Table 2.
Distribution of optimal parameters
PLS on aquaticTox | Number of components | 10 | 11 | 12 | 13 | 14 | 15 | |||
Frequency | 1 | 9 | 9 | 23 | 6 | 2 | ||||
Ridge regression on AquaticTox | Lambda | ≤0.027 | 0.035 | 0.040 | 0.046 | 0.053 | 0.061 | 0.070 | 0.081 | ≥0.093 |
Frequency | 6 | 5 | 7 | 8 | 4 | 6 | 10 | 6 | 2 | |
Ridge logistic regression on bbb2 | Lambda | ≤0.09 | 0.10 | 0.12 | 0.14 | 0.16 | 0.18 | 0.21 | 0.24 | ≥0.28 |
Frequency | 7 | 3 | 4 | 5 | 10 | 6 | 5 | 2 | 8 | |
Ridge logistic regression on caco-PipelinePilotFP | Lambda | <0.0046 | 0.0046 | 0.0053 | 0.0061 | 0.0070 | 0.0081 | 0.0093 | 0.0107 | >0.0107 |
Frequency | 6 | 2 | 2 | 4 | 7 | 12 | 6 | 6 | 5 | |
Ridge logistic regression on caco-QuickProp | Lambda | ≤0.018 | 0.021 | 0.024 | 0.028 | 0.032 | 0.037 | 0.042 | 0.049 | ≥0.056 |
Frequency | 7 | 2 | 8 | 7 | 7 | 7 | 4 | 4 | 4 | |
PLS on MeltingPoint | Number of components | 34-35 | 36 | 37-40 | 41 | 42-46 | 47 | 48-51 | 57 | 60 |
Frequency | 7 | 7 | 6 | 8 | 7 | 8 | 5 | 1 | 1 | |
Ridge regression on MeltingPoint | Lambda | ≤0.031 | 0.036 | 0.042 | 0.048 | 0.055 | 0.063 | 0.073 | 0.084 | ≥0.096 |
Frequency | 5 | 1 | 4 | 6 | 5 | 5 | 7 | 10 | 5 | |
Ridge logistic regression on Mutagen | Lambda | <0.0016 | 0.0016 | 0.0018 | 0.0021 | 0.0024 | 0.0031 | 0.0036 | 0.0042 | >0.0042 |
Frequency | 7 | 2 | 1 | 6 | 5 | 8 | 4 | 6 | 7 | |
Ridge logistic regression on PLD | Lambda | ≤0.34 | 0.34 | 0.39 | 0.44 | 0.67 | 0.77 | 0.89 | 1.02 | ≥1.17 |
Frequency | 10 | 2 | 3 | 2 | 1 | 5 | 5 | 5 | 19 |
Distribution of optimal parameters (number of components or lambda values) based on 50 single cross-validations for each pair of method/dataset.