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Neural Mechanisms of Self-Location

C. Barry' and N. Burgess?°

The ability to self-localise and to navigate to remembered
goals in complex and changeable environments is crucial
to the survival of many mobile species. Electrophysiolog-
ical investigations of the mammalian hippocampus and
associated brain structures have identified several classes
of neurons which represent information about an organ-
ism’s position and orientation. These include place cells,
grid cells, head direction cells, and boundary vector cells,
as well as cells representing aspects of self-motion. Un-
derstanding how these neural representations are formed
and updated from environmental sensory information and
from information relating to self-motion is an important
topic attracting considerable current interest. Here we
review the computational mechanisms thought to underlie
the formation of these different spatial representations,
the interactions between them, and their use in guiding
behaviour. These include some of the clearest examples
of computational mechanisms of general interest to neu-
roscience, such as attractor dynamics, temporal coding
and multi-modal integration. We also discuss the close re-
lationships between computational modelling and experi-
mental research which are driving progress in this area.

Introduction

The ability to self-localise — to determine one’s current po-
sition within the environment — is an essential process for
humans, mammals in general, and many other mobile spe-
cies. Indeed, being able to self-localise is a necessary requi-
site for successful navigation to any goal that is not directly
detectable. The scientific literature on this topic is extensive,
from Darwin, who speculated on the sources of information
that animals draw on to self-localise [1], to modern robotic
devices such as global positioning systems.

In recent decades, neurons have been identified in the
mammalian brain the firing of which encodes informa-
tion about the spatial location and orientation of the animal
relative to its environment. These include place cells,
which fire whenever the animal enters a specific location;
head direction cells, which fire whenever the animal’s
head is in a particular orientation; and grid cells, which
fire whenever the animal enters any one of several loca-
tions arranged across the environment in a regular
triangular array (Figure 1) [2-4]. Here, we briefly review
the salient properties of these spatial representations,
and then discuss the neural mechanisms that underlie their
generation.

Neuronal Representations of Environmental Location

and Orientation

Extracellular recordings made in the 1970s from the hippo-
campi of freely moving rodents identified place cells in re-
gions CA1 and CA3 [2]. Individual place cells are typically
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silent, only firing action potentials when the animal’s head
is within a certain region of the environment — the cell’s
place field (Figure 1A). The size and location of the place
fields varies between place cells, providing a sparse popula-
tion vector that carries sufficient information to represent the
animal’s current location [5]. Initially identified in the rat,
place cells have subsequently been found in animals as
disparate as bats and humans [6,7] and are believed to be
a common mammalian phenomenon.

When an animal enters a new environment for the first
time, place cell firing patterns are established very rapidly
[5]. In a familiar environment, place fields are stable: a cell
will typically fire whenever the animal re-enters the firing field
even after a delay of several days [8], although firing patterns
may vary over these and longer durations [9-11]. Place cell
firing patterns are environment-specific and have distinct
firing patterns in different environments, changing their firing
rates and firing locations relative to environmental features
and each other, a process known as ‘remapping’ [12-14].
However, place cell activity is unaffected by subtle changes
in a familiar environment; extinguishing the lights or elimi-
nating a subset of cues, for example, does not generally
affect spatial responses [15,16]. This process of ‘pattern
completion’ and the related phenomena of ‘pattern separa-
tion’, whereby place cells disambiguate known environ-
ments despite their perceptual similarity [17], is indicative
of attractor states. In other words, after small perturbations
the network dynamics cause firing patterns to evolve back
to specific stable states.

Marr’s influential model of hippocampal function was pre-
scient of such attractor dynamics, identifying them with
associative plasticity in the recurrent connections of area
CAS3 [18]. Consistent with his ideas, the place cells of mice
without functional CA3 NMDA receptors (necessary for
long-term potentiation of synaptic connections [19]) show
impaired pattern completion, their firing being degraded as
cues are removed from an environment [20]. The representa-
tion of self-location provided by place cells helps to guide
spatial behaviour: cue manipulations that rotate place fields
relative to the environment are matched by a concomitant
rotation in the animal’s spatial responses. Even in error trials
where the cells fail to follow the cues, behaviour generally
covaries with place field location [21,22].

Subsequent to the discovery of place cells, investigation of
related cortical and subcortical regions revealed comple-
mentary spatial responses. The first of these, head direction
cells, signal the orientation of the animal’s head in the
horizontal plane (azimuth): individual head direction cells
respond when the animal occupies a narrow range of head
directions (~100°) centred on a preferred firing direction
[23] (Figure 1C). These cells were first reported in the dorsal
presubiculum [24,25] and later in a network of structures
including the thalamic nuclei [26,27], mammillary bodies
[28], and entorhinal cortex [29]. Unlike place fields, which
change relative position between environments, the angular
offset between the preferred firing directions of head
direction cells is maintained across environments [30].
Thus, two cells that share a preferred firing direction in
one environment will continue to respond at the same
time in a second environment, even though the absolute
firing direction of both cells may have changed. Like
place cells, activity in the head direction system strongly
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Figure 1. Neural representations of self-loca-
tion in the hippocampal formation.

(A) Left, schematic of single unit recording. A

Neural data

rodent with chronically implanted extracel-
lular electrodes forages in an open environ-
ment, with surrounding sensory cues for
orientation (not shown). Tracking data from
an overhead camera are synchronized with

ﬁ Position tracking

neural data. Middle, raw data from a place
cell. The animal’s path is indicated by the
black line, and action potentials are superim-
posed in red at the locations where they
were emitted. Right, a firing rate map of the

raw data; binned spike count is divided by
binned dwell time and locally smoothed to
calculate average firing rate. ‘Hotter’ colours
indicate higher firing rates reaching a
maximum of 8.3 Hz (indicated above the
map), dark blue indicates low rate (0 to 20%
of the peak rate), white bins are unvisited.
This CA1 place cell is only active when the an-
imal occupies a small area on the west of the
environment. (B) Raw data (left) and firing
rate map (middle) for a mEC grid cell. The mul-
tiple circular firing fields are arranged in a
close packed hexagonal lattice. Right, the
regular grid-like firing pattern is characterised
by its orientation, spacing, and offset. (C) Two
head direction cells recorded from the deep
layers of mEC; similar directional responses
are exhibited by head direction cells found in
other brain regions. The polar plots show
firing rate as a function of head direction; the
cell on the left has a peak firing rate of
26.8 Hz achieved when the animal was facing
an orientation of 42° relative to the environ-
ment (measured anti-clockwise from the hori-
zontal axis). (D) A boundary vector cell in the
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subiculum, showing the raw data (left) and
firing rate map (middle). The boundary vector
cell fires whenever there is an environmental
boundary a short distance to the south. The
boundary vector cell shows a second firing
field after an east-west oriented barrier is
put into the environment (right).

180°

correlates with behaviour. Hence, er-
rors in the heading direction encoded
by the cells are predictive of naviga-
tional errors [31]. Head direction cells
are thus likely to be part of a network
that provides an animal’s ‘internal
sense of direction’.

The third main type of spatial cell
to be found, grid cells, are most
numerous in layer Il of medial entorhinal cortex (mEC) and
exhibit stable spatial firing correlates broadly similar to place
fields [4]. Unlike place cells, however, they are characterised
by multiple circular firing fields arranged in an equilateral
triangular lattice across the environment (Figure 1B). In
deeper layers of the mEC, as well as in the pre- and para-
subiculum, grid cells co-localise with head direction cells
and ‘conjunctive’ cells, which combine grid spatial firing
with directional tuning [29,32].

Initially identified in rats, grid cells have since been found
in other mammals including bats, mice, and humans
[33-36]. In the mEC at least, they appear to be clustered
into functional modules — the grid-like firing of neighbouring
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cells share the same orientation and scale, such that their
spatial correlates are effectively translations of one another
[4,37,38]. Like head direction cells, the relative position of
the grid-like firing of cells from the same module is main-
tained even after manipulations that change or disrupt the
fields of individual cells [38,39]. In contrast, cells from
different modules seem to be more independent: their firing
fields can respond differently to changes in the geometry of
the environment [38]. Still there are some global organising
principles: the orientation of grids in different modules is
similar [37,38], and grid scale, which increases ventrally
along the mEC [4], does so in discrete steps which may
follow an approximately geometric series [37,38], with
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implications for optimal coding of self-location in large-scale
space [40,41].

These electrophysiological findings provide powerful in-
sights into the neural mechanisms supporting self-localisa-
tion. These insights have been quantified in the form of
computational models that seek to explain the neuronal
and behavioural data, and how each relates to the other.
Intense interactions between computational and experi-
mental approaches have been generated within this field of
research, as predictions are tested and hypotheses revised.

An important theoretical distinction has been made be-
tween two potential sources of information supporting self-
location: first, environmental information; and second,
information reflecting self-motion. The former reflects sen-
sory perception of the environment, including information
regarding the locations of environmental features or land-
marks around the animal. The latter includes information
concerning self-motion from vestibular, proprioceptive,
visual (optic flow) and motor (motor-efference copy) systems
concerning the consequences or planning of self-motion.
The two sources of information are complementary: environ-
mental information gives direct information regarding
location relative to the environment, whereas self-motion
information can be used to update the estimate of en-
vironmental location (spatial updating), or to estimate the
displacement caused by a recent movement (path integra-
tion). Other terms used for this dichotomy include allothetic
versus idiothetic, and exteroceptive versus interoceptive,
invoking a (partial) mapping onto sources of information
that are external or internal to the body.

Below, we review the neural mechanisms supporting the
spatial representations discussed above. First considering
mechanisms focussed on environmental information, then
on self-motion information, and finally on how the two types
of information might work together to support accurate self-
location.

Neural Processing of Environmental Information

Animals use external landmarks to localise themselves and
guide navigation [42,43]. For example, rats trained to find a
reward on a four-arm maze do so with reference to the sur-
rounding visual cues; if the cues are rotated relative to the
maze, then the animals search in a location defined by the
new cue position [21]. Non-visual cues, such as olfactory

Figure 2. The boundary vector cell model of
place cell firing.

(A) A boundary vector cell responds when a
boundary (black line) occupies its receptive
field which is peaked at a preferred distance
and allocentric direction from the animal (a
short distance to the northeast in this
example, left). This boundary vector cell will
have a firing rate map with raised firing along
the northeast boundary of the environment

(right). (B) The activity of a place cell is
modelled as the summed and thresholded
activity of a population of heterogeneous

boundary vector cells (with different preferred

distance and direction tunings, above). The
place cell’s firing (below) can be estimated
for any geometric arrangement of environ-
mental boundaries. (Adapted with permission

from [61].)
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markings or auditory signals, also contribute to self-location
and are sufficient to guide behaviour if visual cues are not
available [44]. Similarly, simple manipulations of spatial
cues also produce parametric changes in the firing fields of
spatial cells. For example, in a circular arena polarised by a
single cue card, the place cells and head direction cells are
jointly oriented by the card [45,46], and the orientation of
grid cell firing is also controlled in the same way [4]. However,
if the cue card is removed the cells continue to respond —
place fields, for example, maintain their position relative to
each other but adopt a random orientation relative to the
arena [45], as do head direction cells [25]. A complementary
study, in which the size of the recording arena was varied
without affecting orienting cues, found that individual place
cells tended to respond at a fixed distances and allocentric
directions from two or more of the arena’s walls [47] — that
is, referenced relative to the world as opposed to the self
(egocentric).

The effects of environmental manipulations suggest that
place cell firing can be modelled as the threshold sum of a
population of neurons responding to environmental bound-
aries. Each of these ‘boundary vector’ cells signal the pres-
ence of a boundary at a specific allocentric direction and
distance [48,49] (Figure 2). The model specifies that the
directional tuning of boundary vector cells is determined
relative to the animal’s head direction system. Thus, in a
symmetrical environment, cue manipulations that cause a
rotation in the responses of the head direction system will
be matched by a rotation of the place cell population. Further
empirical studies have confirmed that even when the envi-
ronmental geometry is substantially changed, such as by
adding or moving walls, the position of place fields can be
predicted on the basis of their position relative to the sur-
rounding walls [48,50]. The recently discovered mEC border
cells and subicular boundary vector cells (Figure 1D) closely
match the characteristics predicted for the putative bound-
ary vector cells — elongated firing fields running parallel to,
and at a specific allocentric direction from, environmental
boundaries, and which maintain their firing characteristics
between environments [50-52]. It is now known the border
cells project to the hippocampus, and it seems likely their
activity shapes the spatial responses of place cells [53].

The boundary vector cell model emphasises the impor-
tance of environmental boundaries in defining place cell
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activity without precisely specifying how they are perceived
or tracked when not directly detectable, but see [49,54]. This
high level approach followed a number of earlier models
describing place field firing in terms of the feed-forward ac-
tivity of sensory cells, such as those responding to visual
‘local views’ [55-57]. However, place cell firing is clearly influ-
enced by multiple modalities of sensory input. For example,
manipulations which move local cues (textured and coloured
surfaces) relative to distal cues produced a heterogeneous
response [58]: some place fields maintained their position
relative to the local cues; some followed the visual distal
cues; and others (~40%) exhibited more complex re-
sponses, possibly indicative of joint influences [59].

Under the same conditions head direction cells always
rotate coherently, normally following the distal cues [60].
Similarly, in a study in which arenas were distinguished on
the basis of their colour and odour, place cell firing also
distinguished the environments (‘remapped’), some on the
basis of colour or odour alone, and others showing more
complex conjunctive responses [14]. The boundary vector
cell model does not account for these heterogeneous re-
sponses, at least not in its basic form; although more
complex responses to environmental manipulations were
obtained from a model in which boundary vector cells
learned to respond differentially to different types of bound-
ary [61]. It seems likely, however, that while boundary vector
cell-type spatial responses influence place cell firing, these
are themselves modulated by non-spatial inputs [14], which
could potentially gate firing via an overall change in mem-
brane potential [62]. Thus, if sufficient changes are made to
an environment, the boundary vector cell input to a place
cell will change significantly, producing a remapping of its
place field.

Neural Processing of Self-motion

Alongside the strong role for environmental information, re-
viewed above, animals can also self-localise in the absence
of external sensory cues. For example, in the dark, gerbils
are able to search for a missing pup and return with it directly
to the nest [63]. This process, known as path integration or
dead reckoning, requires the animal to update its represen-
tation of self-location based on the cumulative estimate of
the distance and direction it has travelled [64]. It can be
shown that an animal is utilising path integration by intro-
ducing a known error into its representation of direction or
distance: in the case of the gerbils, if they are rotated prior
to the return leg of the journey, and this is done slowly so
that the vestibular system does not detect the motion, then
the animals head towards the nest with an angular error
equal to the amount they were rotated by [63].

By its nature, path integration is an iterative process and
errors will accumulate unless corrected by reference to envi-
ronmental information. This tendency to accumulate error
limits the range over which path integration alone — both
linear and angular — can support effective self-location.
For example, in the dark, hamsters can make approximately
three full circuits around the centre of an environment before
they become too disorientated to travel directly to a nest at
the periphery [65]. Interestingly, the rate of accumulation of
error depends on the frame of reference within which self-
motion information is integrated, with an advantage for allo-
centric over egocentric frames [66].

As with spatial behaviour, there is evidence that neuronal
spatial representations are also influenced by self-motion

information. For example, removing individual cues from
the environment or extinguishing the lights often has little
effect on spatial neuronal firing [4,15,16,21,67]. Furthermore,
changes in place cell firing caused by environmental manip-
ulations also reveal influences of self-motion. Expansion of
the environment reveals the separable influences on place
cell firing of the boundaries ahead of and behind the animal,
but also an additional influence of the boundary that the
animal is running away from, suggesting an additional role
of self-motion coding [47,68,69]. More recently, virtual reality
has allowed explicit demonstration of the influences of both
environmental (visual) and self-motion (proprioception and
motor-efference) information on the spatial firing of place
cells [70].

While place cell firing has generally been recognised to
reflect a balance between environmental and self-motion in-
puts [71,72], head direction cells and grid cells have been
predominantly associated with the integration of self-motion
information, with the subsequent addition of environmental
information to correct the accumulation of error (but see
[73]). The fixed relative offset maintained between the spatial
responses of pairs of grid cells or pairs of head direction cells
strongly hints at an endogenously generated mechanism, as
does the regular periodic nature of grid cell firing. Two main
classes of mechanism have been proposed to account for
the way in which self-motion information influences neuronal
spatial representations: continuous attractor models and
oscillatory interference models, which we review below.

Continuous Attractor Networks

The head direction system has been understood in terms of
continuous attractor networks. In these models, network
activity is restricted to a limited state space, through which
it can smoothly transition; population activity will relax
back on to this manifold if it is perturbed away from it by
an external influence. For the head direction system, this is
the equivalent of the network only exhibiting firing patterns
consistent with a single direction of facing at a given time,
as appears to be the case [30,74].

Several continuous attractor models of the head direction
system have been proposed (for example [75-78]), all
sharing several key elements. First, cells have a graded pro-
file of symmetrical inter-connectivity, so that the connection
strength between two cells reflects the difference in their
preferred firing directions, cells with similar preferred firing
directions having stronger (more excitatory) connections
than those with different preferred firing directions (Fig-
ure 3A). The connectivity profile, as a function of preferred
firing direction, is translation invariant; this prevents inherent
biases for particular directions, produces similarly shaped
tuning curves relating firing to head direction for all cells
(translated to reflect a cell’s preferred direction), and fixes
the relative offset between the preferred directions of arbi-
trary cell pairs, as is observed experimentally [30,74]. With
the cells arranged in a ring, each positioned according to
its preferred firing direction, the pattern of activity will
resemble a smooth bump, the location of which represents
the animal’s head-direction. The bump of activity can move
smoothly around the ring, with all represented directions
equally likely.

For the population activity in the continuous attractor
network to track the animal’s orientation, an asymmetry
must be introduced to shift the bump of activity around the
network as the animal turns [75]. This can be achieved by
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Figure 3. Schematic continuous attractor net-
works.

(A) Left: the head direction system can be
modelled as a circular continuous attractor
network. Head direction cells (grey circles)
are shown arranged according to their
preferred firing direction, with raised firing
rates indicated by warmer colours. Cells are
reciprocally connected with their neighbours
such that those with more similar preferred
firing directions have stronger connectivity
(schematic connections from the most active
cell shown in red: thicker arrows indicating
stronger connectivity). Connectivity is transla-
tion invariant such that all cells have similar
connectivity profiles (connectivity for a sec-
ond cell is shown in light grey). Activity in the
head direction cell population will settle into
a stable state, comprising a single activity

B Stationary Move west ‘bump’, signalling the animal’s facing direc-
t=n t=n+1 tion (schematic activity ‘bump’ shown in red,

O O O o O O O O o O O below). Middle and right: the activity bump

can be moved around the circle by introducing

o o0 Oo-@0O0 -@-0 O-O- an asymmetry into inter-cellular interactions.

o O o O O o o o O O o To track the animal’s heading, the strength

of this asymmetric component must be pro-

O O O O O O O O O O O O portional to the angular velocity of the ani-
Current Biology mal’s head. This can be achieved by ‘shifter

cells’ whose firing is modulated by head direc-
tion and angular velocity. Asymmetric con-

nectivity producing an anti-clockwise rotation is shown (above) with the activity bump (below). (B) Left: populations of grid cells with grid-like firing
patterns of the same orientation and scale can be modelled as a two-dimensional continuous attractor network: grid cells are shown arranged in a
sheet according to the relative offset of their firing patterns. Cells are reciprocally connected with their neighbours so that those with closer firing
patterns have stronger connectivity; this connectivity pattern is translations invariant across the sheet of cells. Again, a stable activity bump will
form, signalling a static location. Right: the activity bump can be moved across the sheet of cells by asymmetric connectivity. To track the animal’s
movement, the strength and direction of this asymmetrical component must be proportional to the animal’s velocity. This can be achieved by
‘shifter cells’ with grid-like firing that is also modulated by running velocity (that is, similar to conjunctive grid cells recorded from layers I1I-VI
of the mEC [29]). The periodic nature of the spatial firing patterns corresponds to toroidal boundary conditions such that, as the activity bump

moves off one side of the sheet, it appears on the other side.

using a network of ‘shifter cells’ with asymmetric connectiv-
ity and firing modulated by both heading and angular velocity
[77,78] (Figure 3A). Candidate shifter cells, with directional
firing modulated by turning speed, have been identified in
the anterior thalamus [26,79], presubiculum [80] and retro-
splenial cortex [81]. Any such angular path integration mech-
anism will accumulate error, and must be corrected by
reference to environmental cues, requiring the relationship
between head direction activity and environmental sensory
input to be learnt. This could be accomplished by Hebbian
plasticity between visual feature detectors and head direc-
tion cells [75,77], and would be consistent with the observa-
tion that visual cues control the orientation of head direction
cell firing [25]. In addition, the connection patterns in contin-
uous attractor networks require precise calibration, which
may be provided by reference to environmental inputs
[75,77] or by angular velocity inputs [82].

Continuous attractor networks have also been used to
model place and grid cell firing, extending the one-
dimensional model of the head direction system to two
dimensions. These require the same basic features as the
one-dimensional models: translation invariant connectivity
arranged so that cells with proximate fields are more strongly
interconnected than those with distant fields, along with
shifter cells, or some other form of tuneable asymmetric con-
nectivity, to move the activity profile (Figure 3B). Indeed,
before the discovery of grid cells, models of path integration
focused on the possibility that the recurrent architecture of

CAS3 supported a continuous attractor network capable of
updating place cell representation according to self-motion
(for example [83-85]).

Place cells are less obviously compatible with the neces-
sary network architecture than head-direction cells. Place
cell remapping between environments requires different
connectivity patterns in different environments, perhaps
existing as multiple pre-configured ‘charts’ [84]. There is
limited evidence for spatial shifter cells, which would be ex-
pected to be more numerous than the place cells them-
selves. Finally, there are many examples of heterogeneous
changes in place cell firing — for example, where sub-
populations of place fields change position or rate, some-
times in concert, while concurrently other cells are stable
(for example [9,10,14,58,86]). Heterogeneity in this form
would be inconsistent with a continuous attractor network,
although there are some signs that CA3 place cells respond
more homogenously than those in CA1 [12,59].

Grid cell firing, in contrast, shows many of the characteris-
tics of a continuous attractor network. The firing patterns of
neighbouring grid cells are often simple translations of each
other [4] and their relative offsets remain fixed despite large
changes to environmental conditions [39]. Conjunctive grid
cells, whose grid-like firing patterns are also modulated by
head direction, might plausibly function as shifter cells [29].
Finally, the fact that grid scale is discretised into multiple
functional modules points to the presence of several distinct
attractor networks, each corresponding to a single grid scale
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Figure 4. Theta-band oscillations structure
spatial activity in the hippocampal formation.

(A) Local field potential (LFP) recorded from
the CA1 pyramidal cell layer of a moving rat.
Black trace, raw mean-normalised LFP, in
which the 8 Hz theta modulation is visible
along with higher frequency gamma oscilla-
tions (the signal band-pass filtered in the
6-12 Hz range is shown in red). (B) Theta
phase precession in a CA1 place cell: each
point indicates, for a single action potential,

Amplitude (mV)

Spike phase (radians)

0 :.";ig;.;.’:"y? ‘-’V”S :

0.2

the theta phase (y axis) and animal’s location
(x axis); data from multiple runs through the
place field, moving left to right. Red line indi-
cates the circular-linear regression of phase
on position. (C) Schematic of the oscillatory
interference model showing two components:
a baseline oscillation (blue, with frequency fb)
and a velocity controlled oscillator (red)
whose frequency (faf) varies from baseline
proportionate to the animal’s running speed
in direction ¢i. (D) Interference pattern gener-
ated between the active and baseline oscilla-
tions in (C). Spikes are emitted at the peaks
of the carrier (black) which is the sum of the
two oscillations, showing a repeating periodic
pattern. (E) If velocity controlled oscillator
frequency fa varies around the baseline fre-
quency with the animal’s movement propor-
tional to the speed and the cosine of direction
relative to a preferred direction (radial black
arrow), then the baseline and velocity con-
trolled oscillator sum to produce a spatially
stable striped pattern perpendicular to the
preferred direction. Multiple velocity con-
trolled oscillators with preferred firing direc-
tions selected to differ by multiples of 60°
produce a grid-like firing pattern. (Adapted
with permission from [116].)

3n/2

[37,38]. There is, however, as yet no
direct evidence that grid cell firing pat-
terns perform path integration in the
way envisaged by continuous attractor
network models.

Theta Oscillations and Self-Motion
In parallel to the attractor models,
a second stream of research has
focussed on the movement-related theta rhythm: a 4-10
Hz oscillation that dominates the hippocampal local field
potential (LFP) of moving rodents [87] and modulates the
firing of place cells and many grid cells (Figure 4A). Theta
frequency usually increases with running speed [88,89].
However, the theta-band modulation of firing of place and
grid cells exceeds the LFP frequency, so that spikes are
emitted at increasingly earlier phase of the LFP theta cycle
as the animal moves through the firing field; an effect
known as phase precession [90,91] (Figure 4B). Thus, the
theta phase of firing encodes the distance travelled through
the firing field, adding additional information on self-loca-
tion beyond that encoded by firing rate alone [92].
Oscillatory interference models build upon the observation
of phase precession by assuming the existence of ‘velocity
controlled oscillators’, the frequency of which is modulated
by the animal’s movement (Figure 4C). Specifically, their fre-
quency varies around some baseline value proportional to
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the component of velocity along a preferred direction, so
that their phase relative to baseline encodes displacement
along that direction [93,94] (Figure 4D). Multiple velocity
controlled oscillators, with different preferred directions,
can form the basis of a path integration mechanism, by
tracking displacement along multiple directions. They could
also form the inputs to grid cells. In this case, velocity
controlled oscillator inputs with preferred directions at mul-
tiples of 60°, as could be selected by unsupervised Hebbian
learning during development [93,95], would sum together
to produce the characteristic grid-like firing patterns
(Figure 4E).

Cells resembling velocity controlled oscillators have been
found in the anterior thalamic nuclei, medial septum and hip-
pocampus; in these cells, the frequency of the theta-band
modulation of firing varies as the component of velocity
along a preferred direction [96]. Similarly, grid cell firing
appears to be dependent on theta-band oscillations, as
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Figure 5. Potential arrangements of self-
motion and environmental inputs to grid cells
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and place cells.

The neural representations of self-location ex-
pressed by place and grid cells reflect both
environmental and self-motion information.
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inactivation of the medial septum and consequent reduction
of hippocampal and entorhinal theta are accompanied by a
corresponding reduction of grid-like firing [97,98]. Finally,
these models link the frequency of theta-band oscillations,
at the cellular and LFP levels, with grid scale. In line with
this prediction, factors that affect the frequency of theta-
band oscillations, such as dorsoventral location, environ-
mental novelty and deletion of the HCN1 channel subunit,
are known to be accompanied by a concomitant change in
grid scale [99-101].

In opposition to oscillatory interference models, grid-like
firing is seen in crawling bats in the absence of theta rhyth-
micity [33], suggesting that grid firing does not always
require theta. Nevertheless, it is possible that the very low
firing rates of these cells obscures rhythmicity [102], or that
baseline frequencies in these animals are lower than in
rodents, as the absolute value of the baseline frequency is
unrelated to the resultant spatial firing properties [94].
Indeed, the baseline frequency can even be zero, in which
case velocity controlled oscillators equate to (non-oscil-
lating) stripe-cells, which nonetheless sum to form grids
[95]. In humans, theta rhythmicity has been linked to naviga-
tion [103] and memory [104], but how this corresponds with
findings in other species remains controversial. Interference
models have also been questioned by intracellular record-
ings made from mice exploring virtual reality environments;
as expected, the phase of grid membrane potential oscilla-
tions was found to covary with position, but simple depolar-
isation of the cell was shown to account for more of the
variability in spiking [105,106].

Interestingly then, both continuous attractor and oscilla-
tory interference models enjoy some experimental support,
while neither is clearly favoured. While these two types
of model depend upon quite different mechanisms, they
both describe grid cell firing in terms of path integrative
input and are not incompatible. Indeed, hybrid models
which incorporate recurrent connectivity and oscillatory
dynamics have recently been proposed [107-109], and
potentially provide a more complete account of the experi-
mental data, explaining both the ramp depolarisation and

Grid cell activity (as well as head direction
cell activity, not shown) is strongly influenced
by self-motion cues which are proposed to
originate from conjunctive shifter cells or
velocity controlled oscillators. Place cells are
strongly influenced by environmental informa-
tion, including that relating to environmental
boundaries (boundary vector cells), and to
local cues (potentially from lateral entorhinal
cortex) as well as non-spatial ‘contextual’
inputs that may ‘gate’ spatial inputs [14].
Regions containing grid cells and place cells
are reciprocally connected, which may allow
both representations to reflect an optimal
combination of self-motion and environmental
information [72]. Alternatively, self-motion and
environmental information may respectively
reach place cells and grid cells directly

Current Biology (dashed lines).

membrane potential
field [105,106,109].

oscillation seen within the firing

Combining Environmental and Self-Motion Information
An optimal estimate of self-location should combine both
environmental and self-motion information. Indeed there is
evidence that adult humans do use both types of information
in a Bayes-optimal manner; each source being weighted by
its reliability [110]. In rodents too, different spatial cues
appear to be combined to guide behaviour, with visual
cues generally being the most influential [44]. A similar
pattern can be observed in terms of the orientation of place
cell responses [111]. Furthermore, the combined influences
of environmental and self-motion information on place cell
firing can be seen in experiments in which a familiar environ-
ment is expanded [47,68]. Firing fields often become
stretched or bi-modal along the expanded dimension in
this situation, with sub-fields maintaining fixed distances
from the boundaries ahead of and behind the animal, consis-
tent with (environmental) boundary vector cell inputs. How-
ever, firing corresponding to the most recently visited
boundary appears to have greater influence, potentially re-
flecting self-motion inputs or representational momentum
within an attractor network [69]. Comparable environmental
manipulations also show evidence of joint control of grid
cell firing — if the size of a familiar environment is changed,
grid firing initially ‘rescales’ commensurately, as if entirely
driven by environmental inputs. However, with repeated
environmental rescaling, the effect attenuates until the
grid-like pattern no longer changes scale [37], as if simply
representing a metric for self-motion.

The use of ‘virtual reality’ in rodent experiments, in which
the animal runs on a polystyrene ball, which drives the view-
point of visual projection onto a surrounding screen [112],
has allowed for a more precise interrogation of the cues
defining spatial responses. Although precluding vestibular
inputs, virtual reality is sufficient to enable similar place cell
[70] and grid cell [105] firing patterns compared to real envi-
ronments. In this situation, most place cells (75%) required
both visual and proprioceptive inputs to generate localised
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firing. For half of the place cells, presentation of the visual
environment at the start of a run allowed place cells to fire
in the correct location further along the track in terms of dis-
tance run on the ball.

Thus, it seems likely that place and grid cells estimate self-
location on the basis of both environmental and self-motion
information. It is possible that environmental inputs, such as
boundary vector cells, drive place cell firing, while grid cells
are driven by self-motion inputs, and that unsupervised
Hebbian learning between the two representations allows
both types of information to be combined within a familiar
environment (reviewed in [113]; Figure 5). This could explain
the early development of stable place cell firing prior to sta-
ble grid cell firing [114] (but see also [115]) as well as many of
the results described above (for example, grid cell rescaling,
update of place cells in the dark).

Conclusion

The neural representation of self-location is distributed
across a network of brain regions and cell types, each en-
coding different elements of the spatial signal. Our under-
standing of how these populations interact to generate and
update the observed spatial representations has benefited
from a close relationship between empirical and theoretical
work; the former providing the raw data to refine or con-
tradict hypotheses suggested by the latter. In particular,
competing predictions regarding place and grid cell firing,
which could result from continuous attractor networks,
or oscillatory interference (grid cells) or environmental
inputs (place cells), have encouraged much experimental
activity. We now have working models of potential neural
mechanisms by which environmental cues can be combined
with self-motion information to generate stable spatial
representations.

Questions remain, though; for example, whether oscilla-
tory activity and recurrent connectivity indicate incompatible
or complementary mechanisms, and whether the relative
influences of environmental and self-motion cues are
dynamically reweighted according to their perceived reli-
ability. More generally, models have been most successful
when applied to neural systems with simple, constrained dy-
namics like the head direction, grid, and place cell responses
in familiar environments. By contrast, the complex dynamics
of place cell remapping between environments, which is
believed to be a central component of memory formation,
has proved to be less easy to predict.
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