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EBV-transformed B-cell lines. Based on its actions, 
IL-12 was initially designated as “cytotoxic lymphocyte 
maturation factor” [1] and “natural killer cell stimula-
tory factor” [2]. Due to bridging the innate and adap-
tive immunity and potently stimulating the production 
of IFN-γ—a cytokine coordinating natural mechanisms 
of anticancer defense [3]—IL-12 seemed ideal candidate 
for tumor immunotherapy in humans. However, severe 
side effects associated with systemic administration of 
IL-12 in clinical investigations and the very narrow ther-
apeutic index of this cytokine markedly tempered enthu-
siasm for the use of this cytokine in cancer patients. 
Despite those setbacks, IL-12 continues to be the focus 
of interest in clinical oncology. The present review sum-
marizes the most promising IL-12-based approaches in 
animal models and discusses clinical trials with special 
emphasis on ongoing studies aimed at the improvement 
of the therapeutic efficacy of IL-12 and limitation of its 
toxicity.

Biological effects of IL‑12 and its role in the antitumor 
defense mechanisms

The main source of IL-12 in humans is the activated anti-
gen-presenting cells, such as dendritic cells [4], especially 
of the CD1c+ phenotype [5], as well as the hematopoietic 
phagocytes (monocytes, macrophages, and also neutro-
phils) [6], but IL-12 can also be produced by other cell 
types [7, 8]. While IL-12 acts on a variety of immune cells, 
the overall physiological role for IL-12 seems to be orches-
trating the Th1-type immune response against certain 
pathogens. Also, a range of immunoregulatory activities of 
IL-12 have raised a profound interest in this cytokine as a 
potential anticancer agent [9].

Abstract  Interleukin 12 (IL-12) seemed to represent 
the ideal candidate for tumor immunotherapy, due to its 
ability to activate both innate (NK cells) and adaptive 
(cytotoxic T lymphocytes) immunities. However, despite 
encouraging results in animal models, very modest antitu-
mor effects of IL-12 in early clinical trials, often accom-
panied by unacceptable levels of adverse events, markedly 
dampened   hopes of the successful use of this cytokine 
in cancer patients. Recently, several clinical studies have 
been initiated in which IL-12 is applied as an adjuvant in 
cancer vaccines, in gene therapy including locoregional 
injections of IL-12 plasmid and in the form of tumor-tar-
geting immunocytokines (IL-12 fused to monoclonal anti-
bodies). The near future will show whether this renewed 
interest in the use of IL-12 in oncology will result in 
meaningful therapeutic effects in a select group of cancer 
patients.

Keywords  Interleukin 12 · Cancer immunotherapy · 
Gene therapy · Cytokine

Introduction

Interleukin 12 (IL-12) is a pleiotropic cytokine, the 
actions of which create an interconnection between 
the innate and adaptive immunity. IL-12 was first 
described as a factor secreted from PMA-induced 
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Structure of IL‑12 and its cognate receptor

Structurally, IL-12 belongs to type I cytokines and has a 
four α-helical bundle structure. IL-12 acts in a form of a 
heterodimeric protein (IL-12-p70; IL-12-p35/p40) consist-
ing of two covalently linked p35 and p40 subunits. Con-
trary to the heterodimeric form, IL-12-p40/p40 homodi-
mer acts mostly as a competitive suppressant of IL-12-p70 
actions [10]. Following the discovery of IL-12, three other 
members (IL-23, IL-27, and IL-35) have been added to the 
IL-12 family and shown to play critical roles in Th1 cell 
functions (reviewed in [11]).

IL-12 is a ligand of a receptor composed of two amino 
acid chains, IL-12R-β1 and IL-12R-β2. IL-12 receptor 
is expressed in a constitutive (e.g., IL-12R-β1 in B cells 
[12]) or inducible (IL-12R-β2 [12]) manner in a variety of 
immune cells, including NK cells, T, and B lymphocytes. 
Ligand-bound IL-12R-β2 becomes phosphorylated on 
tyrosines, which provides harboring sites for two kinases, 
JAK2 and TYK2. Among the STAT family of transcription 
factors, STAT4 is considered to be the most specific media-
tor of cellular responses elicited by IL-12 [13].

Regulation of IL‑12 expression

During the immune response against pathogens, produc-
tion of an active IL-12-p70 heterodimer can be increased 
by two types of stimuli: priming and amplification [14]. 
The priming event is usually mediated via “danger signal-
ing” routes of the immune system, many of them trans-
duced through the toll-like receptor (TLR) family. In 
macrophages, for instance, IL-12 can be induced follow-
ing TLR4 ligand—lipopolysaccharide (LPS), and TLR7/8 
ligand—R848, binding to their cognate receptors [15]. 
The amplification signaling is provided by a cytokine net-
work (e.g., by IL-1β [16]) or direct cell–cell contact with 
other immune cells (e.g., CD40L–CD40 interaction [17]). 
It is uncertain, however, what exact molecular events 
underlie triggering the cancer-induced IL-12 production. 
The most likely mechanism is the CD40L–CD40 interac-
tion [18].

Suppression of IL-12 production is mediated by such 
cytokines as type I IFNs [19], IL-10, and TGF-β [20] as 
well as by prostaglandin E2 (PGE2) that is produced by var-
ious cancers [21]. Another suppressive molecule is T-cell 
immunoglobulin and mucin domain-containing protein 3 
(Tim-3), which can inhibit the production of IL-12 by den-
dritic cells [15] within a tumor environment (highlighted in 
[22]). Direct cell–cell contact has also been described as a 
mechanism of decreasing IL-12 production, for instance by 
tumor-derived CD4+CD25+ T regulatory (Treg) lympho-
cytes via CTLA-4-mediated signaling [23] or by CD200–
CD200R interactions [24].

Biological activities of IL‑12 as an antitumor cytokine

Although potent antitumor effects of IL-12 are very 
well established, this cytokine is considered to be inca-
pable of directly inhibiting the cancer growth, although 
exceptions can occur [25]. Rather, IL-12 acts as a major 
orchestrator of Th1-type immune response against cancer. 
Another important notion is that IL-12 appears to elicit 
more potent antitumor responses when existent directly 
in the tumor whereabouts, rather than present systemi-
cally. In the latter case, especially in humans, toxicities 
of IL-12 administration seem to prevail over its antitumor 
effectiveness.

The main elements of IL-12 actions are as follows 
(Fig. 1): increasing production of IFN-γ, which is the most 
potent mediator of IL-12 actions, from NK and T cells 
[26]; stimulation of growth and cytotoxicity of activated 
NK cells, CD8+ and CD4+ T cells [27], shifting differen-
tiation of CD4+ Th0 cells toward the Th1 phenotype [28]; 
enhancement of antibody-dependent cellular cytotoxicity 
(ADCC) against tumor cells [29, 30]; and the induction of 
IgG and suppression of IgE production from B cells [31]. 
Several other mechanisms, however, also strongly con-
tribute to antitumor activities of IL-12. These are potent 
antiangiogenic effects via induction of antiangiogenic 
cytokine and chemokine production [32], remodeling of 
the peritumoral extracellular matrix and tumor stroma 
[33], reprogramming of myeloid-derived suppressor cells 
[34], and changes in processing and increasing expression 
of MHC class I molecules [35]. All the above mechanisms 
converge during response against tumors and are postulated 
to be responsible for the high potency of antitumor effects 
of IL-12.

The observations on activating the effects of IL-12 
on T and NK cells have been made early in the studies 
on this cytokine and have been a subject of several sys-
tematic reviews [36, 37]. A recent study, however, has 
demonstrated that prolonged treatment with IL-12 can 
have some detrimental effects on antitumor activity of 
T cells, by the induction of expression of Tim-3 mol-
ecule in T cells [38]. This mechanism is most likely a 
negative feedback loop preventing the overactivation 
of the immune system in course of the pathogen inva-
sion, but in the case of a chronic disease like cancer or 
some infectious diseases [39] can be hampering the host 
response.

Potent antiangiogenic effects of IL-12 were identified 
in mid-1990 by the group led by Dr. Judah Folkman [40]. 
These effects were associated with IFN-γ production, 
and further on, two more downstream mediators were 
described: IFN-γ-inducible protein 10 (IP-10, CXCL10) 
and monokine induced by IFN-γ (MIG, CXCL9) [41]. 
The importance of IL-12 in controlling tumor-associated 
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angiogenesis has been underscored by a recent observa-
tion that antiangiogenic therapy with vascular endothelial 
growth factor receptor (VEGFR) inhibitors, sunitinib and 
sorafenib, promoted metastasis of hepatocellular carci-
noma model by suppressing host-derived IL-12B (IL-
12-p40) [42]. In parallel to the investigations concerning 
its antiangiogenic actions, the studies on the effects of 
IL-12 on tumor stroma showed that this cytokine is capa-
ble of triggering, partly by IFN-γ, reversion of tumor eva-
sion strategies mediated by myeloid-derived cells within 
the tumor mass [34], as well as that a collapse of tumor 
stroma following local secretion of IL-12 can be mediated 
by Fas [33]. IL-12 was also suggested to alter the expres-
sion of endothelial adhesion molecules, such as VCAM-
1, that play a role in leukocyte recruitment to the tumor 
microenvironment [43].

An important characteristic of IL-12, identified in 
the studies also conducted by our research team, is that 
it shows a strong tendency to synergize in its biological 
actions with several other cytokines (reviewed in [44]). 
Classical examples of such cytokines are TNF-α [45, 46], 
IL-2 [47, 48], IL-15 [49, 50], IL-18 [50, 51], or GM-CSF 
[52]. Interesting observations have also been made regard-
ing the actions, either positive or negative, of IL-12 on 
hematopoiesis [53–55], which can be of importance in 
cancer patients as well.

In summary, IL-12 possesses multiple biological proper-
ties that are capable of governing immune effector actions 
against a variety of malignancies and, despite some set-
backs, remains the center of interest as a recognized anti-
cancer immunotherapeutic agent.

IL‑12: a successful antitumor agent in preclinical 
studies

In accordance with its ability to stimulate many different 
direct and indirect antitumor activities belonging to innate 
immunity, adaptive immunity, and non-immune mecha-
nisms (see above), IL-12 has proven to be very effective 
in animal models of tumor therapy. This cytokine has been 
successfully applied in dozens of experimental models in 
mice involving both solid tumors and hematologic malig-
nancies including poorly immunogenic tumors [56–60]. 
Many attempts have been made to further potentiate the 
antitumor effects of IL-12. Antitumor activity of IL-12 
can be effectively improved by its combination with vari-
ous therapeutic modalities: chemotherapeutics, cytokines, 
antibodies, antiangiogenic agents, radiotherapy, adoptive 
therapy, and tumor vaccines (Table 1).

Chemotherapy is regarded as an established tumor treat-
ment but it can potentially inhibit the development of anti-
tumor immunity interfering with proliferation and/or viabil-
ity of cells participating in immune response against tumor. 
Nevertheless, several chemotherapeutics, for example 
cyclophosphamide, paclitaxel, 5-fluorouracil, 5-aza-2′-
deoxycitidine, mitomycin, doxorubicin, and mitoxantrone, 
have been shown to demonstrate improved antitumor activ-
ity in mice when combined with immunotherapy ([65], for 
review, see [78, 79]). Immunopotentiating effects of chemo-
therapeutics can include destruction of tumor cells, facilitat-
ing the release of tumor-associated antigens and improving 
the presentation of these antigens by dendritic cells to T 
cells [80]. Doxorubicin can sensitize tumor cells to cytotoxic 

Fig. 1   An overview of the 
biological properties of IL-12 
contributing to the antitumor 
activity of this cytokine (see the 
text for details). APC antigen-
presenting cell, NK natural 
killer cell, Tc cytotoxic T lym-
phocyte, Th T helper lympho-
cyte, IP-10 interferon-inducible 
protein 10, MIG monokine 
induced by interferon γ
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activity of T cytotoxic cells and NK cells [81]. Radiotherapy 
can also activate antitumor immunity [82]. Combining radi-
otherapy and IL-12 may also have additional advantage as 
IL-12 could not only potentiate antitumor effects of radio-
therapy [71] but could diminish acute radiotherapy injury, 
according to observation in non-human primates [83]. Poten-
tiated therapeutic effects of IL-12 used in combination with 
antitumor antibodies [30], as demonstrated in murine xeno-
graft model, are probably caused by increased expression 
of activating Fcγ receptors, which participate in antibody-
dependent cell-mediated cytotoxicity [29, 30].

Although application of IL-12 in mice was found to 
prevent the development of cancer cachexia [84], it was 
accompanied by hematologic toxicities including anemia, 
lymphopenia, neutropenia, and also muscle and hepatic 
toxicities [85]. In squirrel monkeys, IL-12 produced 
hypoproteinemia, hypophosphatemia, and hypocalcemia. 
Enlargement of lymph nodes, splenomegaly, and bone mar-
row hyperplasia was also observed [86], and these hema-
tologic side effects may be provoked by IFN-γ and TNF-α 
production stimulated by IL-12 [87]. It is worth mentioning 
that erythropoietin was found to prevent the development 
of IL-12-induced anemia and thrombocythemia in mice 
[54] and G-CSF prevented the suppression of bone marrow 
myelopoiesis [53]. Unexpectedly, G-CSF was also able to 

potentiate the antitumor effects of IL-12 in a murine mela-
noma model [53]. Toxicities induced by the use of IL-12 in 
experimental animals were originally regarded as not seri-
ous enough to postpone the initiation of clinical trials.

To further attenuate IL-12-induced toxicities and poten-
tiate its effectiveness in experimental tumor therapy, vari-
ous gene therapy protocols have been used, enabling local 
and prolonged release of this cytokine. The IL-12 gene 
has been introduced in various viral [88–90] and non-viral 
[91–93] vectors, directly into growing tumors [92, 94–96] 
or in IL-12-engineered fibroblasts injected at the site of 
an established tumor [97]. IL-12 gene has also been suc-
cessfully used in vaccines consisting of tumor antigens 
[98], tumor cells [99, 100], or dendritic cells [101–103]. 
Moreover, IL-12 has strengthened the antitumor activity of 
adoptive therapy with targeted T cells engineered to secrete 
IL-12 [104] or therapy with oncolytic Herpes simplex virus 
expressing IL-12 [105]. Examples of application of IL-12 
gene therapy combined with other therapeutic approaches 
in experimental tumor models are presented in Table 2.

Although IL-12 is regarded as one of the most powerful 
immunostimulatory cytokines, IL-12 gene therapy could 
still be improved by combination with some other immuno-
therapeutic modalities employing cytokines, for example, 
with IL-2 [108] and lymphotactin [112] released by tumor 

Table 1   Antitumor effects of interleukin 12 potentiated by various therapeutic modalities in experimental models

Therapeutic modality Animals Tumor cells Refs.

Cyclophosphamide Mice MB-49 bladder carcinoma, B16 melanoma [60]

Paclitaxel Mice MmB16 melanoma [61]

5-fluorouracil Mice L1210 leukemia [62]

5-aza-2′-deoxycitidine Mice L1210 leukemia, B16F10 melanoma [58]

Mitomycin Rabbits Hepatocellular carcinoma [63]

Mitoxantrone Mice L1210 [64]

Doxorubicin Mice L1210 [65]

Cisplatin Mice MmB16 [46]

IL-2 Mice Mammary carcinoma [66]

IL-18 Mice MCA205 fibrosarcoma [67]

TNF-α Mice B16F10 melanoma, Lewis lung carcinoma, L1 sarcoma [45]

G-CSF Mice MmB16 melanoma [53]

GM-CSF Mice MmB16 melanoma [52]

IFN-α Mice B16F10 melanoma [68, 69]

Cetuximab Athymic mice Human head and neck carcinoma [30]

Vasostatin Nude mice CA-46 Burkitt lymphoma, SW620 human colon carcinoma [70]

Radiotherapy Mice Lewis lung carcinoma [71]

Cytokine-induced killer cells Mice DB7 mammary carcinoma [72]

Vaccine (dendritic cells pulsed  
with tumor cell lysate)

Mice B78-H1 melanoma
Hepatocellular carcinoma BNL

[73]
[74]

Vaccine (IL-2-transduced tumor cells) Mice TSA mammary adenocarcinoma
SR-B10A glioma

[75]
[76]

Peptide vaccine Mice Meth A sarcoma [77]
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cells following the intratumoral injection of adenoviral 
vectors and with tumor vaccine expressing IL-18 [109]. In 
another model, distant injection of IL-12- and IL-27-en-
coding plasmids resulted in eradication of CT26 tumor in 
all treated mice [110] and intratumoral injection of IL-12 
gene-transduced B78-H1 melanoma cells in combination 
with IL-15 similarly cured all treated mice [49]. Synergistic 
interaction of IL-12 gene therapy was also observed with 
B7.1 (CD80) injected intratumorally in an adenoviral vec-
tor [113].

Clinical trials with IL‑12 in cancer immunotherapy: 
unfulfilled hopes and new trends in IL‑12‑based 
approaches

Very encouraging results in preclinical studies and accept-
able toxicities in animal models prompted the use of IL-12 
in cancer patients in the mid-90s of the last century. Three 
centers started clinical trials: University of Pittsburgh, PA; 
Genetics Institute (Cambridge, MA, USA); and Hoffman 
La Roche (Nutley, NJ, USA). The first group used geneti-
cally engineered autologous fibroblasts secreting IL-12, 
in patients with melanoma or breast cancer. In this small 
pilot study, IL-12-producing cells were injected peritu-
morally once a week [117]. Both Genetics Institute and 

Roche initiated larger clinical trials using recombinant 
IL-12 but treatment regimens differed in several respects. 
In the Roche phase I clinical trial, only patients with renal 
cell carcinoma were recruited and IL-12 was injected sub-
cutaneously once or three times weekly. Genetics Institute 
applied a “more aggressive” dosing regimen: consecutive 
intravenous daily injections of IL-12. In the phase I trial, 
maximal tolerated dose of 500 ng/kg/day was determined. 
Unexpectedly, this dose was found toxic in phase II trial 
and severe side effects of the treatment developed in 12 of 
17 enrolled patients leading to death of two patients. This 
resulted in the immediate halting of all trials with IL-12 by 
the US FDA [118]. Explanation for the different tolerability 
in phase I versus phase II trial was a change in the dosing 
schedule. In the phase I trial, a single dose of IL-12 was 
administered before the multiple-dose regimen. This initial 
priming dose of IL-12, given to determine the pharmacoki-
netic profile of the cytokine, was found critical for protec-
tion from the severe toxicity [119]. Finally, after several 
months of suspension, clinical trials were resumed in sev-
eral centers [120].

Antitumor effects of IL-12 were evaluated in various 
treatment schedules: intravenous [121–123] versus sub-
cutaneous [124, 125] or even intraperitoneal application 
[126], daily and five consecutive injections every 3 weeks 
[121, 122, 127], or at 1 [124, 125, 128], 2 [123], or 3 [129] 

Table 2   Tumor gene therapy with interleukin 12 potentiated by various therapeutic modalities in experimental models in mice

Therapeutic modality Tumor cells IL-12 gene Refs.

Paclitaxel B16 melanoma IL-12 in adenoviral vector; intratumoral injection [59]

All-trans-retinoic acid in liposomes; i.v. 
injection

Colon 26 adenocarcinoma IL-12-encoding plasmid in liposomes; distant injection [106]

Angiostatin; i.d. injection B16F10 melanoma IL-12-encoding plasmid; intratumoral injection [107]

rIL-2; systemic administration MCA-105 sarcoma, MC-38 adeno-
carcinoma

IL-12-producing fibroblasts; intratumoral injection [47]

IL-2 in adenoviral vector; intratumoral 
injection

Mammary adenocarcinoma IL-12 in adenoviral vector; intratumoral injection [108]

rIL-15; local administration B78-H1 melanoma IL-12-producing tumor cells; intratumoral injection [49]

IL-18; distant injection of IL-18-produc-
ing tumor cells

SCK mammary carcinoma IL-12-producing tumor cells; distant injection [109]

IL-27; distant injection of IL-27-encod-
ing plasmid

CT26 adenocarcinoma 4T1 adeno-
carcinoma

IL-12-encoding plasmid; distant injection [110]

IP-10 in adenoviral vector; intratumoral 
injection

PyMT-induced mammary adenocar-
cinoma, MCA 207 sarcoma

IL-12 in adenoviral vector; intratumoral injection [111]

Lymphotactin in adenoviral vector; 
intratumoral injection

PyMT- or Neu-expressing mammary 
adenocarcinoma

IL-12 in adenoviral vector; intratumoral injection [112]

CD80 in adenovirus vector; intratumoral 
injection

MT1A2 mammary adenocarcinoma IL-12 in adenovirus vector; intratumoral injection [113]

Agonistic anti-CD137 agonistic anti-
body; systemic administration

B16-OVA melanoma, TC-1 lung 
carcinoma

IL-12 in SFV vector [114]

CD137 ligand 10 in adenoviral vector; 
intratumoral injection

MCA26 colon carcinoma IL-12 in adenoviral vector; intratumoral injection [115]

CpG ODN; intratumoral injection B78-H1 melanoma Vaccine (IL-12-transduced tumor cells) [116]
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doses weekly in several-week cycles. Maximal tolerated 
doses in escalating dose protocols ranged, in relation to 
the treatment schedule, usually between 250 and 500  ng/
kg. In some, more intensive treatment schedules, a priming 
injection of IL-12 was necessary [129]. What was interest-
ing, pretreatment with a priming dose of IL-12 markedly 
reduced the toxicity of this cytokine, allowing subsequent 
administration of relatively high doses, but this regimen did 
not improve the therapeutic outcome of IL-12. Treatment 
with IL-12 was associated with systemic flu-like symptoms 
(fever, chills, fatigue, arthromyalgia, headache) and—more 
difficult to control—toxic effects on the bone marrow and 
liver. Hematologic toxicity observed most commonly was 
neutropenia and thrombocytopenia, and hepatic dysfunc-
tion manifested in transient (dose-dependent) increase in 
transaminases, hyperbilirubinemia, and hypoalbumine-
mia [119, 121, 122, 124, 129]. Some patients experienced 
inflammation in mucus membranes (oral mucositis, sto-
matitis, or colitis) [121]. These toxic effects of IL-12 were 
related to the secondary production of IFN-γ, TNF-α but 
also chemokines: IP-10, MIG [123, 128].

Early clinical studies with IL-12, in spite of high expec-
tations, did not yield satisfactory results. Repeated injec-
tions of IL-12, after initial stimulation of massive produc-
tion of IFN-γ, in most patients led to adaptive response and 
a progressive decline of IL-12-induced IFN-γ concentration 
in blood [121, 124, 130], attributed partly to negative feed-
back mechanisms related to overproduction of IL-10 [124, 
130]. In fact, as reported by Gollob et al. [123], objective 
clinical response or stabilization of disease was observed 
mainly in IL-12-treated cancer patients with sustained pro-
duction of IFN-γ. This observation was confirmed in the 
later studies by Bekaii-Saab et al. [131], who showed addi-
tionally that the source of continuously produced IFN-γ 
was CD56+ (NK) cells but not T cells. Apart from nega-
tive feedback mechanisms, the major reason of marginal 
efficacy of IL-12 in cancer patients, as opposed to animal 
tumor models, was probably strong immunosuppressive 
milieu, typical for tumor microenvironment in humans. In 
contrast to mice, human tumors seem to consist of much 
more heterogenous population of tumor cells, developed as 
a result of tumor escape mechanisms, and contain strongly 
immunosuppressive soluble and cellular components 
(including myeloid-derived suppressor cells) that are resist-
ant to IL-12-induced antitumor activity [132, 133].

Limited clinical efficacy of IL-12 used in a monotherapy 
schedules prompted the investigation of combination treat-
ments. A number of combined approaches were tested in 
1995–2005, that is, in the period of the most intensive stud-
ies on the antitumor effect of IL-12 in the clinic. The list of 
these studies is presented in Table 3.

Generally, IL-12—when used either as monotherapy or 
combined with other agents—with the exception of some 

studies (see below) did not demonstrate potent sustained 
therapeutic efficacy. Detailed description of these investiga-
tions is beyond the scope of the present article and can be 
found in earlier comprehensive reviews [37, 44]. Only few 
IL-12-based clinical trials showed encouraging results and 
deserve comments: application of IL-12 in patients with cuta-
neous T-cell lymphoma (CTCL), with non-Hodgkin’s B-cell 
lymphoma, and with AIDS-associated Kaposi sarcoma.

Cutaneous T‑cell lymphoma (CTCL)

CTCLs are T-cell lymphomas, confined primary to the 
skin, with the most common variants mycosis fungoides 
(MF) and, more advanced type, Sézary syndrome. The 
rationale for testing the efficacy of IL-12 in patients with 
CTCL was the depressed function of Th1 cells and defi-
cient production of IFN-γ in these patients, the possibil-
ity of subcutaneous and intralesion application of IL-12, 
and a relative susceptibility of this type of neoplasia to 
immune response-modifying agents [150]. In the study by 
Rook et al. [151], 10 patients with CTCL, including 3 with 
Sézary syndrome, were treated with 50, 100, or 300 ng/kg 
IL-12, subcutaneously or intralesionally twice a week. The 
treatment was continued for up to 24 weeks. From among 
nine patients evaluated, only one patient did not respond, 
and in two patients, complete responses were documented. 
Skin biopsy specimens from regression lesions showed an 
increase in cytotoxic CD8+ T cells. Adverse effects asso-
ciated with IL-12 injections were usually mild and short-
lived but, what is interesting, one patient experienced men-
tal problems following prolonged therapy (depression) and 
discontinuation of treatment was necessary.

In another, phase II trial, 23 patients with early-stage 
MF, who failed at least 3 previous treatments (median 
5 prior therapies), were treated subcutaneously at an 
initial dose of 100  ng/kg IL-12 for 2  weeks and next 
biweekly with 300  ng/kg IL-12 [152]. Ten patients com-
pleted 6  months of treatment and continued therapy for 
24 months. What should be stressed, a high rate of response 
to treatment was achieved (43  % partial response, 30  % 
minor response, 22 % stable disease) but 52 % of patients 
ultimately progressed. Some patients initially progressed 
but, continuing IL-12 injections, achieved minor or even 
partial responses. Treatment with IL-12 was relatively well 
tolerated but 5 patients discontinued treatment because of 
adverse effects. One patient (a 78-year-old man) died of 
hemolytic anemia, probably exacerbated or even induced 
by IL-12 therapy [152].

Hodgkin’s and non‑Hodgkin’s lymphoma

The study on the effects of IL-12 on non-Hodgkin’s B-cell 
lymphoma (NHL) reported by Younes et al. [153] included 
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patients with recurrent or refractory neoplasia (mainly dif-
fuse large cell and follicular—grade I/II). Eleven patients 
were treated intravenously with 250  ng/kg of IL-12 daily 
for 5 days every 3 weeks (preceded by an initial test dose 
of 250  ng/kg), and 21 patients were treated with twice-
weekly IL-12 subcutaneous injections at 500 ng/kg (in case 
of toxicity, the dosage was reduced to 300 ng/kg). Six of 
29 evaluable for response patients (21 %) achieved a partial 
response or complete remission, and 10 patients (34 %) had 
stable disease. Of note,

•	 patients with follicular grade I/II lymphoma seemed to 
respond better than patients with diffuse large cell lym-
phoma and were characterized by a lower rate of pro-
gressive disease (27 vs. 64 %),

•	 response rates were related to the route of IL-12 admin-
istration: intravenous treatment was more effective than 
subcutaneous injections (partial and complete response 
40 vs. 7 %),

•	 all responding patients had low volume disease (diam-
eter of the largest lesion <3 cm).

In the same study, ten patients with relapsed Hodgkin’s 
disease were also included [153]. None of these patients 

achieved a meaningful clinical response but half of them 
experienced stable disease. However, all the patients were 
treated subcutaneously, and regarding much better response 
in NHL patients in intravenous protocol, it cannot be 
excluded that the lack of effectiveness of IL-12 in these 
patients resulted from the treatment schedule rather than 
the type of lymphoma.

The efficacy of IL-12 for the treatment for patients 
with recurrent B-cell non-Hodgkin’s lymphoma was also 
tested in combination with rituximab with the hope that 
due to the strong stimulatory effect of IL-12 on NK cells, 
this cytokine would potentiate antibody-dependent cell-
mediated cytotoxicity (ADCC) of rituximab [154]. A 
similar treatment schedule to that described above was 
applied (IL-12 was given s.c. twice weekly at doses 500 
and 300  ng/kg or lower). Objective responses (complete 
or partial) occurred in 69  % patients. The authors also 
observed a trend toward a higher complete response rate 
in patients treated with higher doses of IL-12 [154]. These 
results seem promising but due to a heterogenous group 
of patients, differing in regard to disease severity, histo-
logical types of lymphoma, and prior therapy, no definite 
conclusion can be drawn as to the real benefit of IL-12 in 
the combination schedule. In fact, response rates in NHLs 

Table 3   Summary of clinical studies on the antitumor effects of IL-12-based treatment in combination therapies or gene therapy

a  Peptides: gp100209–217 (210M), MART-126–35 (27L), tyrosinase368–376 (370D), adjuvant: Montanide ISA 51
b  Peptides: gp100209–217 (210M), tyrosinase368–376 (370D), adjuvant: Montanide ISA 51
c  Peptide: Melan-A27–35

Therapeutic modality Route of IL-12 (or IL-12-based 
vaccine) administration

Tumor Refs.

Combined treatment

 Trastuzumab i.v. Breast, pancreas, cervical cancer [134]

 Trastuzumab and paclitaxel i.v. or s.c. Breast, colon, and other cancers [131]

 Rituximab s.c. Non-Hodgkin’s lymphoma [135]

 Peptide vaccine with adjuvanta IL-12 + alum or GM-CSF, s.c. at 
vaccine injection site

Melanoma [136]

 Peptide vaccine with adjuvantb i.d. at vaccine injection site Melanoma [137]

 Idiotype vaccine ± GM-CSF s.c. Multiple myeloma [138]

 Peptide-loaded PBMCsc s.c. adjacent to immunization site Melanoma [139]

 Pegylated liposomal doxorubicin s.c. AIDS-associated Kaposi sarcoma [140]

 IL-2 i.v. Melanoma, renal cancer [44, 141]

 IFN-α i.v. or s.c. Melanoma, renal cancer, and other cancers [142, 143]

Gene therapy

 IL-12-transduced autologous fibroblasts Peritumoral Melanoma and other cancers [144]

 Adenovirus encoding IL-12 Intratumoral Liver, colorectal, pancreatic cancer [145]

 Autologous dendritic cells transfected with adeno-
virus encoding IL-12 gene

Intratumoral Gastrointestinal carcinomas [146]

 IL-2 gene modified autologous melanoma cells s.c. Melanoma [147]

 Canarypox virus expressing IL-12 Intratumoral Melanoma [148]

 Canarypox virus expressing IL-12 + expressing 
B7.1

Intratumoral Melanoma [149]



426	 Cancer Immunol Immunother (2014) 63:419–435

1 3

in a monotherapy with rituximab, given at the same dose 
(375 mg/m2) and similar schedule, has been found to range 
between 47 and 73 % [155].

Kaposi sarcoma

Kaposi sarcoma (KS) is a lymphangioproliferative dis-
ease caused by Kaposi sarcoma-associated herpes virus 
(KSHV), also known as human herpesvirus 8 (HHV-
8). Taking into account the stimulation of production of 
antiangiogenic chemokines by IL-12, its role in the promo-
tion of cell-mediated immune response, and augmentation 
of NK activity by this cytokine (see “Biological effects of 
IL-12 and its role in the antitumor defense mechanisms” 
section of this review), there was a strong rationale to use 
IL-12 in patients with AIDS-associated Kaposi sarcoma. 
In a dose-escalating study by Little et  al. [156], patients 
with AIDS-associated KS were treated with IL-12 at doses 
100 up to 750  ng/kg twice weekly. In accordance with 
other studies, the dose 100  ng/kg was found ineffective 
and 500  ng/kg was established as the maximal tolerated 
dose. Of 24 evaluable patients treated with higher doses, 
17 had partial or complete response (71 %). What should 
be stressed, responses occurred after continued IL-12 ther-
apy (median time to response: 18  weeks), and complete 
regression of the tumor in some patients occurred as late 
as at 243 or 253  weeks after entering the study. Patients 
with less advanced disease responded better than high 
risk patients. Of note, apart from the typical side effects 
associated with IL-12 therapy (flu-like symptoms, hepa-
totoxicity, suppression of bone marrow function), psycho-
neurological problems appeared in some patients: mood 
worsening and depression. Based on the results of stud-
ies in numerous animal models showing synergistic anti-
tumor effects of IL-12 with chemotherapy (see “IL-12: a 
successful antitumor agent in preclinical studies” section), 
phase II trial was initiated in which patients with advanced 
AIDS-associated KS were treated with pegylated liposo-
mal doxorubicin and IL-12 for 18  weeks and next with 
IL-12 alone [140]. In the combination therapy, IL-12 was 
injected subcutaneously twice weekly at a dose of 300 ng/
kg and in the maintenance phase, the patients were treated 
with 500  ng/kg. Like in the previous study [156], the 
patients received independently highly active antiretroviral 
therapy (HAART). The majority of patients experienced 
objective responses (83  %), including 25  % complete 
responses. These encouraging results were by no means 
related to HAART alone, and the major contributing factor 
was certainly doxorubicin-based cytotoxic chemotherapy. 
However, the addition of IL-12 could be beneficial since 
a substantial number of responses occurred in the main-
tenance phase. Anyway, randomized trials are needed to 
assess the exact extent of IL-12 benefits.

Current trends

On the basis of the largest registry of clinical studies in 
the world (http://www.clinicaltrials.gov), 58 clinical tri-
als testing IL-12-based therapy, predominantly located in 
the United States, for the treatment for patients with vari-
ous types of cancers have been started or completed (key 
words for survey: IL-12, interleukin 12, tumor, cancer) so 
far. Analyzing the history of these trials, three stages of 
interest in the application of IL-12 in clinical oncology 
can be distinguished. Years 1996–2005 was a period of 
most intensive studies, aimed at establishing maximal tol-
erated doses of IL-12, optimal treatment schedule, and the 
most susceptible tumors. As described in the previous sec-
tion, IL-12 was characterized by a very narrow therapeutic 
index. In fact, only few studies reported promising results 
with sporadic overt tumor regressions (apart from patients 
with AIDS-associated KS). Due to the low response to 
IL-12 and its high toxicity, accrual to some trials was even 
stopped [157]. However, after a 5-year discouragement 
(2006–2010), it seems that the interest in IL-12 therapeu-
tic potential has revived but the strategy of its use is being 
revised. Generally, IL-12-based therapies can be divided 
into three categories: (1) active non-specific immunother-
apy, aimed at activation of predominantly innate mecha-
nisms of antitumor response, e.g., application of IL-12 
alone or in combination with chemotherapy or monoclo-
nal antibodies; (2) active specific (“vaccine”) approach, 
directed to the stimulation of adaptive antitumor response 
mainly, e.g., using IL-12 as an adjuvant with tumor cells 
or tumor antigen-derived peptides; and (3) gene therapy, 
including cellular adoptive treatment (Fig.  2). While the 
first approach predominated in years 1996–2005, most 
recently initiated clinical trials have been concentrated on 
gene therapy (Fig. 2). In addition, in recent trials, regard-
ing high toxicity of IL-12, most IL-12-based therapies are 
restricted to intratumoral/local treatment. The rational for 
this approach is not only avoiding toxic effects. As shown 
and stressed in many recent reports, strong immunosup-
pressive mechanisms operate in the microenvironment in 
advanced tumor and IL-12 is expected, on the one hand, 
to overcome this phenomenon and, on the other hand, to 
induce specific antitumor mechanisms [158, 159].

At present, more than ten IL-12-based clinical trials in 
cancer patients are ongoing (as of September 4, 2013). Six 
trends are worth discussing.

Intraperitoneal administration of IL‑12 plasmid formulated 
with a synthetic polyethyleneglycol–polyethyleneimine–
cholesterol (PPC) lipopolymer (EGEN‑001, phIL‑12/PPC)

These gene therapy studies were initiated in 2005, and till 
2013, six clinical trials have been started, according to the 

http://www.clinicaltrials.gov
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ClinicalTrials.gov database. In the studies, a gene-based 
IL-12 therapeutic, named EGEN-001, is injected intraperi-
toneally as an alternative to recombinant IL-12 delivery. 
EGEN-001 consists of 100–150 nm nanoparticles contain-
ing a human plasmid (phIL-12) that encodes functional 
IL-12 protein and a synthetic DNA-delivery system com-
prising polyethyleneglycol–polyethyleneimine–cholesterol 
(PPC). The DNA-delivery system was designed to improve 
IL-12 gene transfer by blocking rapid degradation of the 
plasmid and facilitating its uptake by target cells. Of note, 
there were earlier trials with direct intraperitoneal admin-
istration of recombinant IL-12 in patients with peritoneal 
carcinomatosis but satisfactory effects were not achieved 
[160].

Results of the phase I, dose-escalating study investi-
gating the safety, tolerability, and preliminary efficacy 
of phIL-12/PPC in women with recurrent ovarian cancer 
were published in 2010 [161]. In the study, 13 patients 
were recruited. Repeated intraperitoneal administration of 
phIL-12/PPC for 4 weeks (weekly infusions of doses: 0.6, 
3, 12, or 24 mg/m2) was well tolerated and induced mild-
to-moderate side effects, most frequently abdominal pain 
and discomfort. In six patients, a decrease in CA-125 level 
or stabilization of this cancer antigen was observed. There 
was an overall clinical response of 31  % stable disease 
and 69 % progressive disease as assessed 4–6 weeks post-
treatment. The overall survival of patients treated with low 
doses was 12.7 months and did not differ from that of his-
torical control but administration of higher doses seemed 
to prolong survival and resulted in the mean survival time 
of 23  months. However, these encouraging data must be 

interpreted with caution not only due to the small sample 
size and possible selection bias but also because of addi-
tional treatment (chemotherapy) of some patients [161].

In a parallel study, patients with recurrent platinum-
sensitive ovarian cancer were treated with phIL-12/PPC in 
combination with carboplatin and docetaxel. The patients 
were intraperitoneally infused with escalating doses of 
phIL-12/PPC (12, 18, or 24 mg/m2) once every 10–11 days 
for four treatments or, in additional 24 mg/m2 group, up to 
eight treatments. Docetaxel and carboplatin were given at 
3-week intervals for up to 6 cycles. Seventeen percent of 
the patients had complete response, 33 % partial response, 
42  % stable disease, and 8  % of the patients progressed 
[162].

The above-described studies prompted the initiation of 
phase II trials with phIL-12/PPC in combination with

•	 pegylated liposomal doxorubicin in patients with 
epithelial ovarian cancer, fallopian tube cancer, and 
primary peritoneal cavity cancer (NCT01118052, 
started in 2010; NCT01673477, started in 2012; and 
NCT01489371, started in 2012),

•	 standard chemotherapy in patients with colorectal peri-
toneal carcinomatosis (NCT01300858, started in 2011).

Intratumoral delivery of IL‑12 plasmid by electroporation

In preclinical models of direct intratumoral injections of 
IL-12 gene-containing plasmids, this therapeutic approach 
was found effective not only in inducing systemic anti-
tumor response but also in tumor regression (Table  2). 

Fig. 2   Number of IL-12-based 
clinical trials in the field of 
tumor immunotherapy that 
have been started since 1996 
and have been registered in 
ClinicalTrials.gov database (htt
p://www.clinicaltrials.gov). The 
histogram comprises studies in 
which IL-12 was used alone or 
in combination, either as a main 
therapeutic or administered in 
an adjuvant setting including 
gene therapy

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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However, in clinical trials, results were mostly disap-
pointing [163, 164], related, among others, to low gene 
transfer efficiency. To overcome this problem, a phase I 
dose-escalation trial was started in 2004 using intralesion 
IL-12 plasmid injections accompanied with electropo-
ration performed at the site of plasmid administration 
(NCT00323206). The trial recruited 24 patients with docu-
mented metastatic melanoma, divided into 3 or 6 persons 
groups injected with a total dose up to 3.8 or 5.8  mg of 
plasmid per treatment [165]. Under local anesthesia and 
intravenous analgesic medications, an applicator contain-
ing six needle electrodes arranged in a circle was inserted 
into the tumor and six pulses (1,300 V/cm) lasting 100 μs 
were applied using a Medpulser DNA EPT System Gener-
ator. The procedure was associated with minimal systemic 
toxicity—induced only transient pain—and was repeated 
three times (on day 1, 5, and 8) leading to significant in 
situ production of IL-12 (up to 2,813 pg/g of tumor mass). 
Biopsies of injected lesions showed necrotic areas and 
lymphocyte infiltrations. In 53 % patients, there was evi-
dence of systemic response and three patients experienced 
complete response (of note, one of these patients was addi-
tionally treated with dacarbazine) [165].

These promising results encouraged to continue the 
study or to explore intratumoral pIL-12 injections and in 
vivo electroporation in other types of cancer:

•	 in patients with Merkel cell cancer (NCT01440816, ini-
tiated in 2011),

•	 in advanced-stage cutaneous and in transit malignant 
melanoma (NCT01502293, a multicenter phase II study, 
started in 2011),

•	 in patients with cutaneous T-cell lymphoma (mycosis 
fungoides and Sézary syndrome) (NCT01579318, phase 
II trial, started in 2012).

Enrollment to these clinical trials is currently underway 
(as of September 4, 2013).

Adoptive immunotherapy with IL‑12‑engineered lymphoid 
cells

Adoptive immunotherapy is based on the isolation, ex vivo 
expansion (activation), and reinfusion of immune cells, pre-
dominantly lymphoid cells, into a tumor-bearing patient. 
In first trials with lymphokine-activated killer (LAK) cells 
and tumor-infiltrating lymphocytes (TILs) in second half of 
eighties of the last century, despite very promising results 
in animal models, this therapy was found weakly effec-
tive. The major limitation was a short half-time of circula-
tion of the infused cells and their poor homing to the tumor 
(for review, see [166]). Over time, much progress has been 
made in this field [167], due to

•	 optimization of the treatment protocol (e.g., introducing 
lymphodepleting chemotherapy),

•	 selection of appropriate subpopulations to be adminis-
tered,

•	 genetic modifications of the cells.

Recently, two clinical trials have been started with 
genetically modified, IL-12-secreting lymphocytes. Both 
studies have been aimed at treatment of melanoma patients 
and have been coordinated by Rosenberg and colleagues. 
In one of these studies (phase I/II) (NCT01236573, started 
in 2010), patients with metastatic melanoma receive a 
non-ablative lymphocyte-depleting preparative regimen 
followed by infusion of CD8+-enriched, genetically modi-
fied and ex vivo expanded, tumor-infiltrating lymphocytes 
(TILs). The cells (isolated from metastatic deposits) are 
transduced with retroviral vector containing an inducible 
single chain IL-12 gene driven by an NFAT responsive pro-
moter. Such a genetic modification enables the secretion of 
IL-12 by the cells following specific antigen recognition 
via T-cell receptor. The investigators anticipate that, like 
in animal models, IL-12 produced locally by CD8+ T cells 
will trigger acute inflammation and will induce expression 
of Fas within tumor-infiltrating macrophages, dendritic 
cells, and myeloid-derived suppressor cells (MDSC) lead-
ing to reversion of dysfunctional antigen presentation in 
the microenvironment and to eradication of the tumor [33]. 
However, a very recent report [168] has suggested superior-
ity of unselected TILs versus CD8+-enriched TILs in adop-
tive cell therapy, so the investigators consider the option 
of using TILs without CD8+ T-cell enrichment in some 
patients.

The other clinical trial based on adoptive transfer 
of cells has been planned to treat metastatic melanoma 
patients with a non-myeloablative lymphocyte-depleting 
regimen followed by the administration of gene-engineered 
lymphocytes co-transduced with genes encoding IL-12 
and T-cell receptor specific for NY-ESO-1 tumor antigen 
(NCT01457131, started in 2011). However, several weeks 
after the start of the trial, the study suspended participant 
recruitment and—till now—has not been resumed.

Intratumoral injections of IL‑12‑expressing adenovirus 
vector in combination with oral activator ligand

In order to maximize the safety profile of IL-12-based 
therapy by reducing systemic expression to this cytokine, 
an approach has been invented in which the expression 
of IL-12 can be regulated. In this approach, patients are 
injected intratumorally with Ad-RTS-hIL-12—an adeno-
viral vector engineered for controlled expression of IL-12 
with RheoSwitch Therapeutic System® (RTS®) technol-
ogy. Injection of the vector leads to local production of 
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two unstable heterodimeric receptor proteins with potential 
binding to an inducible promoter regulating the production 
of IL-12. Small molecule activator ligand (INXN-1001), 
when administered orally, induces stable conformation of 
the heterodimeric proteins enabling the productive interac-
tion of this complex with the promoter and initiating the 
expression of IL-12.

The safety and tolerability of Ad-RTS-IL-12 with 
INXN-1001 is currently being tested in a phase I/II study 
(NCT01397708, started in 2011) in patients with advanced-
stage III or IV melanoma. Preliminary results are encour-
aging: clinical responses were observed in five of seven 
patients treated with Ad-RTS-IL-12 and high doses of 
INXN-1001 (100 or 160  mg/day). The responses were 
associated with intratumoral IL-12 mRNA expression and 
were reflected by a decrease in size of both injected and 
distant lesions. One of the patients treated at the 160 mg/
day dose of INXN-1001 had stable disease for 20  weeks 
[169].

Ad-RTS-IL-12-based therapy has also been studied in 
a phase II randomized trial, as a monotherapy or in com-
bination with palifosfamide-tris in patients with recurrent/
metastatic breast cancer (ATI001-101, http://mccrc.clinsite
.com).

Combination of IL‑12 with a vaccine containing tumor 
cells fused with dendritic cells

Immunotherapy with dendritic cells/tumor cells (DC/TC) 
fusion vaccine represents a promising approach in clini-
cal oncology since it optimizes the presentation of a broad 
array of tumor antigens along both MHC class I and II 
pathways [170]. This adoptive immunotherapy, using either 
autologous or allogeneic dendritic cells, was exploited 
in the past in patients with different tumors [170–172]). 
Recently, DC/TC fusions have been tested in patients with 
multiple myeloma patients. The therapy induced specific 
antitumor response and disease stabilization in the majority 
of patients [173] and, when applied following autologous 
stem cell transplantation, resulted in the marked develop-
ment of myeloma-specific T cells and eradication of post-
transplant residual disease in some patients [174]. In 2009, 
the same research group, which reported the above-men-
tioned investigations, started testing the safety of dendritic 
cell/tumor cell fusion vaccine given with IL-12 for patients 
with breast cancer (NCT00622401). In the study, a group 
of patients is vaccinated with cell fusions alone while in 
other groups, patients are treated additionally with low 
doses of IL-12 (30 or 100 ng/kg) administered subcutane-
ously. Investigators expect that, like in experimental animal 
models, supplementation of IL-12 will promote, on the one 
hand, antitumor Th1 polarization and, on the other hand, 
will attenuate immunosuppressive activity of Treg cells 

[175, 176]. Some data suggest that the therapeutic effects of 
the combination treatment with IL-12 and DC/TC hybrids 
may be superior to the hybrids alone, at least in patients 
with glioma [177]. There is a concern, however, that such a 
treatment can induce systemic autoimmune response [178]. 
Of note, sipuleucel-T (a vaccine based on peripheral blood 
mononuclear cells, including antigen-presenting cells, 
incubated with prostatic acid phosphatase fused to GM-
CSF) was approved in 2010 by the US FDA for the treat-
ment for prostate cancer [179], and individualized dendritic 
cell-based therapy, consisting of dendritic cells loaded with 
tumor proteins and stimulated to secrete IL-12, was found 
beneficial when used in combination with a standard ther-
apy in patients with glioblastoma multiforme [180].

Tumor targeting by IL‑12‑based immunocytokine

One of the approaches aimed at the reduction in toxic-
ity associated with systemic administration of cytokines, 
including IL-12, is selective targeting delivery by their con-
jugation with tumor antigen-specific monoclonal antibody. 
Such biotherapeutics, called immunocytokines, tend to 
accumulate in the tumor tissue and, by releasing cytokines, 
directly kill tumor cells or induce a strong inflammatory 
process eliciting antitumor response [181].

In a phase I study by Rudman et al. [182], an immunocy-
tokine AS1409 targeting extra-domain B (ED-B) fibronec-
tin isoform was used to deliver IL-12 into tumor mass in a 
small group of 13 patients with melanoma and renal cell 
carcinoma. ED-B fibronectin is a marker of angiogenesis 
and is highly expressed in tumor blood vessels and stroma. 
In general, the immunocytokine was well tolerated but 
its efficacy was limited. Overall, one patient experienced 
a partial response but stabilization of the disease was 
observed in a group of a further five patients.

In 2011, a phase I trial was started with another IL-
12-based immunocytokine NHS-IL12 to determine the 
dose-limiting toxicities and MTD in patients with meta-
static or locally advanced tumors (NCT01417546). NHS-
IL12 is a fusion protein consisting of two molecules of 
IL-12 linked to one molecule of humanized monoclonal 
antibody NHS76. The protein targets necrotic portions of 
tumor due to its high affinity to single- and double-stranded 
DNA. Since the study plans to enroll up to 78 patients, 
there is hope that the results of this trial will be more con-
clusive than those described in the previous study.

Conclusions and perspectives

Recent investigations in animal models and in patients with 
disseminated cancer unequivocally show that the major rea-
son of failure of immunotherapy is the immunosuppressive 

http://mccrc.clinsite.com
http://mccrc.clinsite.com
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microenvironment and tumor escape mechanisms oper-
ating in the tumor tissue [132, 133]. These mechanisms 
include both cellular and soluble components and are 
potent enough to limit the development of durable anti-
tumor response in patients treated with IL-12, despite 
induction of specific immunity against tumor-associated 
antigens in some patients [183]. The logical consequence 
of these setbacks was the commencement of trials of 
local/intratumoral application of IL-12, including gene 
therapy and optimizing active specific (vaccine) immu-
notherapy in which IL-12 was used as an adjuvant. The 
important step forward has been designing therapeutic pro-
tocols enabling controlled in situ expression of IL-12, e.g., 
based on RheSwitch Therapeutic System® technology (see 
the previous chapter). Another therapeutic approach await-
ing optimization in animal models and resuming in clinical 
trials is targeting IL-12 to the tumor environment and con-
trolling its local production using chimeric antigen receptor 
(CAR)-modified T cells engineered with IL-12 gene [184]. 
The CAR-modified T cells specific for CD19 have recently 
shown promise in the treatment for acute leukemia and 
chronic lymphocytic leukemia [185, 186]. In light of the 
optimistic results of the above-mentioned clinical studies, 
supported by promising results in improved IL-12-based 
preclinical models of tumor immunotherapy, there is hope 
that IL-12 will join (ultimately!) the armamentarium of 
anticancer agents and selected groups of patients will ben-
efit from the treatment. IL-12-based immunotherapy could 
be especially efficacious in cancer patients with inherited 
defects of IL-12 production [187] or with downregulated 
expression of IL-12 [188].
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