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Abstract

Genes that alter disease risk only in combination with certain environmental exposures may not be

detected in genetic association analysis. By using methods accounting for gene-environment (G ×

E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to

34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer

Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs),

enriched for association with breast cancer, were tested for interaction with 10 environmental risk

factors using three recently proposed hybrid methods and a joint test of association and

interaction. Analyses were adjusted for age, study, population stratification, and confounding

factors as applicable. Three SNPs in two independent loci showed statistically significant

association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21

and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint

test with parity and with age at menarche (P-values = 3 × 10−07), the variants on chromosome 21

q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal

women, were identified by all methods applied. SNP rs10483028 was associated with breast

cancer in women with a BMI below 25 kg/m2 (OR = 1.26, 95% CI 1.15–1.38) but not in women

with a BMI of 30 kg/m2 or higher (OR = 0.89, 95% CI 0.72–1.11, P for interaction = 3.2 × 10−05).

Our findings confirm comparable power of the recent methods for detecting G × E interaction and

the utility of using G × E interaction analyses to identify new susceptibility loci.
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Introduction

The risk of breast cancer, the most common malignant disease in women, is known to be

influenced by multiple genetic and nongenetic (environmental3) factors. Among the most
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important environmental risk factors are reproductive factors, such as parity (the number of

births) and age at menarche, but exogenous hormone use, anthropometric factors, such as

body height and body mass index (BMI), and several other lifestyle factors are also

associated with breast cancer risk [Bakken et al., 2011; Bergström et al., 2001; Clavel-

Chapelon, 2002; Collaborative Group on Hormonal Factors in Breast Cancer, 1996; Ewertz

et al., 1990; Key et al., 2006; Ursin et al., 1995; van den Brandt et al., 2000]. Nevertheless,

one of the strongest risk factors for breast cancer is having a family member with a

diagnosis of breast cancer [Pharoah et al., 1997]. Several high-penetrance genes, such as

BRCA1 and BRCA2, as well as moderate penetrance genetic risk variants have been

identified. Disease-causing mutations in BRCA1 and BRCA2 increase breast cancer risk up

to 20-fold [Mavaddat et al., 2010; Stratton and Rahman, 2008]. However, due to the low

frequency of the high-risk and moderate risk variants, they account for only about 20% of

familial breast cancer. Genetic association analyses have additionally identified a number of

common genetic susceptibility variants. Recently, the large-scale Collaborative Oncological

Gene-environment Study (COGS) validated 23 of 27 previously established breast cancer

loci and identified 41 new loci associated with overall breast cancer risk, 4 additional loci

for estrogen receptor negative breast cancer, and 2 loci for BRCA1 and BRCA2 mutation

carriers [Couch et al., 2013; Garcia-Closas et al., 2013; Gaudet et al., 2013; Michailidou et

al., 2013]. All the common genetic loci, taken together, have been estimated to explain about

30% of familial risk [Michailidou et al., 2013]. Gene-gene and gene-environment (G × E)

interactions may explain a further part of the remaining familial breast cancer risk

[Mavaddat et al., 2010]. Testing for interactions with previously identified common

susceptibility variants for breast cancer has led to very few consistent results [Campa et al.,

2011; Marian et al., 2011; Milne et al., 2010; Nickels et al., 2013; Prentice et al., 2010,

2009; Rebbeck et al., 2009; Travis et al., 2010].

An agnostic approach to identify G × E interactions using existing genome-wide association

data has been considered a largely untapped potential means to detect new genetic variants

associated with disease risk [Thomas et al., 2012]. As the standard case-control approach is

known to have low power for detecting multiplicative G × E interactions, alternative

methods with greater power have been developed for testing for G × E interactions in large-

scale association studies [Mukherjee et al., 2012]. For large-scale scans, two-step procedures

attempt to gain power through enrichment of possible G × E interaction after a first

screening step for marginal genetic association and/or G × E correlation [Gauderman et al.,

2013; Hsu et al., 2012; Murcray et al., 2011]. Testing jointly for marginal genetic

association and G × E interaction in a two degree of freedom (df) test has been shown to

achieve good power in gene discovery [Dai et al., 2012; Kraft et al., 2007].

We, therefore, aimed to identify new breast cancer susceptibility loci using about 71,500

single nucleotide polymorphisms (SNPs) enriched for association with breast cancer, by

employing different recently proposed methods that account for G × E interaction in a large

pooled dataset from studies participating in the Breast Cancer Association Consortium

(BCAC).

1Environmental factors include all factors that are not directly measurable from genomic DNA but could nevertheless be partly
genetically determined.
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Methods

Study Participants

We analyzed primary data from 21 case-control and 2 cohort studies in European

populations participating in BCAC (Supplementary Table S1). These studies fulfilled the

criteria of comprising individuals of European descent and having at least 200 cases and 200

controls with information on age and at least one of the environmental risk factors of

interest. All studies were approved by the relevant ethics committees and informed consent

was obtained from all participants. All studies collected data with standardized

questionnaires. To reconcile differences in study questionnaires, a multistep harmonization

procedure was applied to data submitted by all studies according to a common data

dictionary. All time-dependent variables were assessed at reference age, which was defined

as the age at diagnosis for cases and the age at enrolment for controls in cohort studies, and

age at diagnosis for cases and age at interview for controls in case-control studies [Nickels et

al., 2013]. Menopausal status was defined based on reference age: women aged ≤54 years

were considered as being premenopausal and women aged >54 years as being

postmenopausal [Nickels et al., 2013]. To calculate adult BMI, we used the variable “usual

weight.” For this variable, women were asked for their usual weight in adulthood or their

weight a year ago. Participants were excluded from analysis if they were male, were

prevalent cases at recruitment in Melbourne Collaborative Cohort Study (MCCS), were not

of European descent, or had a missing value for reference age, the specific environmental

variable of interest, or the related adjustment variables. The number of women included in

analyses therefore varied according to the environmental factor being studied (Table 1).

Genetic Information

Genotyping was carried out in BCAC with the collaboration of three other consortia as part

of the COGS. Details of initial SNP selection, genotyping, and quality-control criteria are

available in the supplementary material of a recent publication [Michailidou et al., 2013].

Briefly, genotyping of 211,155 SNPs proposed by the four consortia was carried out using

an Illumina iSelect genotyping array (iCOGS). Of the 70,862 SNPs proposed by BCAC,

61,240 SNPs had originally been selected from a meta-analysis of nine genome-wide

association studies of breast cancer risk, which has led to the discovery of 41 new

susceptibility loci for breast cancer [Michailidou et al., 2013]. The remaining SNPs were (i)

for fine mapping of known susceptibility loci, (ii) in selected candidate genes or pathways

(iii) potentially related to prognosis, or (iii) associated with cancer-related quantitative traits

or other cancers. After genotyping, standard quality-control measures were applied to all

SNPs and all samples genotyped. SNPs were excluded from the database if their genotypes

were discrepant in more than 2% of the duplicate samples across all consortia using this

array. SNPs were also excluded if their call rates were below 95% or if their distribution in

controls strongly deviated from Hardy–Weinberg Equilibrium (P < 10−6). Study participants

were excluded from all analyses if the overall call rate was below 95% or if heterozygosity

deviated significantly from that expected in the general population (either lower or higher, P

< 10−6). We used genotype data of 87,658 SNPs nominated by BCAC as well as SNPs of

common interest, for example, because of possible association with breast cancer related

traits or other cancer sites, which remained after application of quality-control criteria. The
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present analysis aimed to identify new breast cancer susceptibility loci by considering G × E

interaction, therefore fine mapping SNPs for the previously identified regions were excluded

from analysis, leading to a final number of 71,527 SNPs. Genotype intensity cluster plots

were checked manually for SNPs in each new region yielding a statistically significant G ×

E interaction using any one of the methods employed and SNPs were eliminated if the

clustering was judged to be poor. SNP annotations were checked using HaploReg v2 [Ward

and Kellis, 2012], and the UCSC Genome Browser [Meyer et al., 2013]. Information on

linkage disequilibrium (LD) structure around identified SNPs was obtained using SNP

Annotation and Proxy Search (SNAP) [Johnson et al., 2008].

Statistical Analysis

Ten established environmental risk factors for breast cancer were considered. The specific

risk variables were selected based on the marginal effects for these risk factors derived from

meta-analyses of the nine population-based studies and included number of full-term

pregnancies, age at menarche, adult body height, adult BMI (separately for postmenopausal

and premenopausal women), duration of oral contraceptive use, duration of menopausal

hormone therapy in current users (separately for estrogen-progesterone therapy and

estrogen-only therapy), average daily alcohol intake, and family history of breast cancer in

first-degree relatives. All 10 environmental variables were evaluated as continuous variables

with the exception of family history of breast cancer.

SNPs were assessed using a log-additive model, in which the SNPs are coded according to

the number of minor alleles (0–1–2) and analyzed as continuous variables. All analyses were

adjusted for reference age, study, and six principal components (PCs) to account for

population stratification, with an additional PC for the study Leuven Multidisciplinary

Breast Centre (LMBC). The PCs had initially been derived by analyzing 37,000

uncorrelated SNPs that had been genotyped on the same array for other consortia

[Michailidou et al., 2013]. Further adjustment variables or restrictions were applied

according to the environmental variables assessed (Supplementary Table S2).

Four recently proposed methods that exploit G × E interaction to detect new disease-

associated SNPs were applied. Three methods were designed to test for G × E interaction: (i)

the hybrid two-step (H2) approach, (ii) a cocktail method (Cocktail), and (iii) a joint

screening (EDG × E) approach [Gauderman et al., 2013; Hsu et al., 2012; Murcray et al.,

2011]. The fourth method was designed to test jointly for genetic main effect and G × E

interaction: the 2df test [Dai et al., 2012]. The H2, Cocktail, and EDG × E approaches are

two-step approaches, which combine a testing step with a screening step and a multiple

testing correction module. All three methods use the same two tests in the screening step.

The first test is a marginal test for genetic association, where the association of the SNPs

with the disease of interest is tested without inclusion of the environmental factor. The

second test in the screening step tests for correlation between the environmental factor and

the SNP, where one is used as an explanatory variable for the other. This test is performed in

combined cases and controls, and takes advantage of the oversampling of cases as compared

with the general population.
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The H2 approach sets certain P-value thresholds for SNPs to pass the marginal and the

correlation screening step [Murcray et al., 2011]. Only those SNPs that pass at least one of

the screening steps are further tested for G × E interaction. For the screening step for H2, the

proposed thresholds of 10−5 for the marginal screening step and 10−3 for the correlation

screening were used. G × E interaction is tested using the likelihood ratio test to compare the

logistic regression models with and without an interaction term, as in standard case-control

analysis. The P-value thresholds for the testing step are calculated by dividing the desired P-

value level by the number of SNPs that passed the respective screening step. As two

screening steps are performed, a weighting factor of 0.5 is applied to both (giving them

equal weight) in order to maintain the overall significance level. SNPs that pass both

screening steps are assigned the higher P-value.

In the Cocktail approach, the common screening P-value is assigned the P-value of the

correlation screening if this P-value is below a predefined threshold (in our case 10−3) [Hsu

et al., 2012]. Otherwise, it is assigned the P-value from the marginal screening test. For the

testing step, either standard case-control analysis or a case-only analysis is applied

depending on the P-values in the screening tests [Hsu et al., 2012]. If the screening P-value

corresponds to the P-value from the marginal screening, SNPs are tested with case-only

analysis and case-control analysis otherwise. Subsequently, all SNPs are sorted in ascending

order by the screening P-value. According to the weighted hypothesis testing, j groups of

increasing size are formed by the equation: sizej = 5 × 2(j−1). All SNPs of j groups are

assigned identical alpha thresholds by the formula: aj = 0.05/[5 × 2(2j−1)], which ensures that

the overall desired alpha level of 0.05 is maintained [Ionita-Laza et al., 2007]. A SNP is

considered significant in the Cocktail approach if the P-value from the testing step is below

the alpha threshold for the respective group determined in the screening step.

The EDG × E approach combines the chi-square values from both screening tests into one

value and compares it with the chi-square distribution at 2 df [Gauderman et al., 2013].

Resulting P-values are sorted in ascending order and alpha thresholds for j groups are

calculated according to the weighted hypothesis testing approach. In the testing step, the

EDG × E approach uses case-control analysis and the resulting P-values are compared to the

thresholds calculated based on the screening step.

The 2df test jointly tests marginal association and G × E interaction [Kraft et al., 2007]. We

employed the newly proposed procedure to combine the two independent tests for the

marginal genetic association and for the G × E interaction, exploiting the independence

between the two tests [Dai et al., 2012]. This is a chi-squared test applied to the sum of the

two squared z scores or log P-values. To correct for multiple testing, Bonferroni correction

was applied leading to a P-value threshold of about 7 × 10−7 in the present analysis. Dai et

al. offered three different options to test for G × E interaction, of which the standard case-

control logistic regression was chosen to avoid biased results due to violation of the G × E

independence assumption in the population [Dai et al., 2012].

For comparison, standard case-control logistic regression (CC) for G × E interaction with

the Bonferroni-corrected P-value threshold of 7 × 10−7 was also applied. To assess study

heterogeneity, we estimated odds ratios (OR) for the per-allele genetic main effect and G ×
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E interaction for each individual study, adjusting for age, and assessed P-values for

heterogeneity using a Q-test. Subjects with missing data for a particular SNP or

environmental factor were excluded from the respective analysis. We also calculated

stratum-specific per-allele ORs for each SNP tested statistically significant using any one of

the methods employed. Data preparation and statistical analyses were performed with SAS

software (release 9.2) and the R Language and Environment for Statistical Computing,

version 2.15.0.

Results

The mean age at recruitment of the study participants was 56 years (Table 1). The sample

size and number of studies included for the analyses of the 10 different environmental

variables varied between 3,205 women from 4 studies for BMI among premenopausal

women and 55,682 women from 22 studies for the number of full-term pregnancies. The

exact numbers by study are shown in Supplementary Table S3.

Overall, three SNPs showing a statistically significant association were detected in the

analysis of G × E interaction between 10 environmental variables and 71,527 SNPs. Not all

were detected by all four methods applied and none was detected using the standard CC

approach. All three SNPs were found with the 2df test (Table 2). The latter two of these

SNPs were also found to show statistically significant interaction using the other three

approaches (Supplementary Tables S4a–c). One SNP is located on chromosome 6 and the

other two SNPs are located on chromosome 21q22.12. The latter two SNPs lie in a distance

of about 4,000 base pairs, which makes recombination unlikely [Li and Freudenberg, 2009],

and are in perfect LD (r2 = 1.0) [Hapmap, 2013]. The SNPs, which were all found to be

statistically significantly associated using the 2df test, have not been identified previously as

being associated with breast cancer risk and are not in LD with known susceptibility loci.

The two associated SNPs on chromosome 21q22.12 (rs10483028 and rs2242714) were

identified by analyzing interaction with adult BMI in a sample of 8,891 postmenopausal

women from seven studies. Considering the G × E interaction effect (OR = 0.84) was

essential for the identification of the two SNPs. The SNP rs10483028 on chromosome 21

showed a decreased effect with increasing BMI, the per-allele ORs being 1.26 (95% CI

1.15–1.38) in women with BMI <25 kg/m2, 1.10 (95% CI 0.96–1.26) in women with BMI

between 25 kg/m2 and 30 kg/m2, and 0.89 (95% CI 0.72–1.11) in women with BMI >30

kg/m2 (Fig. 1).

SNP rs12197388 on chromosome 6 was identified in interaction analyses with age at

menarche and with parity. This SNP did not show a clear G × E interaction (OR = 1.09) with

either risk factor but passed the threshold of the 2df test (7 × 10−7) due to its highly

significant marginal association (P < 6 × 10−8).

There was little or no evidence for heterogeneity by study in the G × E interaction ORs for

the three identified SNPs. This was also true for the marginal associations of the SNPs with

breast cancer risk (Supplementary Table S5 and Supplementary Figure S1 [panel A1–A4]).

None of the three identified SNPs had been selected for COGS Illumina iSelect genotyping
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array (iCOGS) with respect to the environmental factors studied and none was found to be

substantially correlated with parity/age at menarche and adult BMI in postmenopausal

women, respectively (Supplementary Table S6).

Discussion

To our knowledge, this is the first large-scale agnostic search for G × E interaction to

identify new susceptibility loci for breast cancer. To gain power, three recently developed

two-step approaches for testing for G × E interaction as well as a joint test for marginal

association and G × E interaction were used. We identified three SNPs representing two

genetic loci associated with breast cancer risk.

The two SNPs rs10483028 and rs2242714 on chromosome 21q22.12 showing strong G × E

interaction effects are located outside known genes. Nevertheless, as shown for the region

8q24, these regions might contain enhancer elements, which may affect the expression of

genes in the vicinity [Ahmadiyeh et al., 2010]. There are several SNPs in strong LD (r2 >

0.8) with rs10483028 and rs2242714 (Supplementary Figure S3). However, none of them is

located in a known regulatory element (Supplementary Figure S4). The RUNX1 gene is

located approximately 300 kb upstream of the two SNPs and has a tumor suppressor role

reflected by many somatic mutations in breast tumors. The tumor suppressor activity of

RUNX1 is considered to be mediated in part by antagonism of estrogen signaling [Chimge

and Frenkel, 2013]. Recurrent mutations in the CBFB transcription factor gene and deletions

of its partner RUNX1 also indicated inactivation of this transcription factor complex in

breast cancer [Banerji et al., 2012].

The identified SNP rs12197388 is located on chromosome 6 in an intronic region of

ARID1B, which belongs to the SWI/SNF chromatin remodeling complex family. SWI/SNF

complexes have the ability to enhance or suppress gene transcription by mobilizing

nucleosomes [Weissman and Knudsen, 2009]. ARID1B has recently been implicated in

breast cancer development through the identification of driver mutations, which confer

clonal selective advantage on cancer cells [Stephens et al., 2012]. This gene has been shown

to act as a tumor suppressor in pancreatic cancer cell lines [Khursheed et al., 2013].

Mutations in the SWI/SNF complex have also been associated with certain types of

syndromes, among those the ARID1B-related intellectual disability syndrome [Kosho et al.,

2013] as well as with early treatment failure and decreased survival in children with

neuroblastoma [Sausen et al., 2013]. Whether rs12197388 potentially influences ARID1B

function is unclear, as it does not seem to be associated with regulatory elements, and there

are no further SNPs in at least moderate LD (r2 > 0.6) with rs12197388 based on data from

the 1000 Genomes Project (Supplementary Figure S2).

Our results indicate that accounting for G × E interaction using two-step/hybrid methods can

lead to the identification of new susceptibility loci. All three methods that test only for G ×

E interaction identified the two SNPs on chromosome 21 because of a strong interaction

between the SNPs and BMI in postmenopausal women but not the SNP rs12197388 on

chromosome 6 because of the absence of G × E interaction. This suggests comparable power

of these methods based on empirical evidence, which was also demonstrated by simulation
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studies [Mukherjee et al., 2012]. The consistency of the results between methods provides

some support for the robustness of the finding. The SNP rs12197388, on the other hand, was

identified through its marginal effect on breast cancer risk. The association between

rs12197388 and breast cancer risk was weaker if all subjects of European descent from

BCAC were included, irrespective of the availability of information on the respective

environmental risk factors (OR = 1.05, P = 7.2×10−5). Because the genetic association was

not genome-wide statistically significant, rs12197388 was not identified as susceptibility

locus for breast cancer in the recent publication [Michailidou et al., 2013]. Restricted to

studies that collected information on epidemiologic risks, our finding could be due to chance

or through introducing a selection bias that we are currently not able to explain. However,

both the marginal association with breast cancer risk of rs12197388 and the estimates for G

× E with number of births and age at menarche were not heterogeneous between studies in

the current analysis (Supplementary Figure S1). For the other two SNPs, rs10483028 and

rs2242714, which showed statistical interaction with adult BMI in postmenopausal women,

the association with breast cancer risk was weaker but still apparent when analyzed in all

postmenopausal subjects of European descent in BCAC (OR = 1.06, P-value = 0.001).

Large sample sizes, comprising more than 20,000 cases and controls, were available for the

present interaction analyses with number of births, age at menarche, and adult body height.

However, sample size was moderate for analyses with most of the other risk factors, such as

BMI and menopausal hormone therapy. Multiplicative interactions identified to date

between environmental risk factors and common breast cancer susceptibility alleles have

been weak or at most moderate [Nickels et al., 2013]. An at least fourfold larger sample size

has been shown to be necessary for the identification of G × E effects of the same order of

magnitude as compared to marginal effects [Smith and Day, 1984]. Therefore, statistical

power to detect an interaction with the other risk factors was still limited [Hein et al., 2008].

It is likely that further susceptibility loci for breast cancer that predominantly act through G

× E interactions can be identified in the human genome. Of the set of SNPs in the present

analysis, approximately 61,240 were selected based on evidence of association with breast

cancer or specifically estrogen receptor negative disease [Garcia-Closas et al., 2013;

Michailidou et al., 2013]. A detectable genetic effect, however, is not a prerequisite for the

identification of G × E interaction effects. Thus, further SNPs with G × E interaction

markers could be identified when expanding the set of genetic considered.

As the present analyses were based on preselected SNPs, the parameters used for the

methods, which are designed for genome-wide G × E detection, might not have been

optimal in this setting. The H2 and the Cocktail approach require thresholds for the

screening step P-values, which can be arbitrary. For the H2 approach, we used the

thresholds for the screening steps, which were proposed by the authors and found to be

optimal in most of their simulation configurations [Murcray et al., 2011]. Similarly, for the

Cocktail approach we used the threshold that had been originally proposed for the Cocktail I

approach [Hsu et al., 2012].

All methods employed correct inherently for multiple comparisons introduced by testing

large numbers of SNPs, but the number of environmental variables tested was not taken into
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account. It could be argued that all thresholds should be reduced by one decimal power to

correct for multiple testing of environmental factors. However, all 10 environmental

variables in our analysis are known breast cancer risk factors. Both SNPs on chromosome 21

would remain significant at the 5% level even if the P-value threshold was reduced by one

decimal power to 7 × 10−8. This would not be the case for rs12197388. Although four

different methods were used, correction of multiple testing due to the use of different

methods did not seem appropriate because all the methods for assessing G × E interaction

are highly correlated.

Several studies that contributed to the present analyses were nonpopulation-based. However,

selection bias is not expected to influence estimates of G × E interactions in most

circumstances [Morimoto et al., 2003]. We did not observe pronounced differences between

results from population-based and nonpopulation-based studies in G × E interaction analyses

(Supplementary Figure S1). In a previous publication on G × E interactions with known

breast cancer SNPs, we also did not observe between-study heterogeneity in interaction

ORs. In sensitivity analyses, G × E estimates were not found to change substantially after

restriction to population-based studies only [Nickels et al., 2013]. Differential

misclassification would rather have led to an underestimation of interaction effects [Garcia-

Closas et al., 1998]. In BCAC, risk factor information is harmonized thoroughly in a

standardized fashion. For cases in case-control and cohort studies, the reference time was

always time at diagnosis. For controls, reference time was time at interview and therefore at

baseline recruitment for cohort studies. Misclassification of the menopausal status by using

an age surrogate was therefore unproblematic. But specifically for risk factors that are likely

to change over time (e.g., smoking behavior and menopausal hormone therapy use),

different referent times for assessment could lead to heterogeneity of results derived from

cohort vs. case-control studies. As shown in Supplementary Figure S1 (panel A1, A2, B1,

B2), we did not observe heterogeneity between case-control and cohort studies. Therefore,

the differing reference times did not bias our results to a great extent.

The present analyses were restricted to subjects of European ancestry and adjusted for study

to reduce bias due to population stratification. The present results were consistent with

previous results on marginal SNP associations from BCAC [Michailidou et al., 2013]. Most

of the previously identified breast cancer susceptibility alleles were again detected by

application of the 2df test, which also considers the marginal genetic association.

To conclude, the identification of the new breast cancer associated loci supports the

hypothesis that new risk loci can be identified by methods that account for G × E interaction

in the association analysis. In addition to GWAS for genetic main effects, this approach may

facilitate identifying a proportion of the susceptibility loci contributing to polygenic

susceptibility to breast cancer, where association differs according to the presence or

absence of a particular environmental factor, or is restricted to those with the environmental

factor. Replication of the susceptibility loci identified through G × E interaction will

however require large sample sizes with environmental risk factor data to achieve adequate

power, which might not be trivial to recruit.
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Figure 1.
Effect of rs10483028 on breast cancer risk by strata of adult BMI in 8,891 postmenopausal women from BCAC.
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Table 1

Description of the environmental risk factors by case-control status from 23 studies in the BCAC

Risk factor Category Cases Controls All

Reference age N 34,475 34,786 69,261

N premenopausal 13,954 14,532 28,486

N postmenopausal 20,521 20,254 40,775

Mean (SD)a 56.2 (11.2) 55.5 (11.5) 55.9 (11.4)

Number of births (parity) N b 27,174 28,508 55,682

Mean (SD)a 1.9 (1.3) 2.0 (1.3) 1.9 (1.3)

Age at menarche (menarche) N b 21,942 23,109 45,051

Mean (SD)a 13.1 (1.6) 13.1 (1.6) 13.1 (1.6)

Adult body height (cm, height) N b 24,016 20,178 44,194

Mean (SD)a 164 (6.6) 165 (6.6) 164 (6.6)

BMI (kg/m2, postmenopausal women, BMI post) N b 4,423 4,468 8,891

Mean (SD)a 25.2 (4.5) 24.8 (4.2) 25.0 (4.4)

BMI (kg/m2, premenopausal women, BMI pre) N b 1,759 1,446 3,205

Mean (SD)a 24.7 (5.1) 25.5 (5.6) 25.0 (5.4)

Use of oral contraceptives (years, oral contraceptive duration) N b 11,017 11,911 22,928

Mean (SD)a 5.3 (7.0) 5.9 (7.1) 5.6 (7.1)

Estrogen-progesterone therapy (years, postm. women,a estrogen-
progesterone therapy duration)

N b 3,790 4,057 7,847

Mean (SD)a 1.7 (4.3) 1.2 (3.7) 1.4 (4.0)

Estrogen therapy (years, postm. women,a estrogen therapy duration) N b 3,876 4,085 7,961

Mean (SD)a 1.3 (4.1) 1.0 (3.5) 1.1 (3.8)

Alcohol consumption (grams per day, alcohol) N b 3,812 4,055 7,867

Mean (SD)a 7.3 (16.0) 6.8 (11.3) 7.1 (13.8)

Family history of breast cancer (famhist) N b 20,108 18,522 38,630

Yes (%) 4,213 (21%) 1,606 (9%) 5,819 (15%)

a
Women who stopped hormone therapy before diagnosis/interview were assigned 0 years of therapy.

b
N is the final sample size for analysis without individuals with unknown values in the variable or any of the adjustment variables.
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