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Abstract

β-Secretase-1 (BACE1) is the rate-limiting enzyme for the genesis of amyloid-β (Aβ) peptides,

the main constituents of the amyloid plaques in the brains of Alzheimer’s disease (AD) patients.

BACE1 is being evaluated as an anti-Aβ target for AD therapy. Recent studies indicate that

BACE1 elevation is associated with axonal and presynaptic pathology during plaque development.

Evidence also points to a biological role for BACE1 in axonal outgrowth and synapse formation

during development. Axonal, including presynaptic, pathology exists in AD as well as many other

neurological disorders such as Parkinson’s disease, epilepsy, stroke, and trauma. In this review,

we discuss pharmaceutical BACE1 inhibition as a therapeutic option for axonal pathogenesis, in

addition to amyloid pathology. We first introduce the amyloidogenic processing of amyloid-β
protein precursor and describe the normal expression pattern of the amyloidogenic proteins in the

brain, with an emphasis on BACE1. We then address BACE1 elevation relative to amyloid plaque

development, followed by updating recent understanding of a neurotrophic role of BACE1 in axon

and synapse development. We further elaborate the occurrence of axonal pathology in some other

neurological conditions. Finally, we propose pharmacological inhibition of excessive BACE1

activity as an option to mitigate early axonal pathology occurring in AD and other neurological

disorders.
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INTRODUCTION

Synaptic and axonal abnormalities are observed in many neurological conditions including

Alzheimer’s disease (AD), Parkinson’s disease (PD), traumatic brain injury (TBI), temporal

lobe epilepsy (TLE), and cerebral stroke. Synaptic pathology can occur in the pre- and

postsynaptic components, with the latter largely involving atrophic changes of dendrites and

dendritic spines. Axonal pathology may occur along the axonal shaft and at the presynaptic

terminal, and is characterized microscopically by aberrant sprouting, dystrophic expansion,

and accumulation of various cellular organelles and cytoskeletal/signaling proteins. Synaptic

and axonal pathology impairs the integrity of neuronal circuitry and neurotransmission.

Aberrant axonal sprouting may also result in abnormal synaptic connectivity and cause

excitatory/inhibitory imbalance. Accumulation of certain functional proteins in axon

terminals may compromise normal neuronal functions. In addition, axonal pathology may

propagate and lead to retrograde neuronal degeneration in a “dying-back” manner. The

cellular and molecular mechanism underlying synaptic and axonal pathology remains

largely elusive, but it might include deficient axonal transport, impaired autophagy activity,

and malignant regeneration.

β-Secretase-1 (BACE1) is the obligatory enzyme for the amyloidogenic processing of the

amyloid β-protein precursor (AβPP). BACE1 inhibition is currently evaluated as an anti-Aβ
therapy for AD. BACE1 appears to be enriched at presynaptic terminals in the normal brain,

and promotes axonal outgrowth during development. BACE1 overexpression is inherent

with the formation of dystrophic axonal neurites during amyloid pathogenesis. Emerging

evidence also suggests a correlation of BACE1 elevation with aberrant axonal sprouting in

TBI and TLE. These data converge to suggest that BACE1 inhibition may mitigate neuritic

dystrophy and aberrant axonal sprouting. This review will briefly introduce and update the

biochemical, anatomical, and pathological perspectives of this enzyme, and propose BACE1

inhibition as a pharmacological option against axonal pathology in AD and other

neurological conditions.

SECRETASE-MEDIATED AβPP PROTEOLYSIS AND Aβ GENESIS

AβPP is an integral membrane protein existing in several alternative splicing isoforms,

ranging from 365 to 770 amino acids in length. AβPP consists of a large N-terminal domain

containing multiple extracellular loops, and a C-terminal domain that is composed of a

transmembrane part and an intracellular sequence [1-6] (Fig. 1). The Aβ domain occupies

the N-terminal segment of the AβPP C-terminal and is partially inserted in the bilayer lipid

membrane. Aβ genesis likely involves sequential proteolytic cleavages by two enzymes

named β-secretase (BACE) and γ-secretase. BACE mediates the β-site cut at the

extracellular portion of AβPP near the lipid membrane. This processing releases the β-site

cleaved N-terminal (β-NTF) or soluble AβPP-β fragment extracellularly, leaving the β-C-

terminal fragment (β-CTF, C99) anchored to the lipid membrane. β-CTF is subsequently

cleaved by γ-secretase at the γ-site inside the lipid membrane (as a part of the hydrophobic

residues of AβPP), releasing γ-site cleaved AβPP CTF (γ-CTF) intracellularly. This γ-site

cleavage appears to shed the Aβ peptides (mostly Aβ40 and Aβ42) extracellularly, although

it is also considered that these peptides may enter the intracellular compartment. γ-Secretase
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may execute a novel ε-site AβPP cleavage several amino acids down to initially defined γ-

site, yielding longer Aβ species such as Aβ48/49 [6-8]. AβPP is also enzymatically

catabolized via a non-amyloidogenic pathway [9]. In this case, the first cleavage is carried

out by α-secretase in the middle of the Aβ domain. The resulting AβPP C-terminals (α-

CTF, C83) are also further cut by γ-secretase, yielding a short peptide (P3) from the Aβ
sequence and γ-CTF intracellularly (Fig. 1). The various species of γ-CTFs derived from

the amyloid and the non-amyloid pathways are also collectively named as the AβPP

intracellular domain (AICD), which may translocate into the nucleus and regulate protein

expression by controlling gene transcription [5-8].

A large number of antibodies have been developed for the detection of AβPP and its

cleavage products (Fig. 1). For instances, the monoclonal antibody 22C11 is generated

against the N-terminal residues of AβPP and can detect human and murine full-length

AβPP. Antibodies raised against the C-terminal residues (e.g., CT15, CT20, 369) also

recognize holo-AβPP and the C-terminal fragments. Numerous antibodies against amino

acid residues of the Aβ domain are also available. 3D6, 6E10, and several other antibodies

(e.g., 82E1, FCA3340, and FCA3542) are designed to target the N-terminal residues of Aβ,

while 4G8 and E50 are raised against the middle region of Aβ. Some antibodies may be

specific to the C-terminal residues of the Aβ domain, including Ter40 and Ter42. These Aβ
antibodies may label Aβ monomers, oligomers, and aggregates in immunohistochemistry

and western blot. Many Aβ antibodies (e.g., 3D6, 6E10, 4G8) can detect the full-length

AβPP and/or β-CTFs in immunoblot by targeting the same antigen epitopes as in the Aβ
domain. Such antibody cross-reactivities could occur in immunohistochemistry, and may

raise interpretative difficulty especially regarding the nature of labeling inside neural cells

[10-16].

EXPRESSION OF AMYLOIDOGENIC PROTEINS IN NORMAL BRAIN

AβPP expression is found in neuronal and nonneuronal components in the central nervous

system and peripheral tissues, with an abundant presence in the brain. Immunohistochemical

studies indicate that neuronal somata and dendrites are labeled with antibodies detecting the

full-length AβPP, such as 22C11 and CT15. Electron microscopic and biochemical analyses

suggest that AβPP may be concentrated in synapses. AβPP may be transported inside

neurons, including from somata into axons and synaptic terminals [3-6].

The candidate enzymes for AβPP β-site cleavage are first reported in 1999 and 2000, named

BACE1 (also named as memapsin 2 and Asp2) and BACE2 [17-21]. Follow-up genetic,

electrophysiological, pharmacological, and pathological studies point to BACE1 as being

the principal, if not the sole, β-secretase responsible for Aβ genesis in the brain [22-26].

BACE1 may exist as a zymogen as well as various immature and mature forms that are

enzymatically active [24, 27, 28]. BACE1 may undergo extensive posttranscriptional

modulations, including glycosylation, acetylation, and palmitoylation and phosphorylation

in Golgi apparatus and endosomes [23, 28-31], and may be trafficked into lipid rafts or non-

raft membranous compartments and degraded in the lysosomal components [28, 31].

Immunohistochemical studies using different antibodies report that BACE1 is expressed in

neuronal and glial cells in mammalian brain [24, 26, 32-35]. We have used a rabbit antibody
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against human BACE1 to explore the localization of this enzyme in the central nervous

system [24, 26]. This antibody detects the 70 kd mature BACE1 by western blot, which is

absent in BACE1 knockout brain. Deglycosylation of brain extracts results in a shift of

detected protein products from 70 kd to lower molecular weight positions, consistent with

the known property of glycosylation of mature BACE1 protein [27]. No specific

immunolabeling is found in brain sections from BACE1 null mice [26, 36]. In

immunohistochemistry, the hippocampal mossy fiber terminal and the olfactory bulb

glomeruli exhibit heavy labeling by this antibody, whereas no somata or dendritic profiles

are clearly visualized in the forebrain or subcortical structures [26, 36-38]. This brain

distribution pattern is consistent with the findings by several other groups using different

specific BACE1 antibodies [35, 39]. Thus, BACE1 appears to be largely expressed in fine

neuronal processes in the central nervous system, and may be particularly enriched at

presynaptic terminals. Indeed, a recent electron microscopic study has confirmed a

preferential BACE1 localization to presynaptic axon terminals in normal rodent brain [39].

γ-Secretase is a multimeric complex consisting of several distinct proteins. The N- and C-

terminals fragments derived from proteolytic processing of the inactive holoproteins of

presenilins (PS1 and PS2) contribute to the active core of the enzyme complex. Nicastrin

may function as the enzyme receptor, and Aph-1 and Pen-2 are important for the assembly,

trafficking, and maturation of the enzyme complex (for reviews, see [40, 41]). In addition,

TMP21, a member of the p24 cargo protein family, is characterized as a component of the

presenilin complex and differentially regulates the γ-site but not ε-site cleavage [42]. The

γ-secretase subunit proteins appear to be richly expressed in the brain during development,

suggesting a role for the enzyme in neuronal morphogenesis and synaptic development

[43-46].

Specific radiolabeled γ-secretase inhibitors may probe putative active sites of γ-secretase

complex in situ. Overall, γ-secretase binding sites are present largely in the grey matter

[46-49]. However, the binding sites are not necessarily restricted to brain areas or lamina

occupied by neuronal somata, but may be densely packed in areas/lamina relatively sparse

of neuronal somata, such as the molecular layer of the cerebellar cortex, the substantia nigra

reticulate, the hippocampal mossy fiber field, and the olfactory glomeruli. Therefore, as with

BACE1, active γ-secretase binding sites may concentrate in neuronal terminals, especially

in areas with high synaptic plasticity [46].

BACE1 ELEVATION IN AMYLOID PLAQUE PATHOGENESIS

Aβ peptides and/or derivatives in the amyloid plaques may play a pathogenic role in AD

[50-57]. Plaque formation in the brain is also thought to be a consequence of other

pathological process. Cajal, Fischer, and Bonfiglio, the very first generation of researchers

studying AD neuropathology, considered that the amyloid materials seen in senile plaques

may derive from the surrounding dystrophic neurites [55]. Cajal describes senile plaque

formation as beginning with the appearance of some dystrophic neurites until the final cored

neuritic plaque is formed [58]. Such a concept continued to develop during the 60s to 80s of

last century and even later [53-59]. Anatomically, neuritic plaques are classified into the

small primitive form and the relatively large, cored form, with the latter containing a central
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core of highly concentrated amyloid deposits [10, 12, 55, 60, 61]. Terry and Wisniewski

have proposed that primitive plaques evolve into cored plaques as the amyloid materials

accumulates inside the growing cluster of the dystrophic neurites [62].

The availability of transgenic AD models and molecular markers for Aβ producing enzymes

provides new tools for exploring the origin of pathologically important Aβ products and

plaque development. BACE1 is the first, obligatory, and rate-limiting enzyme for Aβ
genesis. Therefore, localizing abnormal BACE1 expression in the brain, if it occurs, and

comparing it with plaque development, may reveal the anatomic sites of Aβ overproduction

and potentially elucidate the process of extracellular amyloid plaque formation in vivo. To

date, several dozen mouse and rat transgenic AD models have been developed, many of

which are engineered to overexpress mutant forms of human AβPP, presenilins, and/or tau

protein identified in pedigrees with early-onset dementia, as listed at the Alzheimer’s

Disease Forum (http://www.alzforum.org/res/com/tra/default.asp). These animal models

recapitulate, more or less, the main pathological and functional deficits observed in AD

patients, including age-related cognitive impairments, cerebral amyloid deposition, tau

hyperphosphorylation, and other neuropathological changes (e.g., [63-65]).

BACE1 elevation appears to occur in the brain from a fairly early age among several plaque-

forming transgenic AD models examined so far, including Tg2576, 2XFAD, 5XFAD, and

3xTgAD [10,11,35-37,39,66,67]. Importantly, the onset and evolution of typical neuritic

plaques in the brain and spinal cord correlate with a progressive axon terminal pathology

associated with BACE1 overexpression. This pathology emerges as microscopically

noticeable BACE1 immunoreactive swollen and sprouting axon terminals, often occurring

perisomatically on the principal neurons expressing the mutant AβPP in the cerebral cortex,

Ammon’s horn, and the ventral horn of the spinal cord. Swollen axonal spheroids are also

initially detected in cortical white matter and subcortical areas such as the striatum and

septum. Besides BACE1, the abnormal axonal elements can also be co-labeled by antibodies

against the transgenic AβPP, Aβ monomers or aggregates, and some specific neuronal

phenotype markers. Extracellular Aβ deposits are absent from the small and isolated

dystrophic axon terminals, but emerge and accumulate with the growth/expansion of the

dystrophic neurites, especially as these neurites become rosette-like clusters [36,37,55,59,

62, 66-70] (Fig. 2A-D). This co-evolution of axonal terminal dystrophy and extracellular Aβ
deposition, together with fact that BACE1 is clearly elevated inside the dystrophic neurites,

provides anatomical and biochemical evidence that neuritic pathogenesis likely precedes

site-specific plaque formation (Fig. 2E).

Diffuse plaques are defined as spreading extracellular Aβ deposition in brain parenchyma,

which are conceptually differentiated from neuritic or compact plaques that are surrounded

by dystrophic neurites and activated astrocytes [12, 60, 61]. It is considered that during

compact plaque formation, early occurring Aβ “seeds” induce dystrophic changes in nearby

neuronal processes [51]. However, this theory cannot well reconcile the fact that there are no

or rare dystrophic neurites around the diffuse plaques, which contain similar Aβ products as

found in compact plaques. The finding that axon terminals and synapses are the primary

sites of BACE1 upregulation and hence Aβ overproduction points to a coherent explanation

for the pathogenesis of compact (as described above) as well as diffuse plaques [10].
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BACE1 elevation may occur in fine axon terminals and synapses over a brain area, which

with time may release a sufficient amount of Aβ triggering regional amyloidosis in a diffuse

pattern. In this case, there exist progressive pathophysiological changes in axons, including

BACE1-mediated Aβ overproduction. However, the axonal pathology may not proceed to

overt morphological dystrophy as seen in compact plaque development (Fig. 2F-J).

If axonal pathogenesis does drive amyloid plaque formation, inducing axonal pathology

should trigger early plaque development in a region-specific manner. Consistent with this

speculation, BACE1 upregulation occurs concomitantly with limbic axonal sprouting in an

experimental model of chronic TLE in CD1 mice [38]. In epileptic 3×TgAD mice, plaque

pathology is accelerated and enhanced in the hippocampal formation, limbic cortex, and

amygdala relative to age-matched counterparts, regionally correlated with increased axonal

sprouting and dystrophy [70]. Also in 3×TgAD mice, sciatic nerve axotomy facilitates

neuritic dystrophy in parallel with increased plaque formation in the ventral horn of the

lumber spinal segments, suggesting a retrograde modulation by the axonal injury on neuritic

plaque pathogenesis around the somata of traumatized motor neurons [66].

Increased BACE1 expression and activity are reported in the brain of sporadic AD subjects

[71-78]. In order to understand the spatiotemporal relevance of BACE1 elevation to plaque

formation, cerebral tissues from diagnosed AD subjects and aged nonhuman primates are

comparatively examined [77]. In both AD human and aged monkey cortices, increased

BACE1 labeling occurs in isolated and rosette-like dystrophic neurites (Fig. 2B-D). There is

a better anatomical and densitometric correlation between BACE1 and Aβ labeled profiles

in AD cases with mild, relative to those with advanced, cerebral amyloid pathology. In end-

stage AD cases, amyloid plaques may be associated with a few or no BACE1-labeled

dystrophic neurites [77]. Two factors might explain why the amount of BACE1-labeled

dystrophic neurites does not match to the extent of amyloid deposition in the advanced AD

brains: 1) accumulation of insoluble Aβ products with time or disease course, and 2)

degeneration of the dystrophic neurites (“burn-out” effect). It should be noted that BACE1-

labeled neurites in the monkey and human cerebrum localize in proximity to cerebral

vasculature, [77], a distribution pattern also featured by parenchyma amyloid plaques in AD

[79-81].

BIOLOGICAL ROLE OF BACE1 IN AXON AND SYNAPSE DEVELOPMENT

BACE1-null mice exhibit multiple neurological phenotypes, including growth retardation,

high mortality, memory dysfunction, central and peripheral hypomyelination, seizure

vulnerability, and schizophrenia-like behaviors, suggesting that BACE1 may play complex

biological roles [26, 28, 82-90]. An intriguing recent finding involves a “neurotrophic”

effect of this enzyme on axon outgrowth and synapse formation during development. In

particular, BACE1 knockout causes malformation of the olfactory bulb glomeruli and mis-

targeting of the hippocampal mossy fibers [91-93]. It has also been shown that increased

BACE1 expression accelerates neurite outgrowth yet reduces the overall number of

filopodia-like extensions in vitro [94]. Besides AβPP, BACE1 may proteolytically process a

diverse array of substrates, many of which appear to play a critical role in intercellular

communication, axonal guidance, and myelination [82-85, 87-89, 93, 95, 96]. The rich

Yan et al. Page 6

J Alzheimers Dis. Author manuscript; available in PMC 2014 April 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



presence of BACE1 in presynaptic terminals allows this enzyme to execute an active role in

synaptic development and plasticity, presumably via its proteolytic modulation to AβPP and

other substrates [11, 26, 36-39, 91, 92].

Other data suggest that BACE1 may play a role in neuronal stress response and normal

neuroplasticity. BACE1 is upregulated under stressful conditions, including ischemia,

hypoxia, and traumatic injury [27, 97-103]. Oxidative stress and/or mitochondrial

bioenergetic deficiency upregulate BACE1 expression in vitro and in vivo. Pharmacological

studies in vitro and in vivo indicate that neuronal activity potentiates synaptic Aβ release,

possibly via BACE1 upregulation [104, 105]. In the olfactory system, blocking

physiological activity by naris-occlusion enhances BACE1 mRNA and protein expression in

neuronal somata and axonal terminals [37, 92, 106]. This suggests a role for BACE1 in

modulating synaptoplasticity during adulthood, given that the primary olfactory pathway

undergoes constant structural modulation regulated by experience [106].

SYNAPTIC AND AXONAL PATHOLOGY IN NEUROLOGICAL DISORDERS

Synaptic and axonal lesions may contribute to pathogenesis and functional decline in many

other neurological conditions in addition to AD [107]. TBI and TLE are probably the best

studied disorders with regards to the extent of axonal pathology [108-120]. TBI is associated

with early and broad axonal pathology that can be anatomically detected by AβPP and Aβ
antibodies [115-117]. BACE1 elevation has been also reported in dystrophic neurites in

human TBI [68, 69]. Axonal pathology is a pathological feature of TLE, mostly evidenced

by the hippocampal mossy fiber sprouting [111-113]. Both TBI and TLE may be associated

with brain amyloid pathology [68-70, 116-118]. Neuritic changes are a part of the

neuropathology seen in PD and Lewy body dementia. Axonal spheroids and dystrophic

neurites containing α-synuclein and other protein aggregates are found in the cerebral

cortex, hippocampal formation, and subcortical structures of PD brains [121-124]. As

typical AD (plaques and tangles) and PD (Lewy body and neurites) pathologies may coexist

in clinically diagnosed AD or PD patients (or aged individuals) [125], the possibility of α-

synuclein colocalization with AβPP or BACE1 in dystrophic neurites is worth further

investigation. For additional examples, evidence suggests that axonal or neuritic pathology

is associated with ischemic cerebral stroke [112, 113] and diabetic neuropathy [126].

Much work is needed to answer why axonal pathology occurs in various neurological

disorders. Since there is loss of synaptic function in neurological diseases, this pathology

may represent a part of neurodegenerative changes [107]. However, the swelling/sprouting

of axonal processes and presynaptic terminals may also implicate an aberrant regenerative

phenomenon [53, 55-57]. Axonal and synaptic pathology could be linked to neuroplasticity,

a fundamental feature of the brain in response to internal and environmental stimuli. Early

regenerative axonal and synaptic responses may serve a compensatory role to restore

neuronal function, whereas persistent aberrant neuroplasticity could contribute to or

exacerbate disease progression and functional loss [56, 57, 108-110, 118].

The molecular underpinning of axonal pathology is not clear to date. Deficient axonal

transport owing to dysfunctional protein trafficking and deregulation of the autophagy

machinery may cause neuritic dystrophy and accumulation of intracellular organelles [59,
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127-130]. Notably, neuritic dystrophy can occur early or predominantly at the presynaptic

sites without concurrently involving the axonal tract regions, at least in some cases [10,

36-38, 66]. This may be consistent with the notion that neuritic dystrophy may occur as a

part of regenerative cellular attempts [53-57, 131, 132]. Thus, extensive investigations are

warranted to identify the molecular substrates and signaling pathways responsible for axonal

dystrophy, which may lead to the discovery of novel pharmaceutical targets for this

pathology.

BACE1 INHIBITION AS A THERAPEUTIC OPTION FOR AXONAL PATHOLOGY

Many previous reviews have discussed BACE1 inhibition as a promising anti-Aβ therapy

for AD, which is supported by genetic and pharmacological data from animal and human

studies (e.g., [5, 6, 24, 28, 133]). A number of orally bioactive BACE1 inhibitors have been

developed and show efficacy of lowering central Aβ levels and reducing cerebral

amyloidosis in animal studies [25, 134-136]. Several potential BACE1 inhibitors are

currently in phases I to III clinical trials, such as CTS-21166 (CoMentis), AZD3293

(AstraZeneca), RG7129 (Roche), LY2886721 (Lilly), E2609 (Eisai), and MK-8931 (Merck)

(http://www.alzforum.org/new/detail.asp?id=3222). Scholarly reports about the effect of

these BACE1 inhibitors on cerebrospinal fluid and plasma Aβ levels, brain Aβ deposition,

and ultimately cognitive performance, might become available in the near future. To avoid

redundancy with previous reviews, we do not discuss this expected efficacy of BACE1

inhibition here. As the best known function of BACE1 so far is its metabolic control over

the amyloidogenic pathway, we propose that BACE1 inhibition to downregulate this

pathway can influence neuritic and synaptic pathology, through Aβ-dependent and Aβ-

independent mechanisms.

In vitro and in vivo studies suggest that at a certain level Aβ42 or amyloid fibrils may

stimulate BACE1 expression, thereby self-enforce cerebral amyloid pathogenesis by a feed-

forward mechanism [137-141]. Aβ products are considered to induce synaptic dysfunction

and neuritic dystrophy [45, 50-53]. Lowering Aβ production via BACE1 inhibition will

block the vicious pathogenic cycling induced by toxic Aβ products, thereby protecting

synapses and neuronal terminals. BACE1 inhibition might mitigate axonal and presynaptic

pathology via an Aβ independent mechanism. In particular, genetic and pharmacological

studies suggest that the immediate BACE1 product, AβPP β-CTF, may be neurotoxic. Thus,

β-CTF may accumulate early in neurons, especially in presynaptic terminals and dystrophic

axons, in transgenic AD animal models and human AD subjects, which may worsen

following administration of γ-secretase inhibitors [10-13, 66, 77, 78, 142-149]. Therefore,

BACE1 inhibition would offer a unique protective effect on synapses and neuronal circuitry

by preventing intraneuronal β-CTF accumulation.

With regard to other BACE1 substrates, chances are that BACE1 inhibition may cause either

beneficial or mechanism-based side-effects to axons and synapses, pending more data from

additional investigations into the molecular interaction between BACE1 and its novel

substrates. As BACE1 plays a role in axonal outgrowth and synaptic development [91-94],

BACE1 inhibition might interrupt normal synaptoplasticity in the adult brain. However,

since axonal pathology is associated with excessive BACE1 activity, it is also possible that
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normalizing BACE1 to physiological levels might not necessarily cause dramatic adverse

effects as seen in the neuronal systems wherein BACE1 levels are genetically inhibited to

well below physiological levels.

To promote BACE1 inhibition as a strategy to antagonize axonal pathology in neurological

diseases, much basic and translational research will be needed. Experimental studies using

BACE1 deficient mice will help understand more about the biological functions and

biochemical interaction and modulation of the enzyme in vivo. However, assessing

pathological and behavioral outcomes following experimental manipulations on genetically

modified systems may also be complicated [22, 150, 151], since both deficient and

compensatory molecular responses may co-exist in the testing background. Potent and

bioavailable BACE1 inhibitors will be very useful, and could provide a great opportunity to

evaluate the utility and efficacy of BACE1 inhibition on wild-type animal models of

neurological diseases with axonal pathology.

CONCLUSION

Strong genetic, molecular, and pathological data support a link of the amyloidogenic

proteins to AD pathogenesis and neuronal/synaptic dysfunction. However, several anti-Aβ
approaches, including Aβ immunization, anti-Aβ aggregation, and γ-secretase inhibition,

are yet to demonstrate the expected neurological benefits in clinical trials [152]. Based on

experimental data showing a close association of BACE1 elevation with axonal and

presynaptic dystrophy, we propose that BACE1 inhibition may provide a unique

pharmacological revenue against axonal pathology and synaptic dysfunction, especially by

preventing intraneuronal β-CTF accumulation. Future studies should explore the spectrum

of BACE1 elevation in axonal pathology under various neurological conditions.

Pharmacological inhibition of BACE1 in wild-type animal models may be particular

informative in translational medicine.
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Figure 1.
Schematic illustration of the structure of the amyloid-β protein precursor (AβPP), its enzymatic processing via the

amyloidogenic (top) and non-amyloidogenic (bottom) pathways, and the expected detection of its cleavage products by

representative antibodies. The N-terminal segment of AβPP is extracellular and can be cleaved by β-secretase-1 (BACE1) or α-

secretase to form soluble β- or α-site cleaved fragments (sAβPPβ or sAβPPα). The AβPP C-terminal segment is divided into

the transmembrane Aβ domain (purple/green/brown) and the intracellular sequence, with the later corresponding to 99 (β-CTF,

C99) or 83 (α-CTF, C83) amino acid (a.a.) residue-long peptides depending on the initial BACE1 or α-secretase processing of

the full-length AβPP. C99 and C83 are further cleaved by γ-secretase inside the lipid bilayer at the γ-site, releasing monomeric

Aβ peptides (38-42 a.a.), or at the ε-site, releasing certain longer Aβ species such as Aβ48/49. Thus, the final γ-site cleavage

yields the γ-CTFs of varying lengths in the cytosol, collectively named as AβPP intracellular domain of CTFs (ACID), which

may enter the nucleus and regulate gene expression. Antibodies targeting the N-terminal (22C11) and C-terminal (CT15, CT20)

of AβPP may detect the corresponding terminal fragments, and the full-length AβPP as well. Antibodies targeting the N-

terminal (3D6, 6E10), middle (4G8, E50), and C-terminal (Ter40 and Ter42) regions of the Aβ domain may detect monomeric

Aβ peptides and their aggregates in amyloid plaques. Theoretically, they may across-react against the same epitopes in the

AβPP holoprotein and β-CTF in neuronal somata and processes.
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Figure 2.
Images and schematic drawings illustrating a hypothesis that amyloidogenic axonal pathology facilitates compact (A-E) and

diffuse (F-J) plaque formation in the brain. Panels (A-D) show BACE1/Aβ double immunofluorescent images taken from the

temporal cortices of a 6 month-old 5XFAD transgenic mouse (A) and a perfused Alzheimer’s disease (AD) human brain (B-D).

BACE1 labeling (red) localizes to isolated and clusterized dystrophic neurites (DN), mostly associated with local extracellular

Aβ reactivity. However, some small and isolated dystrophic neurites (indicated by arrows) are not surrounded by Aβ deposits.

Panel (E) illustrates a possible process of compact/neuritic plaque development. We hypothesize that plaque-forming Aβ
products largely derive from axonal (including perisomatic presynaptic) terminals that are undergoing a progressive dystrophic

pathogenesis, which is intrinsically inherent with BACE1 overexpression. This pathology results in an increased Aβ release into

the extracellular spaces, causing an aggressive local amyloidosis. Panel (F) shows a double immunofluorescent image taken

from the frontal cortex of an aged 3×Tg-AD mouse. The Aβ reactivity (green) appears as diffuse plaques with variable intensity

and no clear borders (compare F with A-D). Small and irregularly shaped BACE1 immunoreactive elements (red) are present in

the same area, often around cell bodies, as visualized by bisbenzimide nuclear stain (Bis, blue). These perisomatic BACE1

immunoreactive profiles (as indicated by arrows) colocalize with synaptophysin (SYN) (G-I), therefore likely representing

abnormal presynaptic terminals. Panel (J) illustrates a potential process of diffuse plaque formation facilitated by amyloidogenic

axonal pathology activated over a relatively large brain area. This axonal pathology is not as aggressive as in the case of

compact plaque formation, therefore causing a lesser extent of neuritic dystrophy. It should be noted that the perisomatic

BACE1 immunoreactive swollen/sprouting axon terminals characterized in the transgenic mouse models do not appear to be

prominent, if they exist, in aged monkey or AD human cerebrum [77]. It is possible that axonal pathology may mainly occur in

the neuropil or paravascular areas, rather than the perisomatic sites, in humans [59, 153]. Arab numbers in (A, F) indicate

cortical layers. Scale bar in (A) = 50 μm applying to (B-D, F), equivalent to 5 μm for (G-I).
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