameters (listed in Table 2) extracted from consecutive

iEEG segments for each patient were first smoothed using a backward-moving-average filter

of 5 min in length, and then thresholded using the following method. This filter length has

been reported by Mormann et al. (2005) as the optimal length for seizure prediction methods

to achieve higher performance. The thresholding was used to identify outliers in the

temporal profiles of the parameter values. This procedure was intended to locate significant

preictal changes. For each channel and parameter, the parameter values were normalized

using (y−ŷ)/σ, where y was the parameter value, and ŷ and σ were the respective

expectation and standard deviation of the parameter values within the reference window.

Since the baseline was relatively long, we expected a normal distribution for the values of

each parameter within the reference window. However, we found one standard deviation to

be more appropriate to identify outliers because the parameter distribution was shown to be

non-Gaussian in some cases (numerically tested). However, increasing the thresholds could

reduce the sensitivity of our seizure prediction system where preictal changes in parameters

were not highly significant in comparison with the reference window. Once identified, the

location and the parameter value of the iEEG segments that exhibited values greater than (ŷ
+ σ) or lower than (ŷ−σ) were saved for further analysis.

Using the Mann–Whitney U-test (Mann and Whitney, 1947) as a two-sided rank sum

statistical test, we tested the null hypothesis that the parameter values within the reference

period and the ones within the preictal period on the same channel were independent

samples from identical distributions with equal medians. The alternative hypothesis was that

the parameter values did not have equal medians, with a level of significance of P < 0.05.

We used the Mann–Whitney U-test to identify the parameters and channels that exhibited

the significant changes within the 50-min preictal period of the sample seizures for all of the

patients.

To determine a preictal increase or decrease in each parameter for each patient, the

parameter values within the 50-min preictal period of the sample seizure (training set) were

statistically compared with the ones from the reference window in a channel-by-channel
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basis. If the preictal period was significantly different from the respective reference window

for a specific parameter and channel, then, a label H or L was assigned to the preictal state of

the parameter on that channel. The label H or L indicated that the median of the parameter

values in the preictal period was respectively greater or less than the one computed in the

reference period. If the preictal period did not show any significant changes in comparison

with the reference window, a label E representing equality was assigned to the parameter

and channel. This procedure was repeated for all the other parameters and channels for each

patient in order to identify significant preictal changes. For each patient, all of the labels

obtained for the parameters were then arranged in a vector called spatial parameter pattern

vector (SFPV) and saved as the spatiotemporal preictal profile of the parameters. The

resulting profiles of the twelve parameters were then fed to the parameter analyzers as

described in the Supplementary Material. As guidelines, the SFPVs were used to establish

patient-specific rules, which were consequently employed to identify recurrences in the

preictal pattern as observed in the sample seizure in the testing set.

The single- and multi-parameter analyzers were designed to integrate parameter values

spatio-temporally by rules established in the form of “if-then” rules, which allowed a

mapping from parameter-channel space into decisions made about seizure prediction (see

the Supplementary Material for details).

2.7. System evaluation

The system evaluation was performed by dividing the patients’ iEEG data into training and

testing sets. The system parameters were optimally adjusted using the training set for each

patient. Then, the performance of the seizure prediction system was assessed on the testing

sets using the commonly used performance parameters including sensitivity, specificity,

false prediction rate, mean prediction time, and portion of time under false predictions

(Mormann et al., 2006); see the Supplementary Material for definitions).

The performance parameters were calculated for maximum seizure occurrence periods of 30

and 50 min and a minimum seizure prediction horizon (SPH) of 10 s.

The performance of the system was evaluated using the optimal thresholds described in the

Supplementary Material for the maximum sensitivity and maximum specificity strategies.

The system sensitivity was also compared with the sensitivity values obtained using the

random and periodical prediction methods as described in Maiwald et al. (2004) (see the

Supplementary Material).

3. Results

3.1. Percentage of rejected spiky segments

To obtain the percentage of iEEG segments excluded from our analysis, for each patient and

channel, iEEG segments containing high-energy spiky transients were first identified based

on the energy criterion described in the model fit section. The channel-related percentage

was then obtained by calculating the ratio of the number of identified spiky segments to the

total number of segments analyzed for the patient. This process was repeated for all of the

patients.
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Supplementary Table S1 lists the percentage of rejected iEEG segments for electrodes

positioned within the epileptic zone and remote areas for each patient. For the majority of

channels, less than 5% of segments contained high-energy spiky transients. Therefore, based

on the energy criterion that we defined, no channels were precluded from the seizure

prediction process. More importantly, as we described earlier, for any segment to be

declared as a seizure precursor, prediction flag Is have to be raised on at least two channels.

Therefore, rejecting isolated spiky segments may not affect significantly the performance of

the seizure prediction system. Only a very low percentage of segments showed spike-like

activities on all channels simultaneously in the preictal periods for patients 6 and 16.

3.2. Threshold optimization

In Supplementary Table S2 lists the mean and absolute deviation of the optimal values for

the thresholds (Tc1, Tc2, NP, and Nch) used for seizure prediction in all patients over ten

randomly selected reference windows. All thresholds were obtained using the optimization

process for both the maximum sensitivity and maximum specificity strategies (see

Supplementary Material for more details). As shown, for the majority of the patients, the

system needed at least two parameters and six channels to identify seizure precursors. The

system also showed higher sensitivity to the threshold Tc2 used to filter out flag IIIs with

non-significant values.

3.3. Cross-validation results: maximum sensitivity vs. maximum specificity

Supplementary Tables S3 and S4 list the results on the performance evaluation of the entire

system using the maximum sensitivity and maximum specificity strategies. Grand statistics

were calculated using out-of-sample seizure-free interictal data and seizures (see

Supplementary Material for more information). The results showed no statistically

significant differences in the system performance when different baselines were used.

However, increasing the sensitivity of the system caused a slight increase in false prediction

rates and vice versa. The periods preceding the seizures could be characterized by increases

and decreases in parameters on different intracranial electrodes with a mean prediction time

of 15 min. However, the performance of the system depended on the individual patient.

The overall performance of the system was computed by averaging the performance values

obtained across seizures. Using the maximum sensitivity strategy, the system achieved an

average sensitivity of 87.07% and 92.6% with an average false prediction rate of 0.2 and

0.15/h, and an average specificity of 95.8%, respectively, for seizure occurrence periods of

30 and 50 min and SPH = 10 s. Using the maximum specificity strategy, the system’s

sensitivity decreased to 82.9% and 90.05%, respectively, for seizure occurrence periods of

30 and 50 min and SPH = 10 s. However, the respective false prediction rates were

improved to 0.16 and 0.12/h.

In Supplementary Tables S3 and S4, for each patient, the ranges of changes in portion of

time under false predictions and mean prediction time have been reported for each patient.

The mean prediction time implies directly the duration of the identified preictal periods

within which significant preictal changes in parameters were observed.
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Figs. 3A–D depict the variation range of the sensitivity of the system versus that of false

prediction rate for seizure occurrence periods of 30 and 50 min and a seizure prediction

horizon of 10 s for each patient.

Using both strategies, the seizure prediction method obtained significantly higher

sensitivities compared to the random and periodical prediction methods with a maximum

false prediction rate of less than 0.45/h. Accordingly, Fig. 3C and D illustrate how the

system’s sensitivity deteriorated when the system was optimized using the maximum

specificity strategy. However its false prediction rate was improved.

3.4. Frequency content analysis

For each patient, the power spectral densities of iEEG segments within the reference

windows and preictal periods were averaged over the intracranial electrodes located within

the epileptogenic zone or remote areas. The average frequency content of segments within

the reference windows and preictal periods were relatively similar with specific differences

in two distinct frequency peaks: a low frequency peak in the frequency band below 5 Hz

within the EEG theta band, and a high frequency peak in the low-gamma bands between 20

and 40 Hz (Fig. 4). It is also important to note that both the low frequency and high

frequency peaks occurred in all patients during the preictal and reference periods.

4. Discussion

Motivated by the existence of neuronal population models, we have developed a model-

based method with the objective of modeling intracranial EEG to infer physiological

changes underlying interictal and preictal activities. The parameters of a physiologically

inspired neural mass model fitted to the power spectral density of iEEG segments were

spatio-temporally integrated using the patient-specific rules established from the

characteristics of the preictal periods to predict hippocampal and neocortical onset seizures

in patients with medically intractable epilepsy. We tested the patient-specific system on

blinded long-term iEEG recordings after tuning its parameters using a training set for each

patient. We then evaluated the system using common performance parameters including

sensitivity, specificity, and false prediction rate. Using the maximum sensitivity strategy, our

rule-based seizure prediction system achieved an average sensitivity of 87.07% and 92.6%

with an average false prediction rate of 0.2 and 0.15/h, and an average specificity of 95.8%

for seizure occurrence periods of 30 and 50 min, respectively. Similarly, using the maximum

specificity strategy, the system sensitivity decreased to 82.9% and 90.05% for seizure

occurrence periods of 30 and 50 min, respectively. However, the false prediction rate was

reduced to 0.16 and 0.12/h accordingly.

Our model-based seizure prediction method was able to capture preictal changes at least 15

min before electrographic onset. The predictive power of the system substantially increased

within prediction occurrence periods of 30 and 50 min. The transitional preictal states

differed from seizure-free interictal control periods on intracranial electrodes located within

the epileptic zone and remote areas. The characteristic differences in the model parameters

between periods preceding the seizures and baselines were statistically significant. The

system also largely outperformed the random and periodic prediction methods.
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Implementations of the estimation process using the Bayesian inversion algorithm used in

this study can be found in the statistical parametric mapping package (SPM5, available from

http://ltfat.sourceforge.net). The estimation procedures were run on a Windows 7 platform

with a Pentium 5, 3.4 GHz CPU, 4 GB of memory. On average, the running time needed to

estimate the model parameters for a 10-s segment of iEEG data was 5 s using MATLAB

(Math Works Inc.). However, a further substantial improvement can be obtained by

compiling the MATLAB program in C/C++ codes for real-time applications.

4.1. Comparison to other seizure prediction methods

To date, many research groups have attempted to identify preictal changes preceding

epileptic seizures by linear and nonlinear analyses, all with a varying degree of success

(Lehnertz et al., 2003; Mormann et al., 2006). The international EEG database (FSPEEG)

has been used for evaluating seizure prediction tools employing the correlation dimension

(Aschenbrenner-Scheibe et al., 2003), the dynamical similarity index (Winterhalder et al.,

2003; Schelte et al., 2006), the mean phase coherence (Schelte et al., 2006), and a phase and

lag synchronization measure (Winterhalder et al., 2006). Maiwald et al. (2004) carried out a

study to compare the performance of the dynamical similarity index, the accumulated

energy, and the effective correlation dimension for seizure prediction. With a false

prediction rate (FPR) of less than 0.15/h and a seizure occurrence period (SOP) of up to 30

min, these three methods achieved sensitivity ranges of 21–42%, 18–31% and 13–30%,

respectively. Using bivariate signal analysis, Mirowski et al. (2009) extracted features

including cross-correlation, nonlinear interdependence, dynamical entrainment and phase

synchrony-based measures from 5-s segments of iEEG data from the FSPEEG database.

They aggregated extracted features into spatio-temporal, or spatio-temporal and frequency-

based patterns and classified them into the preictal or interictal categories using patient-

specific machine learning-based classifiers. Using convolutional networks combined with

wavelet coherence, they achieved a sensitivity of 71% with zero false positives on 15 (out of

21) patients on average 60 min before the seizure onset. They reported that for each patient

in this database, at least one method based on bivariate measures could predict seizures with

a sensitivity of 100% 60 min prior to the seizures with no false alarm. Recently, a seizure

prediction system developed by Feldwisch-Drentrup et al. (2010) used the “AND” and “OR”

combination of different seizure prediction algorithms including the mean phase coherence

(Mormann et al., 2000) and the dynamic similarity index (Le Van Quyen et al., 1999), for

the purpose of improving prediction performances. They evaluated their system on a

database with 182 h of continuous long-term iEEG recordings with an average of 19.1

seizures per patient. They achieved a mean sensitivity of 25% for the individual methods

and mean sensitivities of 43.2–35.2% and 55–50% for a maximum false prediction rate of

0.15/h respectively for the “AND” and “OR” combinational systems using seizure

occurrence periods of 30 and 50 min.

In a very recent study, we developed a rule-based seizure prediction algorithm using

combined univariate and bivariate nonlinear measures. Using the rule-based seizure

prediction system, we achieved an average sensitivity of 79.9% and 90.2%, and an average

false prediction rate of 0.17 and 0.11/h, respectively, for seizure occurrence periods of 30

and 50 min and a fixed seizure prediction horizon of 10 s (Aarabi and He, 2012). In
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comparison, in the present approach, we achieved a higher average sensitivity of 87.07%

and 92.6%, and average false prediction rates of 0.2 and 0.15/h for seizure occurrence

periods of 30 and 50 min, respectively. A key parameter that discriminates the present

approach from other approaches is that other approaches used discriminative relevant

nonlinear parameters of the iEEG data to distinguish preictal periods from interictal states

considered as the baseline. In contrast, our present approach implied characterization of

neurophysiological processes underlying iEEG through inference on the parameters of a

biophysical model. The changes in these parameters may reflect fundamental physiological

differences between interictal and preictal states. Our present results suggest the existence of

a preictal period that occurs several minutes before the first electrical changes associated

with the seizures are observed. In most of the cases, preictal changes were related to both

sites where seizure emerged as well as to remote areas. In some patients, the preictal

changes were more significant in remote areas than in the epileptogenic zone, which

suggests the existence of spatio-temporal changes in the EEG dynamics driven by

neocortical and hippocampal networks prior to seizures.

4.2. Model considerations

Mathematical models (Traub et al., 1987; Lopes da Silva et al., 1994; Lytton et al., 1997;

Traub et al., 1997; Wendling et al., 2002; Suffczynski et al., 2004) and experimental models

(Walther et al., 1986; Hawkins and Mellanby, 1987; Jefferys, 2003) have been successfully

used to study mechanisms underlying seizure generation. The computational models have

shown great computational power to reproduce large variety of MEG/EEG patterns (Nunez,

1974; Jansen and Rit, 1995; Lopes da Silva et al., 1997; Valdes et al., 1999; Robinson et al.,

2001; Suffczynski et al., 2001; Rennie et al., 2002; David and Friston, 2003; Wendling et

al., 2000, 2002, 2005). Specifically, based on the impaired balance between neural

excitation and inhibition, Wendling et al. (2000, 2002, 2005) have used neural mass models

to simulate epileptic patterns. But to the best of our knowledge, no physiologically inspired

models have been used so far to investigate preictal changes in real EEG data recorded from

epileptic patients with focal epilepsy. In this study, we have used the dynamic causal

modeling using the Bayesian inversion method described by Moran et al. (2007, 2008) to

infer changes in physiological parameters in the preictal period prior to the hippocampal and

neocortical onset seizures. This modeling scheme incorporates explicit biophysical

parameters including coupling strengths between excitatory and inhibitory interneurons and

other intrinsic parameters defined at a macroscopic level. The resulting model has been

developed under the physiological basis consistent with the experimental and theoretical

work of others (Wendling et al., 2002, 2005). Furthermore, the model has been validated

successfully through a correct prediction of changes in synaptic parameters using simulated

data and experimental recordings from animals. For example, the model inversion has

provided consistent predictions about the level of extracellular glutamate as measured

experimentally in the prefrontal cortex of rats (Moran et al., 2008). This neural mass model

is the modified version of the dynamic causal model used by David et al. (2006) to study

event-related potentials with distinctive parameters (Moran et al., 2007, 2008).
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4.3. Seizure prediction considerations

The short-term preictal changes in parameters were analyzed based on amplitude and

duration for identifying seizure precursors. With this approach we obtained a good

performance for the system. However, the preictal changes in parameters were strongly

affected by the differences between patients. Furthermore, no sustained increases or

decreases in parameters were observed in the periods preceding the seizures in some

patients.

We observed discriminant preictal increases or decreases in the model parameters in

comparison to baselines in all three intracranial electrodes near the focus as well as in those

located in remote areas in the neocortex and hippocampus with certain variation from

seizure to seizure interindividually and across patients. Our findings are in accordance with

other observations, which suggest that the seizure generation process may involve recording

sites within the epileptic focal area as well as distant brain structures (see Mormann et al.,

2006, 2007).

In our model-based seizure prediction approach, one neural mass model was considered for

each of the six intracranial contacts. Therefore, six models for each patient were considered

independent from each other (non-coupled neuronal population models). This uncoupled

modeling approach provided us with means to investigate the behavior of intrinsic

parameters with no influence from other cerebral regions. However, our main assumption

was that the neural activity within one region is independent from the activity of other

cerebral regions. This assumption may not be valid especially when one deals with epileptic

networks, because interactions between different regions of the brain during the

epileptogenic process have been considered to be closely associated with changes in the

spatiotemporal dynamics of ictogenesis.

Lastly, as described earlier, due to the linearization of the nonlinear state equations, the

inversion process could not be employed to estimate the model parameters for segments

containing spikes, which are caused by the inherent non-linear nature of the state equations.

Therefore, we discarded iEEG segments with spike-like events from seizure prediction

process based on the hypothesis that interictal spikes are generated by a random process.

This hypothesis does not hold in situations where spike rates may decrease or increase in the

pre-ictal periods in a patient-specific way. Therefore, the process of discarding spiky

segments may systematically affect the performance of the system for patients with preictal

periods characterized by spiky activities. On the other hand, it is probable that removing

segments with spike-like events would improve the performance of the other methods that

we earlier compared our system with. As a result, one may envisage use of neural mass

model being able of producing oscillatory background activities with low amplitude

dynamics as well as high amplitude spike–wave discharges. This bistable model would help

to understand the mechanism of transition from interictal state to seizure activity with time-

invarying parameters with an emphasis on spatial interactions in the model (Goodfellow et

al., 2011). This property provides a better characterization of the transition from

spontaneous background EEG into ictal activity by considering a larger number of coupled

compartments. Other data-driven neural field models have also been developed for

estimating intracortical connectivity and synaptic dynamics from electrophysiological data
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(Freestone et al., 2011). This therefore motivates the future application of models that allow

for interregional coupling.

5. Conclusion

In summary, our model-based seizure prediction tool achieved a clinically acceptable

performance across the patients studied. It also provided a substantial ground for identifying

preictal states by investigating changes in the neural mass model’s parameters estimated

using the spectrum of iEEG signals. The spatio-temporal changes in the neurophysiological

parameters of the model demonstrated patient-specific preictal signatures that could be used

for seizure prediction in the majority of the seizures with hippocampal and neocortical

origins.

Further investigations will focus on using coupled neural mass models to investigate

interregional influences and their relation to mechanisms underlying the transition from

interictal to ictal states. The results obtained in this study will then be compared with those

to be obtained using the model with interregional connections. As the second step to

improve the performance of our seizure prediction tool, the improved Bayesian inversion

method which includes the second-order moment of the posterior density on the model’s

parameter (Daunizeau et al., 2011) will be used to minimize dependencies between the

estimates of parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Sensitivity of >90% and false prediction rate of <0.15/h from intracranial EEG

(iEEG).

• The neural mass model revealed patient-specific preictal patterns.

• Preictal changes were observed independent of locations of intracranial

electrodes.

Aarabi and He Page 19

Clin Neurophysiol. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1.
Canonical neural mass model (A), and schematic diagram of the neural mass model (B) described by the state Eq. (1). ExIN,

excitarory interneurons; IbIN, inhibitory interneurons; PC, pyramidal cells. See Table 2 for parameter description.
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Fig. 2.
Schematic diagram of the model-based seizure prediction system.
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Fig. 3.
Sensitivity versus false prediction rate for each patient (as indicated by patient number in Table 1) and for the grand average

across patients (labeled in pink as grand average) using seizure occurrence periods of 30 min (A and C), and 50 min (B and D)

and a seizure prediction horizon of 10 s. Results for the maximum sensitivity and maximum specificity strategies are shown in

(A–B) and (C–D), respectively. For each patient, a box shows the range of variation of sensitivity versus false prediction rate

obtained using different randomly selected reference windows. It is of note that a line (e.g. for patient 11) or a dot (e.g. for

patient 4) represents the results where no variations in sensitivities or/and in false prediction rates were observed. Plus and

minus signs used with the patients’ number denote the upper and lower bounds of the corresponding ranges of variation. The

performances of the random and periodical prediction methods as described in the Supplementary Material are shown in all four

panels (A–D). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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Fig. 4.
Spectra for preictal and reference state, averaged over the electrodes within the epileptic zone and remote areas.
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Table 2

Parameters used in the state equations governing the model and their interpretation and standard values.

Parameters Physiological interpretation Physical role in the model Standard value

ρ1 Determines the steepness of the sigmoid function Alters the sensitivity of the neuron to its
membrane potential

2 mV−1

ρ2 Determines the position of the sigmoid function Increases the excitability of the of the
neuronal population

1 mV

He Maximum excitatory post-synaptic potentials Alters average excitatory synaptic gain 4 mV

Hi Maximum inhibitory post-synaptic potentials Alters average inhibitory synaptic gain 32 mV

τe Average time constant in the excitatory feedback loop Alters average time constant of excitatory
dendritic tree

4 ms

τi Average time constant in the inhibitory feedback loop Alters average time constant of inhibitory
dendritic tree

16 ms

γ1 Average number of synapses in the path connecting PC to
ExIN

Alters the strength of coupling between PC
and ExIN

128

γ2 Average number of synapses in the path connecting ExIN to
PC

alters the strength of coupling between
ExIN and PC

128

γ3 Average number of synapses in the path connecting PC to
IbIN

Alters the strength of coupling between PC
and IbIN

64

γ4 Average number of synapses in the path connecting IbIN to
PC

Alters the strength of coupling between
IbIN and PC

64

γ5 Average number of synapses in the self-feedback inhibitory
path

Alters the strength of recurrent inhibitory
gain

16

τα Adaptation rate constant Determines how fast the firing rate adapts 512 ms
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