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Abstract

Previous methods to estimate the inherent accuracy of deformable image registration (DIR) have

typically been performed relative to a known ground truth, such as tracking of anatomic landmarks

or known deformations in a physical or virtual phantom. In this study, we propose a new approach

to estimate the spatial geometric uncertainty of DIR using statistical sampling techniques that can

be applied to the resulting deformation vector fields (DVFs) for a given registration. The proposed

DIR performance metric, the distance discordance metric (DDM), is based on the variability in the

distance between corresponding voxels from different images, which are co-registered to the same

voxel at location (X) in an arbitrarily chosen “reference” image. The DDM value, at location (X)

in the reference image, represents the mean dispersion between voxels, when these images are

registered to other images in the image set. The method requires at least four registered images to

estimate the uncertainty of the DIRs, both for inter-and intra-patient DIR. To validate the proposed

method, we generated an image set by deforming a software phantom with known DVFs. The

registration error was computed at each voxel in the “reference” phantom and then compared to

DDM, inverse consistency error (ICE), and transitivity error (TE) over the entire phantom. The

DDM showed a higher Pearson correlation (Rp) with the actual error (Rp ranged from 0.6 to 0.9)

in comparison with ICE and TE (Rp ranged from 0.2 to 0.8). In the resulting spatial DDM map,

regions with distinct intensity gradients had a lower discordance and therefore, less variability

relative to regions with uniform intensity. Subsequently, we applied DDM for intra-patient DIR in

an image set of 10 longitudinal computed tomography (CT) scans of one prostate cancer patient

and for inter-patient DIR in an image set of 10 planning CT scans of different head and neck

cancer patients. For both intra- and inter-patient DIR, the spatial DDM map showed large
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variation over the volume of interest (the pelvis for the prostate patient and the head for the head

and neck patients). The highest discordance was observed in the soft tissues, such as the brain,

bladder, and rectum, due to higher variability in the registration. The smallest DDM values were

observed in the bony structures in the pelvis and the base of the skull. The proposed metric, DDM,

provides a quantitative tool to evaluate the performance of DIR when a set of images is available.

Therefore, DDM can be used to estimate and visualize the uncertainty of intra- and/or inter-patient

DIR based on the variability of the registration rather than the absolute registration error.
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1. Introduction

Deformable image registration (DIR) is a key tool in radiation oncology for adaptive

radiotherapy, including contour propagation, atlas-based segmentation, and dose

accumulation (Wu et al., 2009; Jaffray et al., 2010; Thor et al., 2011; Schwartz et al., 2012).

DIR is an ill-posed problem since multiple solutions to the matching process may be found

with degenerate objective function values. The resulting deformation vector fields (DVFs)

are therefore associated with a level of uncertainty that depends upon the image content

(Bernd and Jan, 2008; Sotiras et al., 2013). These uncertainties can often be attributed to a

lack of features in relatively homogeneous image regions, misaligned edges in

heterogeneous regions, and missing/added tissue after surgery (Hub et al., 2009;

Nithiananthan, 2012) and will likely introduce significant errors in dose mapping across a

series of images, especially in regions of high-dose gradients (Jaffray et al., 2010; Saleh-

Sayah et al., 2011; Salguero et al., 2011; Bender et al., 2012; Murphy et al., 2012; Thor et

al., 2013a).

Several similarity metrics, such as the Dice index, Hausdorff distance, and mean surface

distance, have been proposed to evaluate the performance of intra- and inter-patient DIR

(Dice, 1945; Castadot et al., 2008; Klein et al., 2010; Teguh et al., 2011; Varadhan et al.,

2013). However, these metrics often rely on the availability of manually delineated

structures and the associated inter- and intra-observer variability (Allozi et al., 2010), rather

than being observer-independent measures, which for instance relies on fiducial markers or

anatomical landmarks.

To estimate the uncertainties related to DIR in the absence of a ground truth, stochastic

approaches using local variations in the image registration or repeated registrations from

different starting points have been applied (Hub et al., 2009; Murphy et al., 2012; Hub and

Karger, 2013). Other previously investigated approaches using the inverse consistency error

(ICE) and transitivity error (TE) metrics have been shown to correlate only weakly with the

registration error (Bender and Tomé, 2009; Varadhan et al., 2013). Several statistical

methods using iterative or bootstrap techniques have been proposed to estimate the accuracy

of the registration for a pair of images (Kybic, 2010; Salguero et al., 2011). These methods

however rely on re-sampling from the same image and the potential underlying

inconsistency of the DIR algorithm. Altogether, these studies have found that the local
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variability in the registration is weakly connected to the registration error and is in addition

influenced by the DIR algorithm applied and the amount of information available in the

images.

In this study, we propose a new approach, which utilizes all DVFs available from multiple

DIRs between a series of images in an image set in order to spatially quantify the DIR-

related uncertainty. This metric is based on a sampling technique, which assesses the mean

distance between voxels from arbitrary images that are registered across a series of images

in the image set. The metric is denoted as the distance discordance metric (DDM) and is

used as an estimate of the uncertainty of the underlying DIR. We address the

implementation of DDM, computational challenges, and some of the metric’s limitations.

2. Materials and methods

2.1 Deformable image registration: Terminology and algorithm

In order to register image [j] to image [i] as shown in figure 1, the task of DIR is to spatially

deform image [i], also known as the moving image, in order to match image [j], the fixed

image (Klein et al., 2010). Image [j] is referred to as being registered to image [i]. The

resulting DVF, denoted as , is the forward transformation which maps voxels that

are located in image [i] to their corresponding counterparts in image [j]. In this notation the

first subscript indicates the index of the image, which will be used as the reference; the

second subscript refers to the index of any arbitrary registered image and X represents the

Cartesian coordinate (x, y, z). Therefore the location of the voxel in image [j], which

corresponds to the voxel located at Xi in “reference” image [i], can be traced using the

formulation

In order to track the voxel located at Xj in image [j], when [j] is registered to another

reference image [m], we use the inverse deformation vector field 

Typically, the forward DVFs are defined on a regular grid on the reference image and

usually end up on irregular grid points on the registered image and conversely for the

inverse DVFs. Therefore, tracing voxels from the source to target requires interpolation.

For the purpose of this study we used an intensity-based B-Spline DIR algorithm

incorporated in Plastimatch (Sharp et al., 2009). Forward registration is performed using B-

Spline interpolation. Inverse DVFs are generated by computing a forward transform from

the reference coordinate system to the target coordinate system, and then using relaxation to

solve the inverse transform that minimizes the mean squared vector difference to reach an
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approximate inverse DVF. The B-Spline registration algorithm does not guarantee invertible

DVFs; however, non-invertible DVFs were not observed in our analysis. Plastimatch also

implements a multi-stage framework in order to perform automatic image registration

(Shackleford et al., 2012). The first stage consisted of rigid registration (rotation and

translation) for image alignment followed by four stages of DIR. At each DIR stage, the grid

spacing (mm) for the B-spline control points and the down-sampling resolution (voxels) was

varied accordingly. The applied optimization algorithm used at each stage is the so-called

‘L-BFGS-B algorithm’, which is used to solve large-scale optimization problems (Zhu et al.,

1997). The objective of the cost function of the DIR was to minimize the mean squared error

(MSE) of the voxel intensities between the fixed and moving image. The B-Spline algorithm

uses a regularization penalty term (λ) on the bending energy of the DVF to avoid unrealistic

deformations.

2.2 The distance discordance metric (DDM)

Consider the situation in figure 1 where we have an image set which consists of five images.

Image [j], [k], and [l] are registered to reference image [i]. Consequently, for each voxel

located at Xi in image [i], there exist voxels at Xj, Xk, Xl in image [j], [k], and [l] which are

co-registered to the same voxel. Theoretically, if the registration is error-free, these co-

registered voxels should map to the same location in other images. However, this is rarely

the case, and when images [j], [k], and [l] are registered to another reference image [m] in

the image set, these voxels would likely be registered at different (yet likely nearby)

locations. The level of dispersion among these voxels, which we denote as distance

discordance, is a measure of the uncertainty of the registration. DDM is therefore, the mean

distance between these points.

The detailed process of computing DDM can be divided into the following steps:

Step 1) First we perform group-wise registration. In this stage all images are registered to

each other, which results in a set of forward DVFs and corresponding inverses. This step

requires N*(N-1) registrations. Step 2) We now choose an image [i], which will be used as

the “fixed” reference to evaluate our metric. For each voxel located at Xi in image [i], we

find the location of the corresponding voxels Xj, Xk, Xl in the registered images [j], [k], and

[l] using the forward DVFs indicated by a solid arrow in figure 1. Step 3) By means of the

inverse DVFs, we trace the voxels located at Xj, Xk, Xl in [j], [k], and [l] to their locations

 in another reference image [m]. The superscript is used to indicate the index

of the new reference image. Step 4) Finally we calculate the distance discordance (DD),

which represents the difference between these points on reference image [m]:

The total number of DD combinations between these points would be (N-2)*(N-3)/2. All

images are permutated while the reference image [i] remains fixed. The total number of

permutations for a fixed reference [i] and arbitrary reference [m] in a set of N images would
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be (N-1). Therefore, the total number of DD values, which correspond to location Xi in

image [i] will be:

Ultimately the mean of the distance discordance, DDM(Xi) is evaluated:

2.3 Error analysis

We calculated the mean local registration error based on the difference between the known

DVFs  and the DVFs obtained from the B-Spline registration  at each voxel

location Xi in the non-deformed reference image for all registrations.

In order to compare DDM to other metrics, we applied two additional metrics (inverse

consistency (ICE) and transitivity (TE) error), which have previously been widely used to

evaluate DIR performance (Christensen and Johnson, 2003; Bender and Tomé, 2009;

Varadhan et al., 2013). Similarly, we calculated the mean ICE and TE metrics at each

location Xi in the reference phantom in order to perform a direct comparison with DDM and

registration error.

2.4. Evaluation of DDM

2.4.1 Phantom studies—To demonstrate and validate the proposed method, we

generated a set of simulated phantom images with known ground truth DVFs  as

shown in figure 2. The non-deformed “reference” image in figure 2A comprises a high-

intensity cube in the center, surrounded by a spatial checkerboard pattern, which is in turn

surrounded by a narrow low intensity layer at the image boundaries. This black layer is

similar to the air surrounding the body image on a typical CT scan. The phantom consists of

128×128×128 voxels (1 mm each) with a checkerboard pattern of 15×15×15 voxels while

the central cube is 20×20×20 voxels in dimensions. In order to simulate volume changes

such as growth and shrinkage, known DVFs corresponding to different isotropic expansion

and contraction of the central cube were applied to the non-deformed image as shown in

figures 2B and 2C. These DVFs are smooth, and their magnitude decreases near the

boundaries of the image. In total six deformed instances of the phantom were generated

which corresponds to three expansions and three contractions of 5, 10, and 15% each.

2.4.2 Intra-patient DIR—In order to evaluate DDM for intra-patient DIR, we used an

image set of 10 longitudinal CT scans of a patient previously treated with intensity-

modulated radiotherapy for prostate cancer at Haukeland University Hospital, Bergen,
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Norway (Thor et al., 2013b). The initial planning CT, with a resolution of 1 × 1 × 3 mm3,

was acquired in supine position with contrast in the bladder. The patient was CT-scanned

twice weekly over the RT course in the same position but without any contrast in the

bladder. To evaluate DDM for intra-patient DIR, we used the CT scan during the first week

of treatment as our reference (scan-1). The DIR between different CT scans was performed

over the entire volume. However, due to computational time and computer memory

limitations, we computed DDM only over the key volume of interest (VOI), which

encompassed the rectum, the prostate, and the bladder.

2.4.3 Inter-patient DIR—For inter-patient DIR, we used the planning CT scan for each of

10 head and neck cancer patients, treated at Memorial Sloan-Kettering Cancer Center, NY

(Setton et al., 2012). These patients were scanned in supine position with either a 3- or 5-

point mask for immobilization. Patients were scanned, with moderate neck extension, from

the top of the skull to below the mediastinum with a resolution of 1×1×3 mm3. Similarly as

for the intra-patient DIR, the entire CT scan volume was registered and DDM was computed

only for the head region (DD-VOI), which encompassed the region from top of skull to the

mandible including the relevant organs at risk such as the brainstem and parotid glands.

3. Results

3.1 Phantom studies

The error map in figure 3 (upper left) shows large variation in the registration errors across

the phantom. Larger errors are observed near the center in the homogeneous region inside

the center of the cube and the checkerboard pattern. Meanwhile, regions of high contrast

near the edges and the corners of the cubes have the smallest errors. Figure 3 also shows that

among all three investigated metrics, the DDM map agreed the most to the actual

registration error map.

Since the registration error, DDM, ICE, and TE are known at each voxel in the entire

phantom, we performed a voxel-by-voxel Pearson correlation (Rp) between these three

metrics and the registration error for different thresholds (Error < Threshold). Figure 4A

clearly shows that DDM is highly correlated with the registration error (Rp ranged from 0.6

to 0.9). Meanwhile, there is a poor correlation between the registration error and consistency

metrics (ICE and TE) especially for errors < 1 mm (Rp ranged from 0.2 to 0.7), which is on

the scale of one voxel dimension. This is also reflected in the distributions between the

registration error and DDM as shown in figure 4B. In addition a linear relationship was

identified between DDM and the registration error as indicated by the linear fit (red line:

linearity coefficient=0.6; R2=0.76) in the inset in figure 4A. The results in figures 3 and 4

correspond to the DIRs performed without regularization. Applying a regularization

parameter (λ=0.01) to the DIRs resulted in an overall reduction in the range of all metrics.

Nonetheless, the correlation with the registration error remained significantly higher with

DDM (Rp > 0.7), while reduced with the ICE and the TE (Rp < 0.5).
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3.2 Intra-patient DIR

A representative intra-patient DIR, more specifically when registering scan-9 to scan-1, is

shown in figures 5A and 5B. DDM was computed on reference scan-1 over the selected

VOI, which encompassed the bladder, the rectum and the prostate as shown in figures 5C

and 5D. The performance of the DIR was found to be accurate in the muscles and bones

whereas less accurate within the rectum and the bladder. Regions with the highest

discordance were located on the boundary near the skin area and regions of soft tissues such

as the rectum and the bladder. Bones and, less pronounced, muscles, showed the smallest

DDM values.

The cumulative distance discordance histogram (DDH) – similarly to the concept of a dose/

volume histogram – is shown in figure 6. DDM was computed on each voxel on reference

CT scan-1 using the first 5, 7, and all 10 scans (including scan-1). The histogram, for the full

image set (solid line), shows that 20% of the DDM-VOI had a DDM > 6 mm (max = 25

mm). It also shows that 80% of voxels in the rectum had a DDM value > 4 mm (max = 8

mm). Meanwhile, the prostate had a moderately high DDM value < 4 mm and the bladder

had a max DDM of 12 mm. The DDH of the rectum also reveals more variation over the

course of treatment (using 5, 7 and 10 scans) and this is also reflected on the registration of

the prostate while the registration in the bladder remained relatively consistent.

3.3 Inter-patient DIR

The DDM map shown in figure 7, computed on an arbitrarily chosen reference patient,

shows the lowest DDM values (< 3 mm) in the bony structures along the cervical vertebrae

and base of the skull. However, regions of soft tissue in the brain as well as in the mandible

displayed higher discordance (> 6 mm).

For demonstration purposes, we replaced one of the patients, with full CT scan, by another

one with truncated CT scan (Top of the skull), to study the influence on DDM. The

cumulative DDH in figure 8 for the VOI shows a long tail which corresponds to the high

DDM values due to large disagreement in the registration near the top of the skull (also

highlighted in the inset figure). Meanwhile, this did not influence the results for other organs

(The Mandible and the right parotid) and their DDHs did not vary considerably as indicated

in figure 8.

4. Discussion

The proposed distance discordance metric (DDM) provides an estimate of the uncertainty of

DIR based on registration variability. Although this metric requires four or more images, it

can be used to estimate the performance of DIRs, both for inter- and intra-patient DIR

purposes, and does not require manual delineation of landmarks or structures.

The results of the DIRs in the software phantom revealed a large variation in the registration

error. Large errors were observed in the regions of large deformations near the center and in

regions of uniform intensities. Meanwhile, smaller errors were observed in regions of small

deformations and high contrast, such as edges and corners. Evaluation of DDM in the

software phantom showed a much similar pattern to the registration errors for this particular
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phantom and DIR. The results also showed a higher correlation between the registration

error and DDM in comparison to ICE and TE, which have been widely used in the literature

to evaluate DIR uncertainties. There is also a linear relationship between the registration

error and DDM, although DDM tends to underestimate the actual error (linearity coefficient

= 0.6).

For intra-patient DIR, the DDM metric quantified the DIR variability in different regions of

the pelvis. Regions of bony anatomy and surrounding muscles, where registration is

expected to perform well due to high-intensity gradients, yielded the lowest DDM values (<

2 mm). On the other hand, regions with more variable intensity information, such as the

rectum and the bladder, had higher DDM values. These patterns are similar to previous

findings of DIR in the pelvic region (Brock and Consortium, 2010; Jonsson et al., 2011).

Including more images did not influence the overall pattern but tended to reduce DDM

value. The results of DDM, which included 5, 7, or 10 scans at different time points, also

revealed the influence of anatomic variation due to changes in volume of individual organs,

such as in the case with the bladder and rectum. The variations were more pronounced in the

rectum, likely due to the more irregular motion patterns (presence/absence of air), as

compared to the bladder. These variations become less evident over the entire DD-VOI,

where the contrast does not vary widely and the entire volume is dominated by bone and

muscles.

Evaluating the performance for inter-patient DIR is more challenging. On average, more

pronounced uncertainties are expected for inter- vs. intra-patient DIR, where the anatomical

variations are larger due to differences in the anatomy across patients (Klein et al., 2010;

Dréan et al., 2012; Hardcastle et al., 2012; Daisne and Blumhofer, 2013). This was also

illustrated in our study by higher DDM values especially in the mandible and brain. DDM

had the lowest values in the bony structures near the base of the skull, whereas the

performance of the DIR was challenged in the mandible region due to the presence of dental

artifacts. The choice of different reference images to generate DDM yields similar results for

comparable images in an image set (results not shown). However, the metric was able to

detect regions of poor registrations, as was shown in the case of the truncated CT scan.

In addition to spatial maps, DDM can also be displayed as a cumulative histogram. The

DDH inevitably varies depending on the choice of initial reference image. The goal is to

choose a reference image in an image set that produces the lowest DDM values. Based on

histogram characteristics (e.g., mean, variance, skewness), it should be feasible to exclude

certain images or set a confidence level that is based on the accuracy of registration in

regions of high discordance. We demonstrated this idea for inter-patient DIR by including a

truncated CT scan for a head and neck patient in the registration. DDM can also be applied

to DIRs across different image modalities (e.g. magnetic resonance imaging, ultrasound),

since it inherently only relies on the resulting DVFs. For practical purposes, we used CT

images to demonstrate the application of the proposed metric due to availability of the CT

data and the present maturity of the DIR algorithms.

Furthermore, DDM could potentially also be utilized to achieve a more accurate

accumulated dose on a reference planning CT, with some level of uncertainty, which is an
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important step in adaptive radiotherapy (Jaffray et al., 2010). This also becomes equally

important for deforming patient data on a template in order to perform voxel-wise analysis

of normal tissue complication probability or tumor control probability (Witte et al., 2010;

Acosta et al., 2013; Thor et al., 2013b; Heemsbergen et al., 2010). In order to accumulate

dose (D) at a location X in a reference image (ref) from another source image (src), the

corresponding vector field, which points to the location in the source image ,

is perturbed by a certain value that corresponds to the DD value at X. Using a bootstrap

technique, we can resample from the DD(X) distribution to generate a distribution of doses

and then take the mean of this distribution as shown in the equation below.

In principle, for a given reference image, low mean values for DDM indicate accurate

registration with other images; in contrast, high mean values would indicate relatively poor

registration. However, this metric is susceptible to systematic failure in the registration due

to lack of intensity information in the underlying images. Under those circumstances, one

should be cautious and visually inspect the image difference of the resulting DIR, as in

common practice. Reliance on multiple registrations among different image pairs in the

image set and using different references might help to avoid the problem. We also note that

numerical errors from the computation of the inverse DVFs and from interpolation between

irregular grid points might contribute to the overall uncertainties in DDM evaluation.

However, we expect the magnitude of these errors to be small (less than a voxel size).

One of the limitations of our method is that it requires at least four images in order to

compute DDM, in contrast to two images required for ICE and three images for TE. The

availability of more images might reveal the daily variations in the registration for different

organs due to volumetric changes and increase the level of confidence of the DDM.

However, since daily image acquisition is not yet the clinical standard at all institutions,

DDM could be pre-computed on a set of patients with repeat scans. These “pseudo” DDM

maps could then be deformed onto new patient scans and serve as a priori information of the

uncertainties related to DIR. We also acknowledge that the generation of DDM requires the

deformation of each image onto every other image in the image set, which is

computationally time consuming. This process can likely be accelerated by utilizing parallel

processing on general-purpose graphical processing units, which would allow DDM to be

computed over the entire volume in a short amount of time, making it potentially useful for

real-time clinical applications.

5. Conclusions

We have proposed a new metric, DDM, which estimates the magnitude of spatial

uncertainty of a DIR on a point-by-point basis. The proposed metric showed higher Pearson

correlation with the actual registration error, as compared to the corresponding correlation

with other commonly used metrics (i.e., ICE and TE). In contrast to previously proposed

metrics to estimate registration uncertainties, this metric does not rely on a ‘ground truth.’ It

Saleh et al. Page 9

Phys Med Biol. Author manuscript; available in PMC 2015 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



quantitatively estimates the DIR- related uncertainty based on reproducibility, rather than

absolute registration error, which likely differs from the uncertainty of the registration

algorithm for a given dataset. A limitation of DDM is that it requires multiple samples of the

images to be registered. We have shown that DDM provides an intuitive and quantitative

tool for evaluating uncertainty related to intra- and inter-patient DIR. The DDM could

possibly be extended to set an uncertainty level for dose accumulation on a representative

CT scan (e.g., the planning CT).
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Figure 1.
Schematic diagram to illustrate the DDM concept. Voxels at locations Xj, Xk, Xl in the images [j], [k], and [l] that are co-

registered at the same voxel Xi in image [i] (dashed lines) are typically registered at different locations in another image [m]

(dotted lines). The mean distances between these voxels correspond to DDM.
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Figure 2.
(A) The non-deformed “reference” software phantom consisting of a checkerboard pattern with a high-intensity cube object at

the center. (B) Deformation corresponding to 15% contraction of the central cube. (C) Deformation corresponding to 15%

expansion of the central cube. The DVFs represented by green arrows are scaled for illustration purposes.
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Figure 3.
Color wash representation of, from upper left to lower right, the absolute registration error, DDM, ICE and TE on an axial slice.

The DDM map clearly shows a more similar pattern to the actual error map. The X and Y represent the pixel location. The color

bar units are in mm.
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Figure 4.
(A) The correlation between DDM, ICE, TE, and absolute registration error. The inset is a scatter plot and linear fit between

DDM and registration error. (B) The voxel distribution for the registration error, DDM, ICE, and TE over the entire voxel space

of the reference phantom.
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Figure 5.
Panels A and B show an axial and sagittal view, respectively, of the intra-patient DIR of scan-9 on the reference image (scan-1).

Green or red-violet indicates inconsistency in the registration between the images. Panels C and D show a color wash

representation of DDM (mm) superimposed over an axial slice and a sagittal slice, respectively, on scan-1. The color bar is

scaled to emphasize DDM values in the prostate region. Contours are shown for the rectum (blue), prostate (red), bladder

(yellow), and DDM-VOI (green).
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Figure 6.
The cumulative DDH calculated for different organs in the pelvic region for the intra-patient DIRs. DDM was computed using

the first 5 (dashed), 7 (dotted), and 10 (solid) scans in the image set.
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Figure 7.
A color wash representation of DDM for inter-patient DIRs superimposed over an axial slice (A) and a sagittal slice (B). The

color bar units are in mm.
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Figure 8.
The cumulative histogram of DDM for inter-patient DIRs in the head and neck region for two different scenarios (full (solid

line) vs. truncated (dashed line) CT scan). The inset highlights the high DDM values near the top of the skull due to poor

registration.
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