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Abstract

Molecular genetic testing informs diagnosis, prognosis, and risk assessment for patients and their

family members. Recent advances in low-cost, high-throughput DNA sequencing and computing

technologies have enabled the rapid expansion of genetic test content, resulting in dramatically

increased numbers of DNA variants identified per test. To address this challenge, our laboratory

has developed a systematic approach to thorough and efficient assessments of variants for

pathogenicity determination. We first search for existing data in publications and databases

including internal, collaborative and public resources. We then perform full evidence-based

assessments through statistical analyses of observations in the general population and disease

cohorts, evaluation of experimental data from in vivo or in vitro studies, and computational

predictions of potential impacts of each variant. Finally, we weigh all evidence to reach an overall

conclusion on the potential for each variant to be disease-causing. In this report, we highlight the

principles of variant assessment, address the caveats and pitfalls, and provide examples to

illustrate the process. By sharing our experience and providing a framework for variant

assessment, including access to a freely available customizable tool, we hope to help move

towards standardized and consistent approaches to variant assessment.
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Introduction

Molecular genetic testing informs medical decision-making in the diagnosis of symptomatic

individuals, in the prediction of disease risk, in reproductive genetic counseling, and in

determining pharmacogenetic profiles for treatment guidance. Until recently, the majority of

clinically available molecular genetic tests have either analyzed known DNA variants, such

as cystic fibrosis carrier screening panels (1), or sequenced the coding regions and splicing

boundaries of a limited set of well-known disease-associated genes. Recent technological

advances in low-cost, high-throughput sequencing and computing have enabled testing for

targeted panels of >100 disease-area genes, as well as exomes and genomes. While these

next-generation sequencing (NGS) technologies have increased diagnostic sensitivity (2, 3),

the number of genetic variants with uncertain clinical significance (VUS) per test has also

increased. For example, expanding testing for dilated cardiomyopathy from 5 to 46 genes in

our laboratory resulted in a 3-fold increase in clinical sensitivity and an even more dramatic

increase in inconclusive cases, many with multiple VUSs. In addition, exome and genome

sequencing tests add a new layer of complexity, as the genes interrogated may not have been

carefully assessed for their role in disease until variants are identified.

Although molecular genetic testing has a unique place in the diagnosis, management, and

prevention of genetic disorders, the field is compromised by the absence of a standard,

comprehensive, and efficient variant assessment protocol approved and shared by the

community. However, guidelines for variant interpretation are available and being updated

as variant-level knowledge expands, including those from the American College of Medical

Genetics and Genomics (ACMG) (4–7). To supplement these guidelines and capture the

evolving state of the field, we developed a variant assessment tool (VAT) that systematically

evaluates multiple parameters for each variant and facilitates the capture of new knowledge

in the literature and databases (Supplementary Information).

The clinical significance of a variant in relation to a disease or phenotype can be determined

by answering three core questions. 1) Does the variant alter the function of the gene (i.e.

loss-of-function (LOF) or gain-of-function (GOF))? 2) Can the functional change result in

disease or another phenotype? 3) Is the associated disease or phenotype relevant to the

specific clinical condition present in the tested individual? In some cases variant assessment

in a clinical laboratory may only be focused on the first two questions; however, for

maximal benefit to the patient, a careful assessment of the third dimension can be highly

informative, particularly for VUSs. Here, we share our decade-long experience with variant

assessment, highlighting key points and challenges of clinical interpretation. We have

evaluated 245 genes associated with 53 diseases while testing greater than 22,000 cases. We

have iteratively developed a framework through clinical assessments of over 17,000

variants, including >8,000 that have been validated and reported in patients. Using our semi-
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automated tool, it takes on average 40 minutes to perform a thorough evidence-based

clinical variant assessment for variants being returned after disease-targeted testing. When

assessments with literature are excluded, the average time decreases to 22 minutes. An

overview of the process is presented in Figure 1 and useful online resources are presented in

Table 1. In addition, the approaches described below refer to the provided VAT available for

download through the Supplemental Information.

Linking genes to disease

As a first step in variant assessment, it is necessary to determine which disease phenotypes

are associated with a gene and which types of variation may result in clinically relevant

consequences. This includes the types of variants that are known to cause disease in the gene

(truncating/LOF, non-truncating, etc.), the inheritance patterns observed for variants in the

gene, the protein domains that are implicated in disease, and any genotype-phenotype

correlations described.

To characterize disease phenotypes, it is important to review the literature for common

clinical features as well as phenotypic variation among affected individuals. Large cohort

studies may provide expressivity, age-of-onset, penetrance, and prevalence information,

while detailed reports of families with multiple affected individuals help determine the mode

of inheritance and strength of association. Comparison of the variant spectrum in affected

individuals against that in the general population may be useful in identifying the types of

mutations that are disease-causing. For instance, heterozygous LOF variants in MYBPC3

have been reported in 14% (311/2302) of patients with hypertrophic cardiomyopathy (HCM)

tested in our laboratory, but in <0.1% (6/6500) of the general population per the NHLBI

Exome Sequencing Project (ESP), supporting that LOF MYBPC3 variants are a common

mechanism in HCM (8). However, external information must be carefully vetted. An

apparent frameshift variant in MYBPC3 NM_000256:c.2854_2858del reported to occur in

7% of the general population in ESP is likely a technical artifact, as we have never observed

it sequencing the region by NGS and/or Sanger in over 2,000 cases.

Different types of variants in the same gene may be associated with distinct phenotypes or

inheritance patterns. For example, missense GOF variants in PTPN11 cause RASopathies,

such as Noonan syndrome, whereas LOF variants lead to an entirely different phenotype, a

cartilage tumor syndrome (metachondromatosis) characterized by enchondromas and

exostoses (9). Certain missense variants in TECTA lead to autosomal dominant hearing loss

(10), whereas LOF variants result in autosomal recessive hearing loss (11). Similarly,

variants in different regions or domains of a gene may cause different phenotypes (10, 12).

Important questions to consider when analyzing gene-disease associations and specific

variants within a gene can be found in Table 2.

Validating variants to ensure accuracy

As test complexity has increased, so has the need to ensure variants identified and included

on a clinical report are technically accurate. This is especially important for sequencing tests

where the variants are not part of a pre-defined list. It is essential to review raw assay results

(e.g. chromatographs of Sanger sequencing traces or NGS reads) to verify the variants and
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their nomenclature. Prior to variant assessment, the laboratory should predefine the genome

build, gene name, and reference transcript that will be used in interpretation and reporting,

along with a method linking genomic coordinates to cDNA and amino acid level

annotations. Laboratories should also be aware of homologous and repetitive regions

particularly from pseudogenes and segmental duplications, which may result in lack of

coverage, alignment difficulties, and incorrect variant calls. These steps will enable

validation of the correct variant call, zygosity and nomenclature according to the Human

Genome Variation Society (HGVS) guidelines (13). Validation information is captured in

the “Variant” tab of the VAT.

Because standards for variant nomenclature have only recently been widely adopted and still

do not address all modifications, variants may have differing names in publications and

databases. The amino acid position may not be numbered according to the start codon to be

consistent with current recommendations. For example, TTR variants were originally

numbered according to the position within the mature protein lacking the 20 amino acid

signal peptide (14). Partial cloning of a gene may have led to inconsistent nomenclature in

early publications (15, 16). Nucleotide gene numbering may have been determined using the

transcription start site instead of the translation start site, which was particularly challenging

given transcriptional start site variability. Furthermore, for many small insertions and

deletions, it is not possible to determine the exact location of the inserted or deleted base(s).

This can lead to multiple potential names for the same variant, highlighting the importance

for following standard HGVS nomenclature rules such as attributing alternations within a

repetitive stretch to the most 3’ possible position. Legacy terms and alternative aliases are

useful to maintain association with the correctly named variant both to facilitate searching

the literature and databases, as well as communicating with ordering physicians and other

laboratories.

Genes may have multiple transcripts, some of which are tissue-specific and associated with

distinct phenotypes. For example, the shorter USH1C transcript (NM_005709) is expressed

in both the retina and inner ear, whereas the longer transcript (NM_153676) is expressed

exclusively in the inner ear (17). Accordingly, variants in exons common to both transcripts

lead to Usher syndrome type 1C, characterized by profound deafness, retinitis pigmentosa,

and vestibular dysfunction, whereas variants in exons unique to NM_153676 lead to non-

syndromic hearing loss (18). Variants should be reported according to a single primary

transcript. The reported reference is typically the major transcript unless a more severe

impact is predicted on an alternative transcript, in which case the variant should be defined

according to the alternative transcript, noting an alias to the primary transcript (Figure 2A).

When multiple variants in the same gene are identified, the phase of the variants (i.e. on the

same chromosome – in cis – or on homologous chromosomes – in trans) may influence the

interpretation, especially for autosomal recessive traits. If variants are within the same NGS

fragment, the phase may be determined without parental samples (Figure 2B).
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Collecting evidence to determine the likelihood of pathogenicity

Once the variant call is validated, literature, variant databases, and population control studies

should be evaluated. This information is used to determine whether and under what context

the variant has been previously observed. The population, literature and internal case data

are captured in the “Control_Freq”, “DB” and “Publ+Internal_data” tabs of the VAT.

Recent large-scale population studies such as the NHLBI Exome Sequencing Project (9), the

1000 Genomes Project (19), the ClinSeq Project (20) and others found in dbSNP (21) have

catalogued large amounts of sequence variation (Table 1). Because these populations may

include presymptomatic individuals with late onset diseases, asymptomatic individuals with

low penetrance diseases or younger than typical age-of-onset, and heterozygous carriers of

recessive traits, variants should not be assumed benign simply because of their presence in

large population studies. Information on affected individuals with the variant can be

obtained from internal and public variant databases (e.g., ClinVar, HGMD (22) or locus-

specific databases), as well as from the literature. Public variant databases are of varying

quality and may be outdated or contain contradictory data. Recent studies have demonstrated

a large number of false-positive variants incorrectly identified as clinically relevant in these

databases (23–27). Therefore, databases available today should be used to identify relevant

primary literature rather than directly reference a variant classification.

For Mendelian disorders, the pathogenicity of a variant can be ruled out if its frequency in

the general population exceeds what can be accounted for by inheritance pattern, age-of-

onset, prevalence, penetrance, and heterogeneity. Large sample sizes without selection bias

towards individuals with disease phenotypes are required to achieve confidence in

estimating the population allele frequency. Moreover, disease prevalence is not always

known, accurate, or applicable across all populations. Because one affected allele is

sufficient to cause an autosomal dominant trait, a pathogenic allele must present at a

frequency lower than the disease prevalence in the general population. HCM is primarily an

autosomal dominant condition occurring in 1 in 500 individuals (1/1000 chromosomes or

0.1% allele frequency) (28). We consider a variant likely benign if the allele frequency is

>0.3% which is a conservative 1.5 times above the highest frequency expected even if

penetrance was only 50% and the disease was due to one pathogenic variant. In contrast,

both paternal and maternal alleles need to be affected to cause an autosomal recessive

disorder. The heterozygous carrier frequency of any pathogenic allele must be less than

twice the square root of the disease prevalence (which is the hypothetical allele frequency if

only one disease allele accounts for all cases). For example, the prevalence of congenital

hearing loss with a genetic etiology is roughly 1 in 1,000 and half of these cases are due to

GJB2 variants. Therefore, the estimated prevalence of GJB2-related hearing loss is 1 in

2,000. Accordingly, pathogenic variants in GJB2 are expected to occur no more than 4% in

the general population. It is not surprising that the carrier frequency for the c.35delG variant

in GJB2 could be as high as 2% (29). Population data pertaining to a specific ethnic

composition are particularly useful. The 1000 Genomes Project has revealed many variants

common in certain ethnic groups, but rare in general (30). If a subpopulation does not have

an increased occurrence of the associated disease and affected individuals are not under-
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diagnosed, variant classification based on the allele frequency in the subpopulation can be

applied more broadly.

While a high allele frequency in the general population may rule out pathogenicity of a

variant for a rare disorder, absence or a very low frequency of a variant in the broad

population cannot be used to assume pathogenicity. While coding variants below 1% allele

frequency in the seven populations examined by the 1000 Genomes Project are enriched for

functional variants (31), lack of a variant from population datasets cannot be used to assume

absence from the population unless it is determined that the study technically interrogated

the position sufficiently to rule out a potential false-negative result. A variant is statistically

more likely pathogenic if it occurs in affected individuals more than expected by chance.

The likelihood of random occurrence can be calculated as the probability of co-incidence of

rare events, as the logarithm of odds (LOD) score through linkage analysis or as p-values

through case-control studies using a Fisher’s exact or chi-square test. Low probabilities of

co-incidence statistically demonstrate non-random occurrences of the variant in affected

individuals.

The presence of de novo variants may support disease association due to their rarity. The de

novo point mutation rate is ~1 per exome (32), consistent with an average rate of 1.2×10−8

per nucleotide per generation in human genome (33). Therefore, confirmed de novo status of

a variant in a disease-associated gene strongly increases the likelihood of pathogenicity in

rare conditions when the patient’s disease is de novo and matches the associated phenotypes.

Testing of biological parents and excluding the possibilities of non-paternity and sample

swap (e.g. genotyping with microsatellite markers) are necessary for confirmation of de

novo variants. Similarly, for rare recessive disorders, if a rare variant is confirmed in trans

with another pathogenic variant in the same disease gene, it is more likely pathogenic.

Significant co-segregation of a variant with disease provides strong genetic linkage evidence

to support pathogenicity. Linkage analysis programs can be used to calculate the LOD

scores, but a simple count of informative segregations can provide an estimate. As a rule of

thumb, 10 informative segregations would achieve a LOD score > 3.0, necessary to establish

linkage between a genetic locus and a disease. For established disease genes, given the a

priori probability of disease association, fewer informative segregations may be acceptable

in combination with other supporting evidence. Because genotype-phenotype correlation

may be masked by incomplete penetrance, variable expressivity, and late age-of-onset in

genotype-positive individuals, unaffected family members should not contribute segregation

information under these circumstances (34) (Figure 2C). Additional evidence may still be

required to establish pathogenicity, as any variant in linkage disequilibrium with the

causative variant will segregate with the disease. For example, the Ile148Thr variant in

CFTR was removed from the original cystic fibrosis carrier-testing panel because it was later

determined its association with the disease was due to tight linkage with another pathogenic

variant (35, 36).

Functional evidence that links the variant to disease phenotypes is important to establish

causality. However, this information is typically unavailable for individual variants in

routine diagnostic testing. When studies regarding a specific variant have been published, it
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is important to determine the type of assay used and whether the results and conclusions

drawn are applicable to the mechanism and presentation of the disease. In general, direct

assays on patient tissues provide the strongest functional evidence because they reveal true

biological consequences of a variant within a human individual. In vivo studies in mammals

may add more evidence at the system level. In vitro studies can be useful, especially in cases

where the in vitro assay directly tests an established molecular mechanism of disease (e.g.

structural proteins or ion channels (37)), but may not accurately represent the biological

environment or directly prove causation of disease.

In summary, population, statistical and functional evidence need to be carefully evaluated to

determine the clinical significance of a variant. Table 2 lists some important considerations

when collecting this data.

Predicting disease association using bioinformatics tools

If the evidence for disease association from existing data is not strong or the mechanism of

gene function is unclear, a number of bioinformatics tools may be used to predict the

possible impact of the variant on the gene or protein. Computational predictions are

generally based on the type of change, the domain structure, sequence conservation, and

biochemical properties of the affected amino acid residues. Computational information is

captured in the “Conserv_Biochem” and “Splicing” tabs of the VAT.

At both the nucleotide and amino acid level, sequence conservation may indicate regions

and positions of functional importance, as negative selection removes changes that are

deleterious to proper biological function, leading to high evolutionary conservation (38).

Computationally derived alignments can indicate when a specific sequence is important to

the underlying gene or protein function (Figure 2D). Conversely, presence of the variant

amino acid in other species, particularly primates and other mammals, may indicate a

tolerance to that change.

Many algorithms are available to classify missense substitutions and potential splicing

alterations (Figure 2E). Use of multiple prediction algorithms is recommended. Because

most of the programs use similar underlying datasets and assumptions, they should not be

regarded as independent evidence, though some may include additional features. The

datasets used for training the algorithms are mostly from non-clinical grade databases that

may not be accurate or comprehensive. Disease specific algorithms can be applied to a

specific set of genes with significantly enhanced performance (39, 40), though these are

limited in availability. Predicting the effect of variants occurring near the splice region can

be particularly challenging as it is often unclear what kind of abnormal transcript may be

produced (Figure 2E).

In summary, although computational predictions are useful in guiding classification, they are

not able to determine or rule out pathogenicity. Table 2 addresses specific questions for

consideration when examining computational data.
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Combining multiple lines of evidence to reach an overall interpretation

Final interpretation of the clinical significance of a variant requires examination of all the

available evidence. While some data can be strong enough to determine or rule out

pathogenicity, most information only moderately influences final conclusions and is

valuable in combination. Table 3 lists some of the possible types of evidence available and

the general weight we assign to their ability to indicate a pathogenic or benign assertion.

For instance, a synonymous variant in exon 16 of TECTA, p.Leu1777Leu, may not be

expected to be pathogenic because it does not alter the amino acid. However, it is predicted

to lead to loss of an exonic splice enhancer binding site, has not been reported in large

population studies, and has been reported to segregate with disease in 10 affected family

members with autosomal dominant hearing loss (41). In addition, examination of mRNA

from patient lymphocytes revealed skipping of exon 16, leading to an in-frame deletion in

the amino acid sequence. Protein impairment, but not total LOF, is associated with TECTA-

related autosomal dominant hearing loss, consistent with this prediction. This example

demonstrates the importance of evaluating clinical data as well as functional evidence to

make a definitive classification.

Conclusions and future perspectives

Variant assessment has become the bottleneck of large scale sequencing tests. Using the

VAT described here has served to decrease the average time of variant assessment in our

laboratory to 22 minutes by utilizing hyperlinks to perform database and literature searches

and providing a platform to compile, analyze, and interpret variant data. However, it may

take longer than 2 hours if a large collection of literature needs to be reviewed. Large gene

panels may produce >10 variants that need review, and even after filtration strategies, exome

and genome sequencing may produce 100s of variants. Further automation to retrieve

relevant variant information directly from the literature and databases will speed the process.

Clinically validated prediction algorithms trained on variants with well-established

pathogenic or benign classifications (39) will improve the accuracy of computational

prediction. Routine and standardized functional assays will provide necessary evidence to

classify VUSs, but it is challenging to establish and support these assays in clinical

diagnostics laboratories.

Information sharing and collaboration amongst laboratories will reduce the number of

unique assessments performed. ClinVar, a recent NCBI initiative aiming to share clinical-

grade variant information, is expected to support the molecular diagnostics community

through genotype-phenotype associations aided by actual patient data. This may in turn

inspire and accelerate the development of automated diagnostic prediction algorithms.

Software is currently being developed to support the aggregation of internal and external

variant information to enable sharing of clinical-grade variant data between different

laboratories without jeopardizing patient identity (Table 1). Collectively, these approaches

will greatly facilitate variant classification.
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Conventionally, each clinical laboratory has had the liberty to develop, validate and perform

diagnostic tests following recommendations by national or international agencies such as

ACMG, CAP, CLIA, CLSI, EMNQ and WHO. Although proficiency testing has addressed

the consistency in raw test output between different laboratories, there is still lack of

agreement in variant assessment procedures and parameters, as well as final classification

criteria. ACMG has provided guidelines for variant assessment (4, 5), but a consensus

structured framework ensuring evidence-based classifications that can be easily adopted by

individual laboratories is currently missing. While working groups have been formed to

address this issue and we are optimistic that current variant classification guidelines will

evolve into a consensus variant grading system based on the feedback recently provided by

individual laboratories (ACMG 2013 Interpreting Sequencing Variants Open Forum), we

hope that the framework above provides some rules and examples to partially fill the

existing gap.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Variant assessment workflow. Genetic variants identified by laboratory testing are annotated with information from various

sources including publications, computational prediction algorithms, and public, collaborative and internal databases. After

evaluation of all pertinent information in conjunction with patient specific clinical and family information, a professionally

trained individual will classify the variant into one of the five clinical categories and combine all variants for a clinical report.
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Figure 2.
A. Reference transcript selection. Two transcripts for OTOF are shown: NM_194248, the longest transcript selected as the

primary transcript, and NM_194322, a shorter alternate transcript. Position g.26799794 (grey box) is non-coding in NM_194248

(c.2250–80) but coding in NM_194322 (c.66); therefore NM_194322 should be selected while evaluating this variant.

Figure 2B. Phasing multiple variants. Two variants are present at positions c.2401 and c.2402 in OTOF (NM_194248). The top

traces show the chromatographs from Sanger sequencing with the consensus reference sequence shown underneath.

Representative aligned NGS reads are shown below. Grey bars represent reference sequence with variants highlighted in red.

The bottom schematic shows associated OTOF coding exons (rectangles) and the reference amino acid sequence. The arrow

indicates the 5’ to 3’ direction. The c.2401G>T (p.Glu801*) is listed in dbSNP (rs75624587) and ESP as a nonsense variant but
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with an allele frequency of 10% in African Americans. However, NGS reads reveal that the variants are in cis and should

therefore be named c.2401_2402delinsTT (p.Glu891Leu).

Figure 2C. Segregation analysis with incomplete penetrance. A family with hypertrophic cardiomyopathy is shown. Affected

individuals are indicated by filled squares (males) or circles (females). Mutation-positive individuals are indicated by a “+”,

while mutation-negative individuals are indicated by a “−“. All mutation-positive individuals are affected, with the exception of

individual II-1. Because HCM can display reduced penetrance, individual II-1 would not be considered a non-segregation.

Figure 2D. Conservation based on multiple species alignment. An example of alignment of TNNC1 in UCSC Genome Browser

is shown. Tree shrew sequence shows poor alignment (red box). Arrows point to non-conserved residues.

Figure 2E. Conflicting computational predictions of a missense variant. The results of multiple computational tools are captured

in the VAT. They provide conflicting predictions for the NM_000366:c.688G>A (p.Asp230Asn) variant in TPM1, suggesting

that at least some tools are not reliable.

Figure 2F. Predicted splicing effect of a coding variant. Splicing prediction tools indicate that the NM_022124:c.5712G>A

variant in CDH23, which affects the last base in exon 43, may impact splicing. However, not all programs agree in the potential

effect on splicing, and they cannot predict whether it would lead to exon skipping, intron retention or use of cryptic splice sites.
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Table 1

Useful online resources for variant assessment

Usage Online Tools URL

Computational prediction for
missense variants

Align GVGD (42) http://agvgd.iarc.fr/agvgd_input.php/

CONDEL http://bg.upf.edu/condel/analysis/

MutationAssessor http://mutationassessor.org/

MutationTaster http://www.mutationtaster.org/

PolyPhen2 (43) http://genetics.bwh.harvard.edu/pph2/

SIFT (44) http://sift.jcvi.org/

Computational prediction for
splicing variants

GeneSplicer http://ccb.jhu.edu/software/genesplicer/

Human Splicing Finder http://www.umd.be/HSF/

MaxEntScan http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html

NNSplice http://www.fruitfly.org/seq_tools/splice.html

Disease Curation GeneReviews http://www.ncbi.nlm.nih.gov/books/NBK1116/

OMIM http://omim.org/

Domain Database NCBI conserved domain
database

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

Genome Browser Ensembl http://www.ensembl.org/index.html

UCSC Genome Browser http://genome.ucsc.edu/

Literature Database PubMed http://www.ncbi.nlm.nih.gov/pubmed

Variant Database 1000 Genomes Project http://browser.1000genomes.org

ClinVar http://www.ncbi.nlm.nih.gov/clinvar/

dbSNP http://www.ncbi.nlm.nih.gov/projects/SNP/

Exome Variant Server (9) http://evs.gs.washington.edu/EVS/

HGMD http://www.hgmd.cf.ac.uk/ac/index.php

Variant Validation HGVS nomenclature http://www.hgvs.org/mutnomen/

Mutalyzer https://mutalyzer.nl/
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Table 2

Variant assessment checklist

Gene-level information

❒ Confirm gene is implicated in disease with sufficient evidence, including human genetic data and functional data

❒ Determine inheritance pattern, age-of-onset, penetrance and prevalence for each gene-disease association, if possible

❒ Determine types of disease-associated variants in gene (gain-of-function, loss-of function, etc.)

Variant validation

❒ Review raw sequence data to confirm the variant call

❒ Determine zygosity of the variant

❒ Associate genome build, genomic coordinate, and reference transcript to the variant

❒ Confirm variant nomenclature

Genetic data

❒ Determine frequency of variant in large population studies, parsed by race

❒ Determine if population frequency is consistent with disease inheritance, age-of-onset, penetrance and prevalence

❒ Evaluate whether variant segregates with disease in affected family members

❒ If disease is inherited in a recessive manner, determine if the variant is found in trans with a pathogenic variant

❒ If applicable, determine if there is a statistically significant difference in variant frequency between cases and controls

Functional data

❒ Evaluate available in vivo functional data

❒ Confirm type of animal model is relevant for human disease

❒ Evaluate available in vitro functional data

❒ Confirm assays used reflect disease-associated cellular mechanisms

Computational data

❒ Evaluate nucleotide alignment data and assess evolutionary conservation (for all variants)

❒ Evaluate amino acid alignment data and assess evolutionary conservation (for missense variants)

❒ Eliminate any poor species alignments

❒ Determine if computational tools predict an effect on protein structure or splicing (for all variants)
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Table 3

Strength of evidence for variant assessment*

Evidence leading to a patdogenic assertion Strengtd of evidence

Significant segregation in affected family members (LOD >2) +++

Confirmed de novo inheritance in relevant disease-associated gene +++

In vivo data from mammalian model organisms suggest an impact on function ++

Case-control studies significantly associate the variant to disease ++

Nucleotide and amino acid strongly conserved in distantly related species ++

In vitro data from recombinant DNA constructs or proteins suggest an impact on function +

Variant is present in trans with an established pathogenic variant in recessive disease +

Variant is rare or absent in large population studies +

Computational tools predict an impact on function and/or splicing +

Evidence leading to a benign assertion Strength of evidence

Frequency of variant in general population is too high to cause disease, accounting for penetrance and prevalence of
disease

+++

Variant is present in unaffected adults in fully penetrant early onset dominant disease ++

Variant is present in a homozygous state in unaffected adults in fully penetrant early onset recessive disease ++

Variant is absent in affected family members (non-segregation) after ruling out potential phenocopy ++

Variant amino acid is present at this position in multiple mammalian species ++

Adequately powered case-control studies show no association to disease +

In vitro/in vivo assay for variant does not implicate effect on function or disease +

Variant type is not part of known disease mechanism +

Computational tools predict no impact on splicing or function +

*
Strength of evidence is based on the correlation of the type of evidence with the accuracy of variant classification. Direct evidence with sufficient

statistical power or from proper biological experiments is deemed “strong”, while supportive studies or in silico predictions that cannot prove true
biological consequences are considered moderate or weak.
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