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ABSTRACT

In the Central Red Sea, healthy coral reefs meet intense coastal development, but
data on the effects of related stressors for reef functioning are lacking. This in situ
study therefore investigated the independent and combined effects of simulated
overfishing through predator/grazer exclusion and simulated eutrophication through
fertilizer addition on settlement of reef associated invertebrates on light-exposed
and -shaded tiles over 4 months. At the end of the study period invertebrates had
almost exclusively colonized shaded tiles. Algae were superior settling competitors on
light-exposed tiles. On the shaded tiles, simulated overfishing prevented settlement
of hard corals, but significantly increased settlement of polychaetes, while simulated
eutrophication only significantly decreased hard coral settlement relative to controls.
The combined treatment significantly increased settlement of bryozoans and bivalves
compared to controls and individual manipulations, but significantly decreased
polychaetes compared to simulated overfishing. These results suggest settlement of
polychaetes and hard corals as potential bioindicators for overfishing and eutroph-
ication, respectively, and settlement of bivalves and bryozoans for a combination

of both. Therefore, if the investigated stressors are not controlled, phase shifts from
dominance by hard corals to that by other invertebrates may occur at shaded reef
locations in the Central Red Sea.

Subjects Ecology, Marine Biology, Zoology, Science and Medical Education
Keywords Recruitment, Sessile invertebrates, Nutrient enrichment, Overfishing, Bioindicator,
Settlement, Red Sea, Coral reefs, Saudi Arabia, Caging experiments

INTRODUCTION

Overfishing and eutrophication are among the most serious local stressors for coral reefs,
worldwide and in the Red Sea (Burke et al., 2011). These stressors can strongly affect
invertebrate settlement. Settlement (i.e., the permanent attachment to the substratum) of
sessile invertebrate larvae is an irreversible process and is thus of critical importance for
invertebrate life-cycles (Harrison ¢ Wallace, 1990).
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Invertebrate settlement can be influenced by numerous factors such as water flow
(Mullineaux ¢ Garland, 1993), abundance and composition of microbial biofilms
(Hadfield, 2011; Sawall, Richter & Ramette, 2012; Tran & Hadfield, 2011), benthic
macroalgae (Arnold, Steneck & Mumby, 2010; Harrington et al., 2004; O’Leary et al.,
2012), con- and heterospecific adult invertebrates (Osman ¢ Whitlatch, 1995), predators
and grazers (Connell & Anderson, 1999; Glynn, 1990; Lewis ¢ Anderson, 2012), or
changing environmental conditions that provide competitive advantages to certain species
(Hallock & Schlager, 1986).

Eutrophication, the increase in nutrient availability influences biofilm diversity and
composition (Kriwy ¢ Uthicke, 2011; Webster et al., 2004; Witt, Wild ¢ Uthicke, 2012a;
Witt, Wild ¢ Uthicke, 2012b). Further, eutrophication and overfishing (of herbivores)
can also increase growth of benthic macroalgae such as filamentous algae (Jessen et al.,
2013a), thereby providing the faster growing algae with a competition advantage over
invertebrates, allowing them to take over suitable substrata. In contrast, some slow growing
algae such as crustose coralline algae (CCA), important for coral recruitment (Harrington
et al., 2004; Heyward ¢ Negri, 1999), can be suppressed through reduced grazing (Jessen et
al., 2013a). Additionally, the increase of certain filter feeders was linked to eutrophication
and concomitant increase in organic matter in the water column that made them able to
outcompete and prevent settlement of adjacent organisms (Chadwick ¢ Morrow, 2011,
Hallock & Schlager, 1986).

Further, overfishing can influence trophic interactions in two ways. Reducing the
number of herbivores and invertebrate predators and therefore freeing macroalgae and
certain invertebrates of their top-down control (Birkeland, 1977; Birrell, McCook ¢
Willis, 2005; Diaz-Pulido et al., 2010; Osman & Whitlatch, 1995; Vine, 1974); similarly
the reduction of predators can result in the release of top-down control of invertebrate
feeders such as sea urchins (Hay, 1984; McClanahan ¢ Shafir, 1990). As a consequence, the
amount of invertebrate settlement can be strongly reduced (Myers et al., 2007), sometimes
even down to almost zero (Vine ¢ Bailey-Brock, 1984). Overfishing can furthermore lead
to increased bioerosion rates (Tribollet ¢~ Golubic, 2011) that reduce suitable settlement
habitat for new invertebrate settlement.

Although the top-down and bottom-up effects of overfishing and eutrophication have
been intensively studied for benthic reef algal growth and development (e.g., Burkepile
¢ Hay, 2006; Smith, Hunter ¢ Smith, 2010; Jessen et al., 2013a), there are few studies that
investigate the individual or combined impact on tropical sessile invertebrate settlement
in this context. Only Tomascik (1991) and Hunte ¢» Wittenberg (1992) looked at coral
settlement patterns along an eutrophication gradient, although it is not clear if the
observed influence was due to altered larval supply. Additionally, our understanding of
the ecology of coral reefs in the Red Sea is largely focused on studies conducted in the Gulf
of Aqaba, but not in the remaining Red Sea (Berumen et al., 2013).

Over 4 months this study simulated (a) overfishing by excluding larger predators and
herbivores through cages and (b) eutrophication through the deployment of nutrient
sources in an offshore reef in the Central Red Sea. We wanted to answer the question of
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how the individual and combined effects of overfishing and eutrophication impact the
settlement of main sessile invertebrate groups.

MATERIALS & METHODS
Study site

The study was carried out over 16 weeks from June to September 2011 at the patch
reef Al-Fahal that lies about 13 km off the Saudi Arabian coast in the Central Red Sea
(N22.18.333, E38.57.768; see Jessen et al., 2012 for a map of the location). We selected
this reef because of its relatively large distance from shore and presumably low impacts
from potential fishing and land-derived nutrient import. The reef is characterized by high
herbivore fish (22 g m~2) and sea urchin biomass (38 g m~2), low ambient concentrations
of dissolved inorganic nitrogen (DIN = NHI +NO3 +NO;;0.9-1.8 umol L), soluble
reactive phosphorous (SRP = POi_; 0.06-0.10 wmol L™, dissolved organic carbon
(DOG; 55-67 wmol L™1), and relatively high live coral cover (49% hard and soft coral
cover; for full results see Jessen et al., 2013a).

Experimental setup

Ten terracotta tiles (plus two spare tiles) each 10 x 10 cm (100 cm?) were mounted on
stainless steel screws at an angle of 45 degrees on each of 16 polyvinyl chloride (PVC)
frames (50 x 75 cm; in total 160 tiles) approximately 10 cm above the reef substrate at
5-6 m water depths (Fig. 1) and accessible to invertebrate herbivores (C Jessen, pers. obs.,
2011). Tiles were installed in 2 rows with a distance between 3 and 50 cm (Fig. 1). PVC
frames were separated by 2—5 m. Prior to the start of the experiment, tiles were autoclaved
to remove any interfering compounds that could have accumulated during tile production.
Tiles were installed pairwise on top of each other with unglazed sides facing outside,
resulting in an upper (light exposed) and lower (shaded) tile (Fig. 1). We applied four
different treatments to the frames (each with n = 4): (1) control (only the equipped frame),
(2) fertilizer (see nutrient enrichment section), (3) cage (hemispherical zinc galvanized
cages with a mesh size of 4 cm and a diameter of 100 cm), and (4) a combination of cage
and fertilizer tubes.

The cages served to exclude larger predators and herbivores, as overfishing is rather
affecting larger species. Smaller fish (small damselfish, parrotfish, wrasses and surgeonfish)
were still able to access the insides of the cages. Cage controls were not used, since studies
showed that similar cages even with a lower mesh size did not affect water movement,
light availability, and sedimentation rates (Burkepile ¢ Hay, 2007; Miller et al., 1999; Smith,
Smith ¢ Hunter, 2001).

Eutrophication was simulated by deploying four fertilizer tubes around the frame,
consisting of perforated PVC tubes filled with approximately 580 g Osmocote fertilizer
(Scotts, 15% total nitrogen (in form of nitrate & ammonium), 9% phosphate (phosphoric
pentoxide), and 12% potassium oxide) embedded in 3% agarose. Fertilizer was deployed
once without replenishments, but regular monitoring of nutrient concentrations assured
continuous release rates.
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Figure 1 Schematic drawing of the experimental setup. Shown is a PVC frame equipped with twelve
tiles (two of them spare tiles) half of them in light exposed conditions and half of them in light shaded
conditions. The dotted line shows where the glazed side of the tile (inward pointing side) has been
pre-scored to facilitate tile division upon sampling.

Treatments were not randomly assigned to the frames, instead the sequence control,
fertilizer, cage, combination was repeated four times along the reef to control for potential
biases such as microhabitats.

One pair of tiles (light-exposed and shaded) per frame was collected after 1, 2, 4, 8,
and 16 wk(s) using SCUBA. To facilitate tile division under water tiles were pre-scored
(notched) on their glazed side with the help of a tile cutter before the start of the
experiments (Fig. 1). Upon sampling, tiles were divided in half (each 50 cm?; an area
which had been shown to be large enough from asymptotes of species-area curves by
Hixon ¢ Brostoff, 1996) and then wrapped separately in ziplock bags. They were brought
on board within 30 min and half of them was immediately flash frozen in liquid nitrogen
for subsequent microbial analyses (results reported elsewhere), while the other half was
handled as described below.

To test the success of fertilization, water samples (5 L) were taken directly before
collecting tiles at each time point with large ziplock bags directly from above each frame
(in total n = 40 for nutrient enriched as well as non-enriched samples). From this stock
50 mL were filtered on pre-combusted Whatman-GF/F filters and used for inorganic
nutrient measurements. The analyses of DIN and SRP were performed using continuous
flow analyzer (FlowSys Alliance Instruments).

Invertebrate identification and enumeration

In order to remove attached sediment, precipitates, and mobile invertebrates, light-
exposed and shaded tiles were rinsed with fresh water. Invertebrate classification was
conducted with a dissection microscope (Zeiss Stemi 2000; 7.7-fold magnification). All
sessile invertebrates visible under the dissection microscope were identified with the help
of Vine (1986) and grouped to the following easily distinguishable categories: Scleractinia
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(Cnidaria), Bivalvia (Mollusca), Bryozoa, and Polychaeta (Annelidae). We counted single
animals (Scleractinia, Bivalvia, and polychaetes, such as Spirorbis sp. or Pomatoceros sp.)
or colonies (Bryozoa and other polychaetes, such as Filograna sp.) on each tile to quantify
the number of individual settlement events. It is likely that factors other than settlement
such as competition, predation, and overgrowth affected the number of organisms in the
course of the study. However, by considering only sessile and calcareous organisms and
thoroughly searching the surface using a dissection microscope, we tried to minimize
potential biases as much as possible. Nevertheless, numbers can be slightly underestimated
since we cannot rule out that settlers arrived but did not persist.

Algal composition and algal biomass (only light-exposed tiles) was determined in
the laboratory after invertebrate counting by taking pictures of submerged tiles and
analyzing them using 100 randomly overlaid points using Coral Point Count with Excel
extensions (CPCe) 4.1 (Kohler ¢ Gill, 2006). Primary algal groups were filamentous algae
and non-coralline crusts on light-exposed tiles and crustose coralline algae (CCA) and
non-coralline red crusts (such as Peyssonnelia) on shaded tiles. Foliose macroalgae such as
Padina, Lobophora, or Halimeda were not found. See Jessen et al. (2013a) for full results of
algal cover.

Data of 1 of 16 frames (No. 4, combined treatment) was removed from the dataset, as
cage pictures and tile appearance indicated access of large predators and herbivores to this
setup.

Statistical data analysis

T-tests were used for analyzing inorganic nutrient concentrations at each sampling point.
To meet assumptions of normal distribution DIN-data were inverse square root (1/sqrt(x))
transformed. All invertebrate groups were tested for the individual and interactive effects
of cage, fertilizer, and time with a 3-factorial generalized linear model (GLM) in R

(R Development Core Team, 2012). To cope with over- and underdispersion we used
either quasi-GLM models (hard corals, polychaetes) or negative binomial model (Bivalvia,
Bryozoa), depending which model fit the data better based on pseudo-R? scores (Zuur et
al., 2009). For comparison of the different treatments, we used Tukey post hoc tests (‘glht’
function) of the ‘multcomp’ package.

RESULTS

The simulation of eutrophication constantly and significantly increased SRP concen-
trations compared to the controls (Fig. S1). DIN concentrations were also constantly
increased, but did not always significantly differ from the controls (Fig. S1). Both, ambient
and enriched treatments experienced a peak in DIN concentrations after 4 weeks.

Over the sampling period of 16 weeks, 99.9% of all observed sessile invertebrates settled
on the shaded tiles. The exceptions were 1 hard coral recruit (control 2 wks), 5 polychaetes
(1x control 2 wks; 3x fertilizer 4 wks; 1 x combined 8 wks), and 2 bryozoan colonies
(cage 16 wks). Because of this one-sided distribution, the following results stem exclusively
from invertebrate observations of the shaded tiles (total 6,862 counts, and an average of
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91 counts per shaded tile). Figure 3 shows representative photographs of light-shaded tiles
after 16 weeks of deployment in the reef.

On a temporal scale, polychaetes occurred first after 1 week, bryozoans after 2
weeks, hard corals after 4 weeks, and bivalves after 8 weeks, however, there was no
treatment-specific pattern when first settlement occurred (Figs. 2B, 2D, 2F and 2H). Other
potential sessile invertebrate groups such as sponges, soft corals, crustaceans, and ascidians
were not observed on the analyzed tiles, however the latter group appeared once on a spare
tile after 16 weeks.

On the controls, all observed invertebrate groups were present at their lowest abundance
compared to the other treatments, except hard coral settlement which was highest in this
treatment (Fig. 2A).

Simulated overfishing reduced hard coral numbers to zero (Fig. 2A), but significantly
increased settlement of polychaetes (Fig. 2G). However, simulated overfishing did not
show any significant effects on settlement of bryozoans and bivalves (Figs. 2C and 2E).

Under simulated eutrophication, hard coral settlement was significantly decreased by
11-fold relative to controls (Fig. 2A), while bryozoans, bivalves, and polychaetes were not
significantly affected by this treatment (Figs. 2C-2H).

The combination of manipulated eutrophication and overfishing significantly increased
settlement of bryozoans and bivalves 7 and 11-fold relative to controls (Figs. 2C and
2E). Relative to simulated overfishing, the combined treatment significantly increased
settlement of bryozoans 4-fold and that of bivalves 11-fold, but decreased settlement of
polychaetes 2-fold, while settlement of hard corals was not affected. Relative to simulated
eutrophication, the combined treatment significantly increased settlement of bryozoans
3-fold and bivalves 7-fold, while settlement of hard corals and polychaetes was not affected.

Except for bryozoans, all other groups showed significant interaction effects, i.e., their
response to one manipulated factor depended on the level of the other factor (Fig. 2,
Table S1).

DISCUSSION

Simulated overfishing increased settlement of polychaetes compared to controls. These
observations are concordant with Vine (1974), who observed increased spirorbid
settlement in caged treatments. Interestingly, the positive effect of simulated overfishing
on settlement of polychaetes was not visible in the combined treatment with increased
nutrient availability. A possible explanation could be the presence of heterospecific inver-
tebrates (i.e., bryozoans, bivalves) that can suppress settlement in their vicinity (Osman
¢ Whitlatch, 1995). This hypothesis is supported by the fact that the different polychaete
settlement responses between simulated overfishing and combined treatments were not
visible before the occurrence of bryozoans and bivalves, which started after 8 weeks.
Simulated eutrophication alone only caused decrease of hard coral settlement, while
all other invertebrates were neither positively nor negatively affected by this treatment.
This finding is confirmed by the studies of Tomascik (1991) and Hunte ¢» Wittenberg
(1992), who also observed less hard coral settlement in eutrophic reefs and suggest that
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Figure 2 Invertebrate settlement numbers (depicted per cm™—2; mean % SE) on shaded tiles. Left
column (A, C, E, G) shows settlement numbers per treatment averaged over all tiles and right column
(B, D, F, H) shows temporal development of counted recruits of all 4 treatments. p-values were calculated
from a 3-factorial GLM and originate from analysis across the whole study period (see Table S1 for full
results). Dashes represent factors that have been excluded by the model reduction. Abbreviations: C,
Cage; F, Fertilizer; T, Time. Treatments with same small letters are not significantly different (p > 0.05)

in post hoc pairwise comparisons.
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Control Simulated Eutrophication

] -

Simulated Overfishing

Figure 3 Representative photographs of light-shaded tiles after 16 weeks of deployment in the
reef. White bars in the central upper right area of each picture are reflections caused by a camera flash.
Hemi-circle holes at the central lower edge were used for screws to attach tiles. According to a point count
analysis ran in Coral Point Count with Excel extensions (CPC), average invertebrate cover did not exceed
8%. See Jessen et al. (2013a) for full results.

eutrophic conditions may alter the complex set of physical, chemical and/or biological
signals that trigger settlement of coral larvae. However, it is not clear if such differences
were caused by negative settlement behavior, post-settlement mortality, or reduced
larval supply (i.e., reduced coral fecundity) as observed by Loya et al. (2004) as a
response to eutrophication. Large differences in functional algal cover between simulated
eutrophication and control treatments did not exist (Jesser et al., 2013a). However, algae
species were not identified on the species level, but potential differences on that level
therefore may have occurred and influenced the settlement as shown for coralline algae
by Harrington et al. (2004). Furthermore, as shown for coral fragments in a parallel
experiment (Jessen et al., 2013b), increased nutrient concentrations may have altered the
microbial community structure of biofilms, thereby changing chemical and structural cues
that influence settlement.

The combination of manipulated overfishing and eutrophication resulted in the highest
settlement numbers of bivalves and bryozoans, that were both significantly increased
compared to manipulated overfishing and eutrophication treatments. However, algal
cover, an important settlement cue, did not substantially vary between combined and
simulated overfishing treatments (Jessen et al., 2013a). We propose therefore that the
observed differences were due to (a) indirect interaction effects of predator/herbivore
exclusion, (b) differences in bacterial and diatom biofilm composition (Dahms, Dobretsov
& Qian, 2004; Yang et al., 2013) and (c) effects of microalgae benefiting from increased
nutrients (Posey et al., 2002).
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In this study, sessile invertebrates settled almost exclusively on shaded, compared to
light-exposed tiles. This light exposure-specific pattern has been confirmed for corals by
studies from other reefs (Birkeland, 1977; Harrison ¢ Wallace, 1990; Sawall et al., 2013),
and contrasts the presence of algae biomass and abundance of filamentous algae that was
highest on light-exposed tiles during the present study (Jessen et al., 2013a). While these
filamentous algae can prevent invertebrate settlement (Arnold, Steneck ¢ Mumby, 2010;
Glasby & Connell, 2001; Virgilio, Airoldi &~ Abbiati, 2006), encrusting algae, i.e., CCAs, often
facilitate and induce invertebrate settlement (Arnold, Steneck ¢~ Mumby, 2010; Heyward
& Negri, 1999; Morse et al., 1996; Negri et al., 2001; Whalan, Webster & Negri, 2012).
Correspondingly, encrusting algae were not observed on the light-exposed tiles, but were
abundant on the shaded tiles, particularly in non-caged treatments (Jessen et al., 2013a).
Nevertheless, invertebrates were obviously present on light-exposed substrate in natural
reefs. It may be that adequate settlement substratum for CCA exhibit delayed growth on
light-exposed underground (Smith, Hunter ¢ Smith, 2010) and thereby delaying sessile in-
vertebrate settlement. This suggests the need for studies over longer time spans to study in-
vertebrate settlement on light-exposed substrata. While other invertebrate groups that are
typically associated with coral reefs including sponges, soft corals, crustaceans, and ascidi-
ans were absent in this experiment, they were found in other, though longer lasting, similar
experiments (e.g., Sawall et al., 2013). Their lack in this study may be either explained by
the absence of reproduction events during the study period or delayed settlement on artifi-
cial substrata as suggested by the observation of ascidians on a spare tile after 16 weeks.

The absence of all hard coral settlement in the simulated overfishing treatments may
be caused by the presence of more competitive invertebrates that prevented settlement
or covered corals (Birkeland, 1977; Sawall et al., 2013), filamentous algae (Arnold, Steneck
& Mumby, 20105 Birrell, McCook ¢ Willis, 2005; Kuffner et al., 2006), as well as the lower
abundance of coralline algae (O’Leary et al., 2012), as these factors were significantly
influenced by simulated overfishing on the same tiles (Jessen et al., 2013a).

In a recent review, Cooper, Gilmour ¢ Fabricius (2009) summarized and evaluated
potential bioindicators for coral reef health and water quality, ranging from species
presence and composition to physiological and isotopic parameters. Although their review
included coral recruitment, other sessile invertebrates were not considered. The findings
of the present study suggest settlement of coral reef associated sessile invertebrates as
specific bioindicators for overfishing and a combination of that with eutrophication. For
overfishing, this may be an increase in polychaete settlement and a decrease for that of hard
corals. For eutrophication the sole decrease of hard coral settlement, and for a combination
of both stressors this may be an increase in bryozoan and bivalve settlement. Advantages of
this approach would be the cost-effective and relative easy measurement together with low
systematic knowledge that is needed to identify the taxonomic groups.

As settlement is only one process in the successful recruitment of an organism, it could
be interesting to compare the profiteers of the different treatments in this study with
known juvenile mortality rates. This would allow improving predictions on potential
sessile invertebrate outbreaks or phase shifts.
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Studies showed that hard coral settlement experiences up to 100% mortality within the
first year with regional differences: e.g., in French Polynesia 19-56% over 14 months
(Penin et al., 2010), in Jamaica 91-95% over 9-10 months (Rylaarsdam, 1983), in
Florida (annual) 22—49% (Miller, Weil ¢ Szmant, 2000), in Bonaire 32% over 6 months
(Bak ¢ Engel, 1979), in the Great Barrier Reef (annual) 36% (Connell, 1973), 90% over 4
months (Harriott, 1983), 67—-86% over 8—9 months (Babcock, 1985), and 96-99% over 4
months (Babcock ¢ Mundy, 1996). The outcomes from non-coral invertebrates from other
ecosystems were similar with many studies reporting mortalities of >90% (reviewed in
Gosselin ¢ Qian, 1997).

To conclude, although the reef appears to be in healthy condition, non-coral inverte-
brates such as polychaetes or bivalves and bryozoans may rival hard coral dominance at
shaded reef locations if simulated threats are not controlled in the study area. This can lead
to phase-shifts, potential alternative stable states that may impact the ecology of coral reefs
(Norstrom et al., 2009).
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