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ABSTRACT
Objective To extract disorder-associated genes from
the scientific literature in PubMed with greater sensitivity
for literature-based support than existing methods.
Methods We developed a PubMed query to retrieve
disorder-related, original research articles. Then we
applied a rule-based text-mining algorithm with keyword
matching to extract target disorders, genes with
significant results, and the type of study described by
the article.
Results We compared our resulting candidate disorder
genes and supporting references with existing databases.
We demonstrated that our candidate gene set covers
nearly all genes in manually curated databases, and that
the references supporting the disorder–gene link are
more extensive and accurate than other general purpose
gene-to-disorder association databases.
Conclusions We implemented a novel publication
search tool to find target articles, specifically focused on
links between disorders and genotypes. Through
comparison against gold-standard manually updated
gene–disorder databases and comparison with
automated databases of similar functionality we show
that our tool can search through the entirety of PubMed
to extract the main gene findings for human diseases
rapidly and accurately.

BACKGROUND
With the advance of genotyping and sequencing
technologies, a rising number of studies have
reported genetic association with various disorders
in the past decade. As hundreds of genes may be
involved in one complex disorder, a thorough litera-
ture review is a fundamental starting point to under-
stand genetic risk factors of any given human
disorder. For example, if we are interested in the
genetic etiology of schizophrenia, we would first like
to know which genes have been reported for associ-
ation with the most important literature evidence to
justify the association. However, few applications
have been available to help search and keep track of
up-to-date, gene–disease associations. Many sites
provide detailed gene data, including GeneCards,1

PharmGKB,2 WikiGenes,3 and iHOP,4 but it is not
easy to find the disorders associated with a given
gene using these sites. Another group of tools,
including LitInspector,5 MuGeX,6 Quertle (http://
quertle.info) and NEXTBIO genetic markers (http://
nextbio.com) provide supporting references and
snippets of text from abstracts highlighting the
target gene or disorder, but their genetic and/or
disease coverage is limited and the methods, for
gene–disorder association (such as simple
co-occurrence of terms), often yield high rates of
false positives. Disorder-oriented sites like SFARI

gene7 and SZgene8 provide candidate genes for a
target disorder with or without references, but cover
only a single disorder. Previously we built a meta-
search tool that integrates results from several of
these sites.9 Using this tool, we discovered significant
discrepancies between databases, with few providing
adequate references to supporting literature.
Provided this context, our goal in the present

study was to build a novel PubMed extraction tool
that focuses on identifying target disorders and asso-
ciated human genes from all original research arti-
cles, and to compare the results from this tool with
the existing databases that provide disorder candi-
date genes and supporting references, including
Online Mendelian Inheritance in Man (OMIM),10

HuGE Navigator,11 and Genetic Association
Database (GAD).12 Various text-mining algorithms
have been proposed to address entity recognition in
scientific literature13 14 and infer novel gene–dis-
order relationships.15–20 We set our scope in this
work, however, precisely to extract gene–disease lin-
kages reported in the research articles, rather than to
discover new associations based on literature
information.

METHODS
Retrieving disorder-related articles
For each target disorder name, we built a compre-
hensive PubMed query to retrieve disorder-specific
research or review articles. First, we mapped the
given disorder name to the corresponding medical
subject headings (MeSH),21 and obtained target dis-
order aliases from MeSH, MedlinePlus,22 and
Genetics Home Reference.23 After expanding names
for plurals (eg, disorder → disorders) and synonyms
(eg, syndrome ↔ disorder/disease), we required in
the query that these names and aliases appear in the
title or MeSH entries sections of papers. We did not
search in any field or in abstracts as we observed
false-positive findings (ie, articles that are not dir-
ectly related to the target disorder) when we allowed
these fields. Second, we filtered out articles with
publication types that were not relevant to research
or reviews, for example bibliographies, comments,
and editorials. We also limited results to publication
dates after 1990, as we were interested in retrieving
recent, genetics-oriented research articles. This was a
conservative publication date filter, considering that
the human genome project began in 1990 and the
pilot phase of sequencing was done in 1999.24 An
example of the expanded query targeted to autism
spectrum disorder (ASD) is shown in figure 1. We
used E-utilities25 to execute this query, extracting
PubMed article identifiers and details for further
steps.
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Screening genetics-related articles
In the first step, we retrieved articles related to the target dis-
order; we then performed further steps to reduce this set to
include only papers related to genetics. First, if an article has
MeSH annotations, we examined whether they include terms
under ‘genetic techniques’ sub-tree; terms under ‘genetic phe-
nomena’ sub-tree; or ‘genetics’ subheading. Second, if the
article has no MeSH annotation, we examined if the title or
abstract include genetics-related keywords. We obtained these
keywords by comparing two training sets of abstracts. In par-
ticular, we selected 32 disorders from the genome-wide associ-
ation studies (GWAS) catalog26 and downloaded two sets of
abstracts from PubMed: those that include MeSH terms fitting
in above conditions (158 745 articles); and those that have
MeSH terms, but do not include terms of the first set (385 383
articles). After removing common frequent words based on
Corpus of Contemporary American English,27 we measured the
word frequency and compared the top 5000 words from each
set in order to find out keywords that uniquely or dominantly
(ie, top 1% after Wilcoxon signed-rank test) appear in the first
set only. Supplementary table 1 (available online only) shows
the top 20 keywords sorted by word frequency. We also used
this keyword extraction method to identify abstract structures
and study types that we explain below.

Analyzing structure of abstracts, study types and negations
As described in the background section, many existing tools still
use simple co-occurrence to show gene–disorder associations.
This is not reliable when we want to learn the exact study and
reference in which specific associations are tested and reported.
For example, sentences like ‘neuroligin genes have been asso-
ciated with autism’ can occur in the introduction section of an
abstract, but the main topic of the paper may not be relevant to
neuroligin genes at all. Therefore we decided to use the struc-
ture of abstract28 to address this issue. We assume that the main
findings of a research article must be reported in the result/con-
clusion sections of the abstract, or in the title, and in these loca-
tions only. This assumption enables us to separate tested genes
in the background or methods section (eg, ‘We tested A, B, and
C genes’) from associated genes (eg, ‘Only C gene was highly
expressed’), and introductory statements in the background
section (eg, ‘We previously showed that gene A is associated’).
For abstracts without designated structure, we built a set of key-
words and rules to identify them, using the available structured
abstracts as training data. To extract the study type, we used
publication types (eg, ‘reviews’ or ‘case report’) and MeSH
terms (eg, ‘disease models, animal’ or ‘genome-wide association

study’) when such information is available, or used keywords if
MeSH terms or publication types are not annotated. We derived
another set of rules to find negated statements in either the title
or abstracts; for this we used example sentences obtained from
BioNOT.29

Gene representation
Finding gene symbols and their names in the literature and
mapping them to unique identifiers is one of the major topics in
biological literature mining,30 31 and a large number of algo-
rithms exist to address this issue within various contexts.16 32–40

While following up our previous study,9 we recognized that
many genetic–disorder-related articles only use gene symbols or
protein symbols, rather than using full names. We tested two of
the widely used entity recognition tools trained for human
genes (ABNER41 and BANNER),42 but they did not show high
precision for this type of task. To address this, we implemented
a precision-based gene recognition procedure, which is similar
to the protein name extraction algorithm of Fukuda et al43 or
LitInspector.5 For each article, we first scanned the title and
abstract to identify symbols that match up with gene patterns.
For example, official human gene symbols can be identified with
these regular expressions: /[A-Z][A-Z0-9\-]+/ or /C(X|0–9+)
orf0–9+/. When such a symbol was found, we determined the
semantics of the symbol based on the context in which the
symbol is located. For example, symbol ‘CGH’ may be used as
an alias term of HTC2 gene, but may also mean array-CGH. We
checked whether the immediate previous/following text around
this symbol includes (1) in a list of gene symbols (eg, ‘X
chromosome genes like DMD, MAOA, CGH, and FMR1’);
(2) full (official) gene name (eg, ‘hypertrichosis 2 (CGH)’); (3)
genetic keywords defined in the previous section (eg, ‘CGH
deletion’); (4) other full names for the same pattern (eg, ‘com-
parative genome hybridization (CGH)’); or (5) other (dis)quali-
fier for the same pattern (eg, ‘array CGH’). We kept the track of
found symbols per article, assuming that a symbol can only have
one meaning in the same article. The scan was performed twice,
because the meaning of a symbol may not be decided in the
current position, but in the later part of the title or abstract.
The comparison output of our algorithm with ABNER and
BANNER, including test input sentences and tagged words, is
shown in the supplementary files (available online only).

Assessing the significance of articles and genes
Ranking of articles and terms based on the strength of publica-
tion and the structure of the article has been thoroughly studied
by Demner-Fushman and Lin.44 We combined the temporal

Figure 1 An example of expanded
query for a user input, ‘autism
spectrum disorders’. This is a
translated query so query terms
without matching documents are not
displayed. Colors are added for
illustration purposes. Green texts are
disorder aliases to appear in titles; red
texts are the mapped MeSH entries,
including sub-tree terms; blue texts
specify publication dates; purple texts
are publication types that should be
excluded from this search; and orange
texts are added to exclude comments,
erratum and retracted articles when
publication types are not available.
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significance of articles with positive/negative findings of genes in
order to assess the significance of an association between a gene
and a target disorder. We defined the significance of an article
based on the impact factor of the published journal and the pub-
lication year. The score of an article a for a given disorder d was
defined as follows:

Scoreðd; aÞ ¼ðImportance of the articleÞ � ðDecay factorÞ
¼ð1þ log2ðImpact FactorðaÞ þ 1ÞÞ
� ð1� l � ðthis year� Publication YearðaÞÞÞ;
Wherel ¼ 1=ðthis year� 1990Þ

For example, if an article is published this year in a journal
without a known impact factor, the score for the article is 1.0,
and will decrease every year after publication. We used the
decay factor to put priority on more recent findings. All other
things being equal, recent articles will have slightly higher
scores. The significance of a gene g for a given disorder d was
defined by the sum of scores of articles reporting an association
of gene g and disorder d.

Score ðd; gÞ ¼
X

a
½Score ðd; gÞ

� Association ðd; a; gÞ � AdjustStudyType ðaÞ�

Where Association(d, a, g) is (1) 0, if g is not one of the main
findings of this article; (2) 1.0, if gene g is reported in the title/
results/conclusion; or (3) −1.0 if g is one of the main findings,
but the statement is negative. AdjustStudyType(a) is defined as
(1) 0, if the article is a review or hypothesis; (2) 0.5, if the
article is a case study or examines blood/serum protein levels.
The collective gene score can have a negative value when there
is a preponderance of evidence against the association according
to our scoring algorithm. The overall procedure of our search
tool is summarized in figure 2.

RESULTS
Reference coverage comparison with existing databases
We tested our implementation with 10 complex disorders and
genetic syndromes selected from the GWAS Catalog (attention

deficit with hyperactivity disorder, ankylosing spondylitis, ASD,
bipolar disorder, multiple sclerosis, and schizophrenia) and gen-
etics home reference (Angelman syndrome, Down syndrome,
Huntington disorder, and Lynch syndrome). Table 1 shows the
number of gene–disorder association references we found and
the number of such references from the union of HuGE
Navigator, OMIM, and GAD. For each target disorder, our tool
covered more references than the union of results from these
sites and we confirmed that all of these articles are specific to
the target disorder by manual inspection. We examined all the
articles our tool did not retrieve, and found that a majority of
them was not related to the target disorder. For example, the
target disorder name may be stated in the abstract, but the main
topic is for a different disorder. Other causes for exclusion
included: the PubMed ID was not available for the article, the
article was a commentary article, or the article was published
before 1990. We also show high-profile reference samples that
were not included in the compared repositories in table 1 and
supplementary table 1 (available online only).

Tested, positive result, or negative result genes
As shown in the Methods section, we separately identified
tested (or simply mentioned) genes, gene with positive findings,
and genes with negative findings. By analyzing negating expres-
sions, gene symbols, and disorder names that appear within the
same sentence of the title, result, or conclusion sections, we
found that a significant number of articles report negative asso-
ciations or null findings, in which targeted genes showed no dif-
ference in case–control experiments, or genetic variants were
not found in patient groups. Currently GAD is the only external
resource that provides such references for multiple disorders, so
we compared our result with those of GAD. As shown in
table 2, our result covers more references than GAD for all
target disorders. We examined articles shown only in GAD and
found that some of the tested genes without positive association
findings were reported as negative associations, while we only
count genes combined with explicit negating statements in
either title or abstract. We also show reference samples that are
not included in GAD in table 2 and supplementary table 2
(available online only).

Figure 2 The overall workflow of our search tool. Using an expanded query per given disorder, we retrieve target-disorder-specific, research article
information from PubMed. Then we examine whether the given article is genetics-related, or has gene-related terms in the title or abstract, by
applying extracted keywords and rule-based text-mining approaches. Finally, we score each document based on the impact factor of the published
journal, and score genes using collective scores of articles associated with the target gene.
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An example of a single disorder result: ASD
Identifying association study articles and categories
Next, we report a detailed result of single disorder case, ASD. As
of October 2012, we identified 23 661 ASD-related articles in
PubMed by querying disorder name and aliases plus MeSH
terms without applying any filter. Our expanded query with
filters, shown in figure 1, returned about half of them (12 984) as
ASD-specific original research or review articles. Second, we
identified 1581 genetics-related publications among them by
scanning them for targeted MeSH terms or keywords. Third, we
categorized these articles in order to weight the scores by their
publication or study types. We found 232 reviews (will not be
included in scoring) and 135 case reports (50% of the original
score will be applied) by publication types. We also found 37
animal models, 272 common variant-focused articles including
GWAS, 146 rare variant-focused publications including copy-
number variation (CNV) and exome sequencing studies, 52 gene
expression-related articles, and 23 blood/serum protein level arti-
cles (50% of the original score will be applied). In table 3 and
supplementary table 3 (available online only), we summarize our
categorization result with references, in order to demonstrate
that our tool can effectively retrieve high-impact research articles
related to a target disorder in different study types.

Assessment of candidate genes and references
We identified 597 gene symbols; 437 of them have their collect-
ive score greater than 1.0. Although the fragile X (FMR1) and
methyl CpG binding (MECP2) genes have the largest number of

associated articles, our result shows that CNTNAP2 (contactin-
associated protein-like 2) is the highest score gene with more
recent, high-profile publications. Table 4 and supplementary
table 4 (available online only) show our top 10 candidate genes
and supporting reference examples. To examine whether we
found proper articles without missing a significant portion, we
selected two external resources to compare our result with.
First, HuGE Navigator maintains genetics-related publications
using an algorithmic search, and we obtained 256 articles with a
disease term of ‘autistic disorder’. Second, SFARI gene is a
manually curated, ASD-specific database, and we obtained 278
articles that are associated with category 1 (confident) to 5
(minimal evidence) genes, according to their classification
method. Compared with the set of genes from HuGE
Navigator, our reference set missed one article primarily
describing schizophrenia73 and not ASD. Similar cases were
found for SFARI set; our result missed 48 articles; however, the
main topic of such articles is not ASD specific but on comorbid
disorders including epilepsy,84 85 intellectual disability,86 87 and
attention-deficit hyperactivity disorder.88 89

Next, we compared our ASD candidate gene sets with those
from external databases. Our set of 597 genes included (1) all
candidate genes of GeneCards (31 genes) and PharmGkb (four
genes); (2) 121/133 genes of category 1 to 4 in SFARI gene; (3)
21/22 syndromic genes in SFARI; and (4) 231/426 genes in
HuGE Navigator. For all genes we missed in the SFARI set,
gene names or symbols were not actually listed in the title or
abstract. While we missed about a half of candidate genes in the

Table 1 A comparison summary of gene–disorder association references per target disorder

Target disorder #Ref. gene-disorder association #Ref. from other DBs #Ref. missed in our result Example ref. in our result only*

ADHD 847 463 3 45

Angelman syndrome 319 11 6 46

Ankylosing spondylitis 680 210 1 47

ASD 1158 279 3 48

Bipolar disorder 1480 935 182 49

Down syndrome 1402 119 21 50

Huntington disorder 1045 108 9 51

Lynch syndrome 1264 161 1 52

Multiple sclerosis 2774 878 95 53

Schizophrenia 4419 2691 384 54

*Single reference per disorder is shown. Full references are available in supplementary table 1 (available online only).
ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder.

Table 2 References with negative results from our tool and GAD

Target disorder #Ref. with negative result #Ref. with negative result in GAD #Ref. missed in our result Example ref. in our result only*

ADHD 135 15 1 55

Angelman syndrome 21 0 0 56

Ankylosing spondylitis 114 13 0 57

ASD 168 31 3 58

Bipolar disorder 341 75 6 59

Down syndrome 185 3 0 60

Huntington disorder 82 3 2 61

Lynch syndrome 203 0 0 62

Multiple sclerosis 496 73 6 63

Schizophrenia 1029 104 5 64

*Single reference per disorder is shown. Full references are available in supplementary table 2 (available online only).
ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; GAD, genetic association database.
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HuGE set, this set included tested genes, not genes with signifi-
cant findings, as associated genes (eg, 129 genes were associated
with a single article,90 according to HuGE Navigator).

DISCUSSION
The main motivation for this study was that although there are
many excellent sites91–93 providing detailed data on the human
genome, it is cumbersome or not possible to retrieve the
disease-associated genes together with supporting references
from these sites. There are a few resources that provide
disorder-targeted genes with references,14 94 but we found some
issues related to references in such sites that cannot be addressed
easily by the user as exemplified in the results section.

The innovation of our approach over existing tools is in the
increased precision and that it is directly applicable within the
context of statistical genetics and human genetic disorder
research. Our method includes three formal steps—(1) extended
query, (2) keyword filter, and (3) evaluation of abstract structure
—to retrieve target disorder-specific, genetics-related articles.
When compared to the mainstream data repositories such as
HuGE Navigator, GAD, and OMIM, our three steps appear
consistently to avoid the inclusion of non-genetics/non-research
references and avoid mis-tagging genes/disorders.

Despite the encouraging results shown here, there are a
number of limitations of our approach. First, as it focuses on
extracting human genes and disorders, it will not accurately
extract genes from model animal studies, for example zebrafish
as an animal model for human fetal brain development.95 96

Second, because our tool uses a precision-based algorithm to
extract genes, non-authoritative gene names/symbols that are
not included in NCBI genes or HGNC may not be properly
matched to the correct gene symbols. Finally, our method
searches titles and abstracts and therefore will not recover a
gene association that is only mentioned in the main text. This
could impact the sensitivity with GWAS that report many genes
or loci in one article as a list in the main text.

We plan to expand our approach to the full text of the articles
as future work. As expected from the BioCreative II task,31 36 our
rule-based algorithm successfully worked within the focused set
of human genome research articles, and within concise data of
titles and abstracts. However, statistical or hybrid entity recogni-
tion approaches may perform better in full text analysis, as shown
in the BioCreative III task.30 We will examine this hypothesis
with conditional random field-based models.41 42 97 98

CONCLUSION
In this work, we introduced a novel PubMed extraction tool
that can find and summarize research articles presenting evi-
dence of gene–disorder associations. Comparison with existing
resources demonstrated that our tool can cover more references
in general and extract candidate genes with an accuracy compar-
able to manually curated sites. This application provides a fun-
damental basis for conducting cross-disorder analysis among
related disorders, including solid evidence in the literature for
every gene–disorder association. The overall candidate gene sets
and supporting reference information are available at http://
genehawk.hms.harvard.edu, and we plan to update result sets
periodically as new publications come out.
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