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Abstract

Background—Fetal hemoglobin (HbF) is the major modifier of the clinical course of sickle cell

anemia. Its levels are highly heritable and its interpersonal variability is modulated in part by three

quantitative trait loci (QTL) that effect HbF gene expression. Genome-wide association studies

(GWAS) have identified single nucleotide polymorphisms (SNPs) in these QTLs that are highly

associated with HbF but explain only 10 to 12% of the variance of HbF. Combining SNPs into a

genetic risk score (GRS) can help to explain a larger amount of the variability of HbF level but the

challenge of this approach is to select the optimal number of SNPs to be included in the GRS.

Methods and Results—We develop a collection of 14 models with GRS composed of different

numbers of SNPs, and use the ensemble of these models to predict HbF in sickle cell anemia

patients. The models were trained in 841 sickle cell anemia patients and were tested in three

independent cohorts. The ensemble of 14 models explained 23.4% of the variability in HbF in the

discovery cohort, while the correlation between predicted and observed HbF in the 3 independent

cohorts ranged between 0.28 and 0.44. The models included SNPs in BCL11A, the HBS1L-MYB

intergenic region and the site of the HBB gene cluster, QTL previously associated with HbF.

Conclusions—An ensemble of 14 genetic risk models can predict HbF levels with accuracy

between 0.28 and 0.44 and the approach may prove useful in other applications.
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Introduction

HbF is the major modifier of the clinical features of sickle cell anemia (homozygosity for

HBB glu6val) and β thalassemia. HbF inhibits sickle hemoglobin (HbS) polymerization and

compensates for the deficit of normal HbA in β thalassemia1. If it were possible to know at

birth the HbF level likely to be present after stabilization of this measurement at about age 5

years2, then a better patient-specific prognosis might be given and HbF-inducing treatments

better tailored to the individual. The γ-globin chain of HbF is encoded by the linked HBG1

and HBG2 genes. Levels of HbF in adults are highly heritable and the production of HbF is

genetically regulated by several quantitative trait loci that modulate HBG1 and HBG2

expression.3–6 Genome wide association studies (GWAS) in sickle cell anemia have

identified single nucleotide polymorphisms (SNPs) in BCL11A, the HBS1L-MYB intergenic

region and elements linked to the HBB gene cluster that jointly explain 10–12% of the

variability of HbF.2, 7 However, it is possible that SNPs that are significantly associated with

HbF levels but do not reach genome-wide significance may explain additional variability

and be used to predict HbF levels. This is in part due to the difference in the goals of the

analysis of GWAS and phenotype prediction; in order to increase the amount of variability

explained in a phenotype one may need to use SNPs that fall below the genome-wide

significance threshold.8

One approach to genetic risk prediction uses a summary of the risk alleles in the form of a

genetic risk score (GRS) as a covariate of the model.9–12 A GRS can summarize a large

amount of genetic information into a single covariate, but the challenge is to identify the

optimal number of SNPs to be included in the score. To overcome this challenge, we present

a novel method of creating an ensemble of models with the GRS composed of a different

number of SNPs to produce more robust predictions. This method extends the approach

introduced in Sebastiani et al 2012 for building genetic risk prediction models from case

control studies to predict quantitative traits.13 We show that an ensemble of 14 models with

GRSs comprising 1 to 14 SNPs that were trained in a set of 841 sickle cell anemia patients

from the Cooperative Study of Sickle Cell Disease (CSSCD) can predict HbF in three

different cohorts of African Americans with sickle cell anemia with correlation between

observed and predicted values between 0.28 and 0.44.

Methods

Participants

HbF levels were measured in 841 African American subjects from the CSSCD

(NCT00005277) homozygous for the HbS gene or with HbS-β0 thalassemia.14 The

validation cohorts included 181 patients from the Pulmonary Hypertension and Sickle Cell

Disease with Sildenafil Therapy (Walk-PHaSST) Study (NCT00492531), 77 patients from a

study of pulmonary hypertension in children with sickle cell disease (PUSH NCT

00495638), and 127 sickle cell anemia patients from the Comprehensive Sickle Cell Centers

Collaborative Data (C-data) project. Subjects for all cohorts were selected based on the

following criteria: age >5 years for the HbF measurement, no hydroxyurea use, and no

recent transfusion. In addition, patients in the validation cohorts had hemoglobin phenotypes

similar to that of the discovery set. The demographics of these studies have been
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described.14–16 Some characteristics of the sickle cell anemia patients are described in Table

1. All studies were approved by the institutional review board (IRB) of each participating

institution.

HbF Values

HbF was measured by alkali denaturation in the CSSCD or by high-pressure liquid

chromatography. Within the range of observed HbF, both alkali denaturation and high-

pressure liquid chromatography give similar results. For the CSSCD subjects, longitudinal

HbF values were gathered from phases 1 through 3 of the study, only steady-state values

were used (ie, measurements not taken during an acute event) and summarized by the

median of the longitudinal values.2 Because HbF is known to decrease in early years of life,

we only used HbF measurements at age 5 years or older. The cubic root transformation of

HbF was used in all statistical analyses, to remove asymmetry.

Genotyping

DNA from the CSSCD, PUSH, C-Data and Walk-PHaSST samples that formed the

discovery and replication cohorts were genotyped at Boston University using Illumina

Human610-Quad SNP arrays with approximately 600,000 SNPs. Samples were processed

according the manufacturer's protocol and BeadStudio Software was used to make genotype

calls utilizing the Illumina pre-defined clusters. Samples with less than a 95% call rate were

removed and SNPs with a call rate <97.5% were re-clustered. After re-clustering, SNPs with

call rates >97.5%, cluster separation score > 0.25, excess heterozygosity between −0.10 and

0.10, and minor allele frequency > 5% were retained in the analysis. We used the genome-

wide identity by descent analysis in PLINK to discover unknown relatedness.17 Pairs with

IBD measurements greater than 0.2 were deemed to be related and related subjects within

individual or different studies were removed. We also removed samples with inconsistent

gender findings defined by heterozygosity of the X chromosome and gender recorded in the

database.

Statistical Analysis

Genotype data from the CSSCD were used as the training data set to develop different

GRSs. Initially, the association of each SNP was tested using a linear regression model

adjusted for gender using the additive coding in PLINK17, and the p-values for each

association were computed. No significant associations were found between HbF and the

first ten principal components (PCs) computed using EIGENSOFT.18 Lack of inflation of

the associations was confirmed by the genomic inflation factor 1.003.18 SNPs were sorted

by increasing p-values, starting from the most significant SNP associated with HbF

(rs766432, p-value=2.61×10−21), and the list of SNPs was pruned by removing those SNPs

in high linkage disequilibrium (r2 > 0.8). If two SNPs were found to be in high linkage

disequilibrium, the SNP with lowest p-value was kept and the other SNP was removed. This

process was repeated until no SNPs in high linkage disequilibrium remained which left

500,325 SNPs. This pruned and sorted list of SNPs was used to generate a sequence of

unweighted GRS for each subject in the CSSCD by cumulatively adding the number of risk

alleles (an allele that causes a decrease in HbF) for each SNP. The first GRS included only
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the most significant SNP, the second GRS was generated by adding the second SNP from

the sorted list of SNPs to the first GRS and so on using the iterative formula:

where n is the number of SNPs, and Risk Allelei,j is the number of risk alleles carried by

individual i for the jth SNP. A sequence of weighted GRS was also generated by weighting

each risk allele as:

where tj is the t-statistic to test the association of the jth SNP with HbF. This analysis was

repeated for the first 10,000 SNPs (p-value< .02185) and generated 10,000 GRS, for each of

the subjects in the CSSCD. Each of these GRS was included as covariate in a linear

regression model and the regression coefficients of the resultant 10,000 linear regression

models were estimated using Least Squares methods in the CSSCD data in the R package.

The fitted regression models were used to predict HbF using the formula:

where  is the predicted HbF value for individual i using the nth GRS, and , 

are the estimate of the regression coefficients. Cumulative ensembles of the

predictions13, 19–21 were computed using the formula:

The predictive value of the genetic risk models and their ensembles was evaluated in the

CSSCD, and in the three independent cohorts. The proportion of variability explained in the

ensemble of GRS models in the CSSCD set was computed as the squared Pearson

correlation between the predicted and observed values while the predictive accuracy in the

independent sets was evaluated by computing the Pearson correlation between the observed

and predicted values of HbF. The number of SNPs with GRS that maximized the correlation

between observed and predicted values in the three independent cohorts was selected as the

optimal number of SNPs. To evaluate the predictive value of genetic data relative to non-

genetic risk factors, a non-genetic prediction model based on age, gender and the presence

of alpha thalassemia was estimated and the genetic risk models were also adjusted by age,

gender and alpha thalassemia. The accuracy of these additional models was assessed by the

correlation between the predicted and observed HbF values.
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Results

Table 1 shows patient characteristics of the four studies. The percent male and HbF

concentration were approximately the same across the Walk-PhaSST, C-Data and CSSCD

cohorts. Average age varied across the four cohorts; the CSSCD studied both children and

adults, C-Data and PUSH were skewed toward pediatric age patients while the Walk-

PHaSST cohort consisted mainly of adults. Patients in the PUSH study were younger and

had significantly higher HbF levels (p-value=0.0016).

Figure 1 shows the correlation between the observed and predicted HbF values using genetic

risk models with unweighted GRS (left panel) and the ensemble of these GRS models (right

panel) for the top 50 SNPs, in each of the validation cohorts. The correlation ranged between

0.2 and 0.4 for prediction with only 1 SNP; it peaked at 0.45 for prediction with GRSs that

include 10 to 15 SNPs in the PUSH data, with both the standard genetic risk models and

their ensembles, and declines for larger numbers of SNPs in the models. Inclusion of more

than 50 SNPs decreased the correlation even further. While the inclusion of new SNPs in the

GRS had substantial effects on the predictive accuracy of the genetic risk model, as shown

by the up and down pattern from one model to the next (left panel of Figure 1), the accuracy

of the ensemble of these GRS models was more stable. The results using the weighted GRS

were similar (Supplementary Figure 1).

An ensemble of the first 14 GRS models had the highest average correlation among all three

data sets and explained 23.4% of the variability in HbF in the CSSCD cohort. The

correlation between observed and predicted HbF using the ensemble of 14 GRS models was

0.44, 0.28 and 0.39 in the PUSH, Walk-PHaSST and C-Data cohorts, respectively. Of these

14 SNPs, 5 were located in BCL11A; other SNPs were located in the olfactory receptor

region on chromosome 11p15 and the site of the HBB gene cluster, and in the HBS1L-MYB

interval on chromosome 6q and were found previously to be associated with HbF.2, 22, 23

Table 2 shows details of these 14 SNPs.

Adding non-genetic risk factors age and gender to the GRS models did not increase the

amount of variability explained of HbF in the Howard and Walk-PHaSST cohorts. The non-

genetic prediction model which included information on age, alpha thalassemia and gender

only explained 6.8% of the variability in HbF in the CSSCD cohort.

It is noticeable that the genetic risk models had consistently higher predictive accuracy in

the PUSH cohort in comparison with the C-Data and Walk-PHaSST cohorts. The age

distribution of the CSSCD and PUSH cohorts was skewed toward children and young

adolescents while the age distribution of Walk-PHaSST cohort was skewed toward adult

patients (Supplementary Figure 2). Exact age of patients was not available for the C-Data

cohort.

Discussion

In African Americans with sickle cell anemia, HbF level does not stabilize until the age of 5

years.2 Early prediction of stable adult HbF levels might help foresee some complications of

sickle cell anemia and aid in its clinical management by guiding the decision of how
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vigorously to pursue HbF induction therapies. Our goal was to identify methods that could

combine SNPs to provide a better prediction of HbF levels than single SNP analysis. We

developed an ensemble of GRS that predicted HbF in 3 independent cohorts. In an ensemble

of GRS models, as few as 14 SNPs explained a larger fraction of the variability in HbF and

better predicted HbF levels when compared with single SNP analysis, or a single GRS

model. Even though the ensemble of GRS explains 23.4% of the variability in HbF in the

CSSCD cohort, it does not explain the totality of the variability in HbF that is due to

heritability, estimated to be between 60% and 90%.5, 24 This missing heritability could be

due to gene-gene interactions, epigenetic factors or multiple rare variants with small effects

that GWAS are poorly designed to detect.25 Our GRS included SNPs with a MAF > 5%;

however, as sickle cell anemia is a rare disease it is possible that some major genetic

modifiers are rare variants with a lower allele frequency. Next generation sequencing might

discover rare alleles that could be incorporated into a GRS to increase prediction accuracy.

Increasing the number of genetic variants in the GRS may increase the total explained

variability of HbF26; however, this could lead to overfitting and as one continues to add

more genetic variants to the GRS the prediction accuracy in independent cohorts will

decrease (as shown in Figure 1). The prediction accuracy of our weighted GRS model was

similar to that of our unweighted GRS model. We hypothesize that this is due to the fact that

weighted GRS models perform better when there is a difference in the genetic effects;

however, Table 2 shows that the regression coefficients and standard errors from the GWAS

of our top SNPs are all very similar.

An interesting result of our analysis is the systematically higher correlation between

predicted and observed HbF values in the PUSH study. This result might suggest that the

genetic models predict more accurately in children and young adults. Blood counts decline

with advancing age in sickle cell disease and could reflect decades of bone marrow damage

due to sickle vasoocclusion with relative bone marrow “failure”.27–29 Perhaps the higher

correlation between the predicted and observed HbF levels in the younger patients of the

PUSH cohort is a result of gene x environment interaction, where the genetic elements

regulating HbF production are not impeded by the erythroid bone marrow injury associated

with aging in the older cohorts. However, the difference in prediction accuracy could also be

due to unobservable patient characteristics not accounted for in the model. For example, the

CSSCD was conducted before the establishment of hydroxyurea as standard therapy for

sickle cell anemia patients, and there may be survivor effects in more contemporary cohorts

that are not accounted for in older cohorts. Testing these results in additional contemporary

cohorts of sickle cell anemia will be necessary to explain the result.

The 14 SNP model included SNPs in the BCL11A region, the HBS1L-MYB intergenic region

and SNPs in the olfactory receptor gene cluster 5' to the HBB gene complex. BCL11A down

regulates HBG expression 30, 31, the HBS1L-MYB intergenic region might affect

erythropoiesis and modulate BCL11A expression while the olfactory receptor region might

control expression with the HBB gene-like cluster.32

There are alternate methods of genetic prediction that we did not explore in this paper

including combining SNP information into a haplotype-based analysis,33, 34 multivariate

regression models and machine learning type approaches such as support vector machines
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and cross validation (CV)35, 36, principal component analysis37, and Bayesian

networks38–42. In our analysis, we used traditional regression based models and ensemble of

these models: we trained the models in the discovery cohorts and examined the prediction

results in independent cohorts to determine which model predicts most accurately. We

investigated using 10 fold cross validation (CV) method to select the best number of SNPs

in the discovery set. However, we noted in a large simulation study that using 10 fold cross

validation tends to underestimate the true number of SNPs (Supplementary Information;

Supplementary Figure 3), and noted that an ensemble of regression models appear to be

more robust for prediction. This result is consistent with published literature.43. Since the 3

test sets were used to determine the optimal number of SNPs, replication of the results in

additional independent sets is necessary to confirm the results. However, the substantial

agreement of prediction of the ensemble of 14 models in the 3 sets is reassuring that this

result is robust.

The ensemble of GRS models explained 23.4% of the variability in HbF in the CSSCD data

and the correlation between predicted and observed HbF values in the 3 independent sets

ranged from 0.28 to 0.44. These numbers are higher than results reported in the literature

when GRS have been used as a predictive tool. For example, a study of 3,575 subjects from

the Doetinchem Cohort Study computed a GRS to predict plasma total cholesterol levels

which are highly genetically determined with a heritability estimated to be 40 to 60%.44, 45

Using 12 SNPs they were able to explain 6.9% of the total variability in total cholesterol

levels.46 Participants in the Atherosclerosis Risk in Communities cohort of 10,745

individuals were used to construct a GRS of obesity in order to predict BMI.47, 48 The

obesity GRS showed a correlation with BMI of r=0.12 for the unweighted GRS model and

r=0.13 for the weighted model. Our ensemble of GRS models of HbF can explain more

phenotype variability and had a higher predictive accuracy in comparison with single SNP

analyses.

One of the major goals of GWAS was to identify genetic variants that are associated with

disease or measures of disease severity to be used in personalized medicine. Many studies

have shown the importance of including genetic variants beyond those that meet the

genome-wide association threshold of 5×10−08 but many of these SNPs associations may be

false positives and lower the accuracy of a prediction model.49, 50 Our study shows that the

use of an ensemble of genetic risk models is robust to inclusion of false positive associations

and the approach may prove useful in other applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Correlation between observed and predicted values for increasing number of SNPs in the unweighted GRS. Plot of the

correlation between the observed and predicted HbF in the three independent cohorts versus the number of SNPs in the top 50

unweighted GRS models (left panel) and ensemble of unweighted GRS models (right panel). The vertical bars are at No.

SNP=14.
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Table 1

Patient characteristics. Summary statistics of patient characteristics in the CSSCD cohort, and the PUSH,

WALK-PHaSST and C-Data replication cohorts. For each cohort statistics (mean and standard deviate or

frequencies) are reported for all patients included in the analysis. The last row reports the frequency and

proportion of individuals with gene deletion alpha thalassemia (at least one alpha gene deletion).

CSSCD (N=841) Mean
(StD)

PUSH (N=77) Mean
(StD)

Walk-PHaSST (N=181)
Mean (StD)

C-Data (N=127) Mean
(StD)

Age (years) 17.19(10.69) 12.49 (4.69) 36.35 (12.54) 13–17

Gender (% male) 53.7% 50.6% 51.9% 55.9%

HbF (%) 6.65 (5.50) 9.81 (8.23) 6.07 (5.60) 7.59(5.09)

Hemoglobin (d/mL) 8.42 (1.33) 8.62 (1.25) 8.50 (1.69) NA

α thalassemia (% yes) 143 (31.4%) 21 (27.2%) 46 (25.4%) NA
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Table 2

Summary of SNPs in prediction model. GWAS results of the 14 SNPs in the best GRS prediction model in the

CSSCD cohort. β=estimate of genetic effect from additive model; SE= standard error.

SNP Gene Coding Allele β SE pvalue

rs766432 Chr 2; BCL11A C 0.25 0.02 1.22E-22

rs1O195871 Chr 2; BCL11A A 0.21 0.02 3.30E-18

rs6706648 Chr 2; BCL11A A −0.19 0.02 1.30E-16

rs6709302 Chr 2; BCL11A A −0.14 0.02 3.69E-08

rs9494145 Chr 6; intergenic G 0.24 0.05 1.80E-07

rs6732518 Chr 2; BCL11A G 0.13 0.02 1.86E-07

rs6446085 Chr 3; FHIT A −0.11 0.02 9.43E-07

rs10152034 Chr 14; intergenic A −0.11 0.03 1.21E-05

rs17114175 Chr 14; intergenic C −0.16 0.02 1.59E-06

rs2855039 Chr 11; HBG1, HBG2 G 0.18 0.04 2.24E-06

rs2239580 Chr 14; COCH A −0.13 0.03 4.46E-06

rs5006883 Chr 11; OR51B5,OR51B6 G 0.17 0.04 5.32E-06

rs9525079 Chr 13; UGGT2 G 0.13 0.03 6.28E-06

rs416586 Chr 11; OR51A G 0.13 0.02 6.37E-06

rs11794652 Chr 9; FUBP3 A −0.10 0.02 6.51E-06

rs12469604 Chr 2; intergenic A 0.19 0.04 8.31E-06

rs6932510 Chr 6; RPS6KA2 A 0.16 0.04 8.52E-06

rs7113817 Chr 11; intergenic A 0.17 0.04 9.88E-06

rs1O837814 Chr 11; OR51B2,OR51B3P A 0.14 0.03 1.39E-05

rs2021966 Chr 6; intergenic G 0.10 0.02 1.79E-05
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