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The generation of toxic non-native protein conformers has emerged as a unifying thread among disorders such as Alzheimer’s disease,

Parkinson’s disease, and amyotrophic lateral sclerosis. Atomic-level detail regarding dynamical changes that facilitate protein aggre-

gation, as well as the structural features of large-scale ordered aggregates and soluble non-native oligomers, would contribute signifi-

cantly to current understanding of these complex phenomena and offer potential strategies for inhibiting formation of cytotoxic

species. However, experimental limitations often preclude the acquisition of high-resolution structural and mechanistic information

for aggregating systems. Computational methods, particularly those combine both all-atom and coarse-grained simulations to

cover a wide range of time and length scales, have thus emerged as crucial tools for investigating protein aggregation. Here we

review the current state of computational methodology for the study of protein self-assembly, with a focus on the application of

these methods toward understanding of protein aggregates in human neurodegenerative disorders.
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Introduction

The transition of native proteins to partially unfolded and aggre-

gated species has been implicated in numerous human neurode-

generative disorders. In healthy individuals, the formation of

potentially toxic aggregates is counteracted by various quality

control mechanisms, including endoplasmic reticulum-associated

degradation and the activity of chaperones that process unfolded,

misfolded, and aggregated proteins (Barral et al., 2004). In condi-

tions of stress or in aged individuals, insufficient capacity of quality

control mechanisms may allow aggregate formation to predomin-

ate and, eventually, to cross a pathogenic threshold. However, ag-

gregation can also occur in the absence of excessive cellular stress,

even in cases where the native state of a protein is highly thermo-

dynamically favorable (Chi et al., 2003). Aggregation propensity

also depends on subcellular localization of a protein and its acces-

sibility to the various quality control mechanisms that maintain

proteostasis (Monsellier et al., 2008). Therefore, differences in

both native structures and cellular microenvironments of

intrinsically disordered proteins and peptides, folded cytosolic

proteins, and membrane proteins underlie their widely varying

aggregation propensities (Linding et al., 2004; Monsellier et al.,

2008).

Protein aggregates are found in both fibrillar (ordered) and

amorphous (disordered) forms. One of the most common structural

features found in ordered protein aggregates is the amyloid fold

(Toyama and Weissman, 2011). Amyloid fibrils contain a character-

istic cross-b architecture, which consists of b-strands running par-

allel to each other, but perpendicular to the direction of fibril

extension (Figure 1A) (Eanes and Glenner, 1968; Jahn et al.,

2010; Qiang et al., 2012). Amyloid aggregates can exhibit various

gross morphologies, such as twisted ribbons, twisted ropes,

sheets, and tubes, based on differing arrangements of protofibril-

lar units (Stromer and Serpell, 2005). Although the common pro-

pensity of multiple aggregation-prone proteins to form amyloid is

well established, there is an emerging view that neurotoxicity

related to protein aggregation occurs mainly in lower-order disor-

dered oligomers (soluble assemblies larger than the native oligo-

meric state that may be pre-fibrillar intermediates or species not

on the fibrillization pathway; examples of oligomers, protofibrils,
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and fibrils of amyloid beta (Ab) peptide are shown in Figure 1B)

(Uversky, 2010; Denny et al., 2013). One of the mechanisms

demonstrated to facilitate early stages of aggregation in associ-

ation with membranes, which can result in membrane disruption

and subsequent cell death (Aisenbrey et al., 2008). During the

process of protein misfolding at the surface of a membrane, pre-

fibrillar oligomers form non-specific ion channels (Figure 1C)

(Quist et al., 2005); the resultant alteration of membrane perme-

ability disrupts ion homeostasis, causing mitochondrial dysfunc-

tion and impaired synaptic transmission, among other neurotoxic

consequences (Kagan, 2006). Conformational features of disor-

dered and pre-fibrillar oligomers of various neurodegeneration-

linked proteins are discussed in more detail in the latter half of

the review.

Computational methods for studying protein misfolding and

aggregation

Computational models, especially when combined with experi-

mental approaches, are increasingly useful for the characterization

of changes in protein dynamics and identification of rare molecular

events that lead to aggregation (Sharma et al., 2008). In this

section, we discuss computational strategies that are commonly

employed to study protein aggregation, starting with algorithms

that predict aggregation propensity on the basis of amino acid

Figure 1 Diverse morphologies of protein aggregates. (A) The characteristic amyloid cross-b structure, as seen in a fibril model of the Iowa mutant

(D23N) of Ab40 (PDB ID: 2lnq (Qiang et al., 2012)). Individual polypeptide chains are colored differently. (B) From left to right: transmission electron

microscopy images of Ab42 oligomers, protofibrils, and fibrils. Reprinted by permission from Ahmed et al. (2010), copyright 2010 Macmillan

Publishers Ltd. (C) Atomic force microscopy (AFM) images of Ab40 (left) and a-synuclein (middle) incubated with lipid bilayers. Inset shows a

lipid bilayer in the absence of peptide/protein. Scale bar, 100 nm. At right, high-resolution AFM images (image size: 25 nm) showing individual

pores formed by Ab40 anda-synuclein within lipid bilayers. Reprinted from Quist et al. (2005), copyright 2005 National Academy of Sciences, USA.
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sequence alone or in the context of protein tertiary structure. We

then discuss methods for simulating protein aggregation and mod-

eling aggregate structures using molecular dynamics (MD) simula-

tions, including the incorporation of strategies to reduce the

computational burden of simulations involving large polypeptides

and long time scales.

Assessment of sequence determinants of protein aggregation

The question of how amino acid composition influences aggre-

gation propensity is highly relevant to protein design, as well as

to our understanding of protein evolution and the pathogenicity

of certain amino acid substitutions. Given the fact that hydrophobic

interactions are a major driving force of protein self-assembly, it is

expected that increased hydrophobic content in a peptide would

lead to increased aggregation propensity, while a net charge on

the peptide would impede aggregation. Also, with the evidence

for common cross-b architecture among amyloid fibrils of diverse

proteins (Nelson et al., 2005), a stretch of amino acids with

enhanced propensity to adopt b-strand secondary structure

would be expected to promote formation of fibrils. Such physico-

chemical properties of amino acids are the basis of most of the algo-

rithms that predict either the rate or propensity of aggregation of

different regions of a protein.

Predictors based on overall protein composition. One of the first

attempts to rationally predict the effect of protein sequence on its

aggregation propensity was based on the prediction of the effect of

a point mutation on the aggregation kinetics of a protein (Chiti

et al., 2003). This method was based on fitting the coefficients of

an empirical formula with a set of existing data for the aggregation

kinetics of 50 point mutants of human muscle acylphosphatase

(AcP), as compared with the wild-type protein (Chiti et al., 2003).

The empirical formula was a linear equation incorporating the

change in hydrophobicity, net charge, and helix-b-sheet conver-

sion propensity upon mutation. This is a simplistic model since it

treats protein properties as a simple sum, without accounting for

position of the mutation in the structure. Additionally, two terms

of the three-term equation, hydrophobicity and net charge, are

highly dependent on each other. Even with these limitations, pre-

dictions of the changes in aggregation rate associated with 27

mutations in a variety of both disease-associated and model pro-

teins obtained using this model had statistically significant correl-

ation with experimental values. This study highlights the role of

physicochemical properties of amino acids in determining, to a

large extent, the differences in aggregation rate. The two limita-

tions of this model, namely interdependent terms and fitting of

free parameters, were overcome in a more sophisticated model

from the Caflisch group (Tartaglia et al., 2004). Depending on the

type of mutation (e.g. polar to apolar or apolar to polar), the

terms of their equation included changes in aromaticity, dipole

moment, ratio of accessible surface area, and b-sheet propensity.

This equation is more complicated than the simple linear relation-

ship of Chiti et al. but does not have redundant terms and, import-

antly, does not have free parameters that must be obtained from

fitting the equation to a training set. The model of Chiti et al. was

extended to predict absolute aggregation rate by incorporating ex-

trinsic factors like ionic strength and pH at which aggregation

occurs in vitro (DuBay et al., 2004). Similarly, the updated model

from the Caflisch group can also predict absolute aggregation

rates (Tartaglia et al., 2005). The models described thus far all con-

sider the starting state of the protein to be denatured.

Predictors of peptides in amyloidogenic proteins. These types of

predictors are based on the assumptions of a well-folded starting

state and the amyloidogenic potential of a peptide within a

protein instead of just a sum over the entire protein. TANGO

(Fernandez-Escamilla et al., 2004) is one of the models incorporat-

ing these criteria. Instead of a simple linear equation for the entire

protein, the TANGO algorithm is based on the assumption that a

given amino acid position in a protein can assume four possible

states: helix, turn, unfolded, and b-aggregated. The propensity of

a particular residue to exist in each state is based on its secondary

structure propensity, solvation penalty and charge–charge inter-

actions. TANGO calculates the partition function of these different

states for each residue, assuming that the probability of one poly-

peptide chain having more than two amyloidogenic regions is neg-

ligible. This assumption limits the ability of TANGO to estimate

aggregation propensities of proteins larger than 50 amino acids.

To address the fact that the folded state is the starting point of ag-

gregation, the stability of the folded state is taken into consider-

ation in the TANGO algorithm using Fold-X (Guerois et al., 2002)

calculations. For practical purposes, TANGO is more useful for iden-

tifying whether a protein is likely to aggregate, rather than predict-

ing absolute aggregation rates. Given these caveats, in benchmark

tests of disease-associated proteins and their mutants, TANGO was

successful in predicting the stretches of these proteins that were

experimentally known to be prone to aggregation. The latest exten-

sion of this approach is WALTZ (Maurer-Stroh et al., 2010), which,

among other developments, significantly expanded the peptide

training set in order to reduce biases in the original algorithm

that were attributed to the smaller training set. In the same class

of predictors of aggregation-prone stretches of amino acids in a

protein, there are several additional algorithms, including an ex-

tension of the original method of Chiti et al. (as surveyed by Belli

et al. (2011)). There even exists a server that combines the

results of several of these algorithms and provides a consensus

prediction (Hamodrakas et al., 2007).

Predictors that consider tertiary structure of an amyloid. TANGO,

WALTZ, and a similar program, Zyggregator (Tartaglia and

Vendruscolo, 2008), implicitly consider tertiary structure by in-

corporating protein stability measurements. However, there are

two classes of algorithms that explicitly consider structure of the

final amyloid. One option to obtain this information is to perform

coarse-grained MD simulations (discussed below) of peptides or

proteins to estimate their amyloidogenicity (Cecchini et al., 2006;

Ding et al., 2012). Another option is to assume the cross-barchitec-

ture (Figure 1A) described in published models of amyloid fibrils

and ‘thread’ the sequence of a protein onto this template structure,

in order to observe whether certain regions are able to stably adopt

this conformation (Thompson et al., 2006; Trovato et al., 2006;

Zhang et al., 2007). The advantage of these methods over the

purely sequence-based methods described above is that they expli-

citly account for subtle structural features of amyloid fibrils, includ-

ing twist in theb-strands and tertiary contacts between amino acids

resulting from electrostatic and steric effects. However, the super-

iority of these methods over the sequence-based methods is not
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clear, mainly because the actual structures of some amyloids may

not be identical to the cross-b models assumed in these methods.

Khare et al. (2005a) applied a hybrid approach, separately examin-

ing sequence and structural determinants of the per-residue aggre-

gation propensity of Cu, Zn superoxide dismutase (SOD1).

Overlapping heptapeptide fragments spanning the entire SOD1 se-

quence were threaded onto idealized dimeric and tetrameric

b-strand templates and conformational free energy was calculated

following MD simulations, in order to assess the energetic favor-

ability of a given region of the SOD1 adopting an amyloidogenic

conformation. To identify ‘hot spots’ of SOD1 amyloidogenicity in

the context of misfolding of the native dimeric structure, in silico

conditions under which SOD1 forms domain-swapped oligomers

were used to identify regions of protein structure that participate

in non-native intermonomer contacts. Evaluating amyloidogenicity

in these two distinct approaches implicated the same regions of

SOD1, suggesting that aggregation ‘hot spots’ in this protein

arise from multiple factors: the inherent propensity of certain se-

quence regions to adopt b-strand-rich conformations, as well as

the position of these regions within the context of the native

protein as it misfolds.

Applications and limitations. An important application of the

methods described above is the ability to scan proteomes of

several organisms to observe the prevalence of amyloidogenic

sequences throughout evolution. Such studies have yielded inter-

esting conclusions: (i) evolution disfavors the adoption of amyloi-

dogenic sequences by intrinsically disordered proteins (Linding

et al., 2004; Chen and Dokholyan, 2008); (ii) to allow hydrophobic

cores, stably folded proteins must also tolerate amyloidogenic

sequences (Linding et al., 2004); (iii) stably folded proteins circum-

vent amyloidogenic sequences by having ‘gatekeeper’ residues

like glycine, proline, and charged amino acids near the amyloido-

genic stretches, which counteract their high aggregation propen-

sities (Rousseau et al., 2006); and (iv) proteins that form

homooligomeric complexes have lower aggregation propensities

than proteins that do not exist as homooligomers (Chen and

Dokholyan, 2008). Furthermore, proteins that are essential to or-

ganismal fitness have lower aggregation propensities than non-

essential proteins. Another application of intense interest is the

use of these algorithms to predict mutations that reduce aggrega-

tion propensities of specific proteins (Fowler et al., 2005). This ap-

plication is especially useful in designing mutations to stabilize

protein-based biotechnological products, including therapeutic

agents.

There has been a reasonable degree of progress made toward

the prediction of sequence determinants of aggregation.

However, there are significant challenges that remain. The best cor-

relations between experiments and predictions can be attributed to

simple physicochemical properties. For example, some of the best

predictions involve introduction of charged residues. These

methods also suffer from excessive false positive predictions,

which are accompanied by the fact that even the most sophisti-

cated algorithm does not take into account the protein structure/

sequence as a whole. Thus, at this stage, we can conclude that

simple rules may explain a significant portion of protein aggrega-

tion mechanisms, but to reach more thorough understanding, ag-

gregation must be studied in the context of the tertiary structure

of the entire protein. To enable such studies, significant advance-

ments in computational resources and/or significant improve-

ments in algorithms to simulate protein conformational states

are essential.

Modeling of protein aggregate structures with MD

Structural and dynamic properties of protein states populated

along the aggregation pathway are important for our understand-

ing of misfolding and aggregation mechanisms, and also for the de-

velopment of strategies for therapeutic inhibition. Although the

aggregate structures of several short peptide segments of amyloi-

dogenic proteins have been solved by X-ray crystallography

(Nelson et al., 2005; Sawaya et al., 2007; Neudecker et al.,

2012), the structures of aggregates and pre-fibrillar intermediates

of many misfolding-prone proteins are not known. These inter-

mediate states are often transient in nature, making them difficult

to capture and thus challenging to characterize experimentally. As

a result, atomic structures of protein aggregates are a major

subject of computational modeling studies (Ma and Nussinov,

2006).

MD simulations utilize the input of a set of spatial coordinates of

the system of particles (atoms, amino acid residues, or their equiva-

lents) to evaluate the potential energy of the system. The tradition-

al simulation engine iteratively solves Newton’s equations of

motion over small time steps. The output of the simulation is a tra-

jectory of spatial coordinates describing the behavior of the system

over time, like a movie of a virtual experiment. Direct observation of

the formation of oligomers is currently not achievable using

all-atom MD simulations due to the requirement of extensive sam-

pling. To increase computational efficiency of biomolecule simula-

tions, researchers have developed discrete molecular dynamics

(DMD), an event-driven algorithm in which adaptive discretization

of the potential function is combined with optimized treatment of

hydrogen bonds and implicit solvent interactions (Dokholyan

et al., 1998; Ding et al., 2008; Dagliyan et al., 2011; Shirvanyants

et al., 2012). DMD has been used to study conformational dynamics

and molecular mechanisms of self-assembly for a wide variety of

proteins and peptides (Ding et al., 2002, 2005a, 2012; Peng

et al., 2004; Khare et al., 2005b).

Another method for reducing the computational burden of oligo-

merization simulations is to start simulations from experimentally

obtained structures. For example, Jang et al. (2010) utilized struc-

tures of the Ab peptide from NMR and electron microscopy in MD

simulations to examine the conformations of b-barrel channels

that are proposed to be toxic. Using 12-, 16-, and 20-mer structures,

the authors obtained results similar to those found using atomic

force microscopy (AFM), emphasizing the possible heterogeneity

of structures formed by Ab oligomers. The near-native structure

and dynamics of oligomers and pre-fibrillar aggregates can be

explored using experimentally solved structures, but in order to

observe de novo aggregation and other events occurring on

longer time scales, current limits on computational power dictate

that researchers simplify their representation of these structures.

Coarse-graining for complex systems

MD simulations with all-atom modeling have been used to study

the early stages of protein misfolding and aggregation (as reviewed
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by Straub and Thirumalai (2010)). However, the typical time

scales accessible by atomistic simulations are �100 nsec to

�msec, or �msec with state-of-the-art, hardware-accelerated

supercomputers (Lindorff-Larsen et al., 2011); these time scales

are far shorter than the days, years, or even decades sometimes

required for protein aggregation. The propensity to aggregate

appears to be a sequence-independent property of all polypeptide

chains (Dobson, 1999) that is governed by fundamental interac-

tions (such as hydrophobicity and electrostatics); therefore,

coarse-grained simulations with simplified representations of pro-

teins represent a tractable method for recapitulating physiological-

ly relevant aggregation events (reviewed by Wu and Shea (2011)).

Coarse-graining of a system simplifies groups of atoms into beads,

with each bead usually representing more than one atom: for in-

stance, a bead could represent an amino acid residue, part of a

residue, or a particular chemical group. In exchange for the reduc-

tion in accuracy due to simplification, coarse-grained simulations

have the capability to reach longer time and length scales on

account of the fewer particles and therefore fewer calculations ne-

cessary at each time step. Some commonly used coarse-grained

protein models include MARTINI (Marrink et al., 2007) and PRIME

(Voegler Smith and Hall, 2001).

A disadvantage of the coarse-graining of protein systems is the

difficulty of modeling large changes in secondary structure,

which are common in processes of misfolding and aggregation.

To address this issue, researchers have introduced phenomeno-

logical coarse-grained models, which represent specific peptides

based on steps in their misfolding processes. Pellarin et al.

(2007) utilized a two-state peptide model, comprising an amyloid-

competent and an amyloid-protected state, with Langevin dynam-

ics to simulate an amphipathic peptide. By varying only the relative

stabilities of the two states, the authors demonstrated control over

the roughness of the free energy surface and the heterogeneity of

the fibril elongation pathway. Increasing the energy gap between

the two states, equivalent to decreasing theb-aggregation propen-

sity, roughened the free energy surface, creating additional inter-

mediates along the elongation pathway.

In addition to phenomenological models, physics-based coarse-

grained models are widely employed for studying protein aggrega-

tion. These models rely on physical force fields to define the energy

of the system, instead of assigning parameters meant to mimic ex-

perimental observations, and are therefore more applicable to gen-

eralized real-world systems. Physics-based models have been used

to assess the effect of b-sheet propensity on peptide aggregation

with a three-bead model (Bellesia and Shea, 2009), and to reveal

the amyloidogenesis mechanisms of Ab peptides (Peng et al.,

2004) and Src SH3 domain (Ding et al., 2005b) using two-bead

models.

Multi-scale approaches that bridge coarse-grained and all-atom

simulations

Molecular modeling with fully atomistic representation provides

the most accurate description of the structure and dynamics of the

molecular system. However, all-atom simulations have limited

ability to reach long time scales and large polypeptide length

scales because they are required to compute all of the detailed

interactions and dynamics of the system. For this reason,

all-atom simulations have been mainly applied to study early

events of protein misfolding and aggregation. On the other hand,

coarse-grained simulations with simplified representation of the

molecular system have the ability to reach longer time scales and

model larger systems, but with the drawback of less accurate de-

scription of the molecular systems. Multi-scale modeling

approaches have been proposed as a means of combining both

all-atom and coarse-grained simulations in order to cover a wide

range of time and length scales. The challenges of multi-scale mod-

eling include the choice and development of a coarse-grained force

field, the inter-conversion of molecular models with different reso-

lutions, and the coupling between simulations of different scales.

Multi-scale modeling has allowed the investigation of the struc-

ture and dynamics of lipid membranes, proteins, and DNA (as

reviewed by Ayton et al. (2007) and Tozzini (2010)). These

methods often involve conformational sampling with coarse-

grained simulations, all-atom reconstruction, and subsequent en-

ergetic evaluation with atomistic simulations (Heath et al., 2007;

Samiotakis et al., 2010). Similar multi-scale modeling approaches

have also been applied to study protein misfolding and aggrega-

tion. For example, coarse-grained simulations are often used to

generate an ensemble of possible aggregate conformations to

serve as starting structures for all-atom simulations, allowing the

evaluation of the thermodynamic viability and structural features

of different assemblies (Urbanc et al., 2004a; Ding et al., 2005a).

This approach was used to identify atomic-level differences in

dimers of Ab40 and those of the more toxic Ab42 alloform (Barz

and Urbanc, 2012). Multi-scale methods can also be employed in

the reverse order: all-atom simulations were used to analyze the

structural elements in SOD1 that are prone to form the core of fibril-

lar aggregates, and this information was incorporated into subse-

quent coarse-grained simulations to model the formation of large

SOD1 aggregates (Ding et al., 2012). Therefore, by combining high-

accuracy atomistic simulations with coarse-grained simulations

that are able to sample long time scales, multi-scale modeling

approaches offer the opportunity to cover a wide range of time

and length scales, which is important for bridging the gaps

between experimental observations and underlying molecular

systems.

Application of computational methods to the study of protein

aggregation in human diseases

Ab and Alzheimer’s disease

Ab is a peptide of variable length (36–43 residues) that is formed

by the sequential cleavage of Ab precursor protein (APP) byb- and

g-secretases in the ER lumen and transmembrane domain (TMD),

respectively (Golde et al., 1992; Chiti and Dobson, 2006). The

most abundant Ab peptides derived from the TMD of APP are

Ab40 and the toxic Ab42 (Figure 2A), where Ab40 is 10 times more

populated than Ab42 (Näslund et al., 1994). Both Ab40 and Ab42

can populate a range of oligomeric states, but Ab42 is more

prone to adopt transient oligomeric conformations that rearrange

to form protofibrils (Bitan et al., 2003). Unlike monomeric Ab42,

these early soluble oligomers and protofibrils of Ab42 are sug-

gested to be the major contributors to the onset of neurodegenera-

tion in Alzheimer’s disease (AD) (Chiti and Dobson, 2006). As in

other protein aggregation diseases, protein misfolding is thought
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to be the initiating process of AD pathology, and can be induced by

destabilizing conditions such as low pH, high temperature, and

amino acid substitution (Bucciantini et al., 2002; Dobson, 2003).

The assembly of Ab into soluble oligomers and amyloid fibrils

has been investigated with various experimental methods (Chiti

and Dobson, 2006); however, it is still experimentally challenging

to characterize oligomerization-triggering events at the atomic

level due to the transient equilibria between various orders of oli-

gomers. Therefore, computer simulations can provide experimen-

tally inaccessible insights into early Ab oligomerization steps

that could be targeted for drug discovery efforts.

MD simulations have been employed to probe the structural fea-

tures of Ab oligomers and fibrils, as well as the key interactions me-

diating their assembly. Based on MD simulations and solid-state

NMR experiments, a structural model of amyloid fibrils formed by

Ab40 peptides was built (Petkova et al., 2002). In this fibril model,

the first 10 residues are disordered while residues 12–24 and 30–

40 form parallel b-sheets, which interact with each other through

side-chain interactions involving residues 25–29. Residues Asp-23

and Lys-28 in the core form salt bridges that stabilize the cross-b

unit, which consists of a double-layered b-sheet structure with

hydrophobic core and face (Petkova et al., 2002; Baumketner and

Shea, 2007). MD simulations have revealed the effects of Ab40 on

the competence of Ab42 to form fibrils: b strand content of the

Ab42 monomer was found to decrease in the presence of Ab40,

leading to increased flexibility of the Asp-23-Lys-28 salt bridge and

residues 18–33 of Ab42, thus decreasing fibril stability (Viet and

Li, 2012). Calculations from DMD simulations indicated no signifi-

cant free energy difference between formation of Ab40 dimers and

Ab42 dimers, suggesting that thermodynamically stable planar

b-strand dimers do not initiate Ab oligomerization (Urbanc et al.,

2004a). The distinct oligomer formation of Ab40, Ab42, their versions

containing anAD-causing substitution (E22G), and theirN-terminally

truncated versions were investigated with a four-bead DMD model

(Urbanc et al., 2004b, 2010; Meral and Urbanc, 2013). Consistent

with experimental findings (Bitan et al., 2003), these computational

studies revealed that two C-terminal residues in Ab42 cause the dif-

ference in oligomer size distribution between Ab40 and Ab42,

whereas N-terminally truncated versions show increased aggrega-

tion propensity. Furthermore, Yun et al. (2007) showed that

Figure 2 Primary structures of neurodegeneration-linked proteins and peptides discussed in this review. (A) Amino acid sequence of Ab42; the

sequence of Ab40 is identical except for the C-terminal isoleucine and alanine. (B) Sequence of the protein product of an HTT exon 1 variant

with 21 CAG repeats. The site of the variable-length polyQ tract is shaded. (C) Sequence of SOD1, shaded to indicate amino acids that participate

in the intramolecular disulfide bond, coordination of Cu2+ or Zn2+, and formation of the homodimer, steps in SOD1 maturation that contribute to

the stability of the native state. (D) Sequence and domains of a-synuclein, shaded to indicate the N-terminal domain, containing multiple con-

served imperfect KTKEGV repeats (enclosed in boxes), and the non-Ab component of plaque (NAC) domain, which is characterized by a high

content of hydrophobic residues and promotes a-synuclein aggregation. The N-terminal and NAC domains form transient a helical structures

and are involved in binding to membranes (Breydo et al., 2012). The C-terminal acidic domain is indicated by dark shading; this domain contains

a high content of proline, aspartate, and glutamate residues and is the site of numerous interactions with proteins and ligands such as dopamine

and its analogs, calcium, copper, and iron (Breydo et al., 2012). Asterisks mark sites of amino acid substitutions linked to AD (A), HD (B), ALS (C),

and PD (D); substitution sites reflect entries from the Human Gene Mutation Database (http://www.hgmd.org), the Alzheimer Disease

and Frontotemporal Dementia Mutation Database (http://www.molgen.ua.ac.be/ADMutations/), and the ALS Online Genetics Database

(http://alsod.iop.kcl.ac.uk/) as of January 2014.
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electrostatic interactions facilitate oligomerization of both Ab40 and

Ab42 into trimers and tetramers, while Ab42 can also form nonamers

and tetradecamers due to its extended C-terminus via a quasi-stable

turn. The crystal structure of an Ab18– 41 tetramer (Streltsov et al.,

2011) supported the oligomeric structures suggested in these

DMD studies.

In addition to elucidating Abaggregation mechanisms and struc-

tures of oligomers and fibrils, results from computational studies

have been used to propose a number of therapeutic approaches

for blocking Ab aggregation. One strategy for blocking Ab aggrega-

tion is the generation of peptides that mimic the structure of a

portion of Ab, such that they will bind to a growing fibril but

cannot serve as a template for further extension. Fibril formation

was found to be reduced by chemically-modified pentapeptides

that mimic Ab17 – 20 (LVFF), but act as b-sheet breakers

(Permanne et al., 2002; Adessi et al., 2003). In another study,

docked conformations of Ab17 – 20-mimicking peptides were used

to design 3D-pharmacophores for virtual screening. Based on

docking scores and physicochemical features, 16 diverse small

molecule compounds were selected for experimental tests. At 2–

3 mM concentrations of the selected hit compound, Abaggregation

was reversed in vitro and in vivo (Chen et al., 2009). The relation-

ship between aggregation rate and binding affinity of the b-sheet

breaker peptides KLFVV and LPFFD was investigated with

all-atom MD simulations, which showed that KLVFF is less effective

than LPFFD at preventing aggregation of Ab16 – 22 peptides.

Analysis of the relative affinities of these two peptides using the

Molecular Mechanics Poisson–Boltzmann surface area method

revealed that the greater efficacy of LPFFD is attributable to its

higher affinity for Ab16 – 22. These simulations also showed that al-

though totalb-sheet content is elevated in the presence ofb-sheet

breaker peptides, aggregation rate is decreased due to a reduction

in b-sheet content of fibril-prone regions (Viet et al., 2011).

In light of the emerging view of Ab oligomers, as opposed to

fibrils, as primary disease-causing toxic species, computational

approaches have also focused on the therapeutic potential of tar-

geting these species. Inhibitors based on Ab peptide fragments

reduce toxic effects of Ab42 without preventing Ab42 oligomeriza-

tion; simulations with a four-bead DMD model revealed that

these peptides form large assemblies with Ab42 and reduce their

b-strand content (Urbanc et al., 2011). These results highlight

the therapeutic potential of stabilizing Ab in a relatively benign

conformation, even when the abundance of oligomers is largely un-

altered. Computational characterization of mechanisms by which

inhibitors reduce Ab toxicity, as well as of Ab folding and structures

of oligomers and aggregates, was recently reviewed by Shea and

Urbanc (2012).

Huntingtin and Huntington’s disease

The interesting transcript 15 (IT15), also called the huntingtin

gene (HTT), encodes a �350 kDa multidomain protein that is es-

sential for brain development (MacDonald et al., 1993; Reiner

et al., 2003). The protein product, huntingtin protein (htt), contains

a polymorphic glutamine/proline rich domain close to its amino-

terminus (Figure 2B) (MacDonald et al., 1993). The polymorphic

nature of the 5
′ region of HTT results in a variable size of the

protein product with anomalous polyglutamine (polyQ)

expansions; the presence of htt with expanded polyQ tracts is char-

acteristic of aggregates found in neurons of Huntington’s disease

(HD) patients. HD is a late-onset autosomal-dominant neurodegen-

erative disorder characterized by acute motor dysfunction, cogni-

tive decline, and psychiatric disturbances (Landles and Bates,

2004). The age of onset of HD symptoms is inversely proportional

to the length of polyQ expansion (Bates, 2005). Although ubiqui-

tously expressed and localized to several subcellular compart-

ments, the normal function of htt has not been established due

to its lack of homology to other known proteins (Harjes and

Wanker, 2003). Roles for htt in numerous cellular processes are

suggested by its ability to bind to proteins involved in apoptosis,

vesicle transport, morphogenesis, and transcriptional regulation

(Harjes and Wanker, 2003; Li and Li, 2004). Recent reports

suggest that htt is involved in modulation of gene transcription

via direct interaction with genomic DNA (Bates, 2005).

Biochemical and biophysical studies have established that re-

gardless of length, polyQ expansions result in the formation of

aggregates with common structural features (Klein et al., 2007;

Vitalis et al., 2009). However, detailed structural information per-

taining to polyQ-htt is difficult to obtain experimentally, as even

short polyQ tracts make htt insoluble at the high concentrations

required for crystallography or NMR studies (Truant et al., 2008).

Computational approaches, on the other hand, have provided

atomistic details of the structural organization of polyQ-htt of dif-

ferent lengths and oligomeric states (Marchut and Hall, 2007).

Several structural models, including the triangular b-helix model

and the antiparallelb-sheet model, were proposed and have geom-

etries compatible with existing experimental data (Stork et al.,

2005; Esposito et al., 2008). Classical MD simulations have pro-

vided valuable insights into the stability, toxicity, folding, and

three-dimensional organization of monomeric and aggregated

polyQ-htt (Finke et al., 2004; Armen et al., 2005; Khare et al.,

2005b; Sikorski and Atkins, 2005; Stork et al., 2005; Barton

et al., 2007; Esposito et al., 2008; Lakhani et al., 2010). In addition

to MD simulations, force field-based Monte Carlo simulations have

also been employed to study the aggregation characteristics of

polyQ (Vitalis et al., 2009). Several studies have focused on the de-

pendence of the structural stability of the circularb-helix and other

possible structures on polyQ extension length (Khare et al., 2005b;

Stork et al., 2005; Marchut and Hall, 2007; Ogawa et al., 2008;

Lakhani et al., 2010; Rossetti et al., 2011). Although conflicting

views prevail, these studies are in general agreement that polyQ

extensions of 30 Qs or more impart maximal stability to the result-

ing b-helix structures (Stork et al., 2005; Merlino et al., 2006;

Ogawa et al., 2008). In contrast to these results, experimental

and computational studies have proposed and validated the forma-

tion of annular units smaller than the circular b-helix structures

(Marchut and Hall, 2006a, 2007). In addition, using enhanced sam-

pling techniques, several groups have demonstrated the depend-

ence on sequence context of the aggregation propensity of polyQ

tracts (Kelley et al., 2009; Lakhani et al., 2010).

As outlined above, atomistic details of the association of mono-

meric polyQ-htt of a given length to form mature fibrils remain a

matter of controversy. Although computational studies can

provide atomistic details of such molecular processes, they are

largely limited by the long time scales required to observe such
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events. A common methodology used to overcome this limitation is

the use of coarse-grained modeling of protein–protein interac-

tions. Simplified models of polyQ have been developed to study

their aggregation propensities (Marchut and Hall, 2006a, b,

2007). Using DMD, Barton et al. (2007) demonstrated that the for-

mation of inter-glutamine hydrogen bonds defines the dominant

interactions involved in aggregation of unfolded intermediates.

More recently, it was demonstrated using enhanced sampling tech-

niques that the amino acid sequences flanking the huntingtin

repeats influence the misfolding propensity of the polyQ-htt, in

agreement with experimental observations (Ding et al., 2008;

Lakhani et al., 2010; Shirvanyants et al., 2012). Applications

of computational methods toward understanding the molecular

mechanisms of HD are discussed by Rossetti and

Magistrato (2012).

SOD1 and ALS

The link between SOD1, a homodimeric antioxidant metallopro-

tein (Figure 2C), and amyotrophic lateral sclerosis (ALS), a

late-onset neurodegenerative disorder specifically affecting

motor function, was first discovered in the early 1990s (Rosen

et al., 1993) and over 150 mutations in the gene encoding SOD1

have since been identified in ALS patients. ALS-linked mutants of

SOD1 range from completely inactive to wild type-like in their dis-

mutase activities, with no correlation between enzymatic activity

and disease severity, but many SOD1 mutations have a common

effect of decreasing stability of the native homodimeric conform-

ation (Khare et al., 2006; Shaw and Valentine, 2007); more desta-

bilizing mutations having a tendency to cause ALS with earlier

onset and/or more rapid progression (Wang et al., 2008).

Pathophysiology of ALS, like that of other neurodegenerative

disorders, is extraordinarily complex; it is difficult to distinguish

between deleterious phenomena that initiate disease onset from

those appear subsequently. Soluble misfolded SOD1, present as

monomers and non-native dimers, trimers, and higher-order oligo-

mers (Banci et al., 2007; Gruzman et al., 2007), directly disrupts

neuronal homeostasis by interacting with components essential

to processes such as axonal transport, mitochondrial function, pro-

teasomal efficiency, and ER-associated degradation (Ferraiuolo

et al., 2011; Redler and Dokholyan, 2012). In addition to destabil-

izing mutations, SOD1 can be induced to misfold and aggregate by

non-genetic factors such as oxidation, which induces wild-type

SOD1 to adopt similar conformations to that of ALS-linked

mutants and also exacerbates the destabilizing effects of some

mutations (Bosco et al., 2010; Proctor et al., 2011; Mulligan

et al., 2012). SOD1 aggregation, particularly the formation of

soluble oligomers, is thus considered to be a potentially wide-

spread factor in ALS pathogenesis.

MD simulations have been instrumental in studying the contribu-

tions of individual residues to SOD1 stability, folding, and misfold-

ing. DMD was used to identify residues most essential to the

thermodynamic stability and two-state folding kinetics of wild-type

SOD1 (Khare et al., 2003). As monomeric SOD1 containing

ALS-linked mutations and lacking bound metal ions and/or the

native intramolecular disulfide bond represent the most

aggregation-competent species, much effort has been focused

on characterization of their stability and dynamics. From

simulations of 75 ALS-linked SOD1 mutants using the explicit

solvent/implicit solvent (ES/IS) method, Khare et al. (2006) calcu-

lated the effect of each mutation on thermodynamic stability of

dimers and monomers, finding that over 90% of the mutations

studied decrease dimer stability, increase dimer dissociation pro-

pensity, or both. All-atom MD simulations with explicit solvent

also revealed a common tendency of ALS-causative mutations to

weaken the native hydrogen-bonding network by restricting corre-

lated movements between subunits in the dimer, showing the im-

portance of dynamic coupling to SOD1 stability (Khare and

Dokholyan, 2006). An altered network of hydrogen bonds was

also shown for the G37R mutant using implicit solvent MD

(Milardi et al., 2010). A4V-SOD1, in addition to exhibiting the

increased loop and active site fluctuations seen in most

ALS-linked mutants (Shipp et al., 2003; Tiwari and Hayward,

2003; Rodriguez et al., 2005; Tiwari et al., 2005), has higher

solvent exposure of Cys-111, which is susceptible to destabilizing

post-translational modification (Proctor et al., 2011; Redler et al.,

2011) and has been shown to modulate aggregation propensity

(Cozzolino et al., 2008). Results from MD simulations also indicated

that, unlike the wild-type protein, A4V forms a-sheet and a-bridge

structures that have been observed in other amyloidogenic pro-

teins (Schmidlin et al., 2009).

To determine the relative contributions of metal binding and the

native disulfide bond to SOD1 misfolding, Ding and Dokholyan

(2008) used all-atom DMD simulations ofwild-type SOD1 in the pres-

ence and absence of these stabilizing elements. Coordination of

metals contributes more to thermodynamic stability than does the

native disulfide bond, while both disulfide reduction and metal

loss lead to loss of intersubunit contacts important to dimer stability.

The reduced dimer stability of metal-free, disulfide-reduced SOD1

can be explained by the observation of increased flexibility in the

Glu-49-Asn-53 loop and resultant weakening of intersubunit con-

tacts. In addition to elucidating the contribution of native post-

translational modifications to SOD1 stability, MD simulations have

also enabled characterization of the structural consequences of

two modifications reported to be abundant in SOD1 from human

tissue: Thr-2 phosphorylation and Cys-111 glutathionylation

(Wilcox et al., 2009). In simulations utilizing all-atom DMD with

replica exchange, Proctor et al. (2011) report that both modifica-

tions, individually and in combination, destabilize dimers of wild-

type and mutant SOD1 and increase the energetic favorability of

populating a misfolded intermediate state.

a-synuclein and Parkinson’s disease

a-synuclein is a neuronal protein that plays a central role in

Parkinson’s disease (PD) and dementia with Lewy bodies, as well

as other neurodegenerative diseases such as AD and multiple

system atrophy (Jellinger, 2009; Breydo et al., 2012). PD involves

massive death of dopaminergic neurons in the substantia nigra,

leading to reduction of striatal dopamine levels and motor dysfunc-

tions such as tremor, rigidity of the limbs and trunk, bradykinesia,

and postural instability (Ferrer et al., 2012). Mutations in the gene

encodinga-synuclein (SNCA, also known as PARK1) corresponding

to A30P, E46K, and A53T substitutions have been discovered in

patients with early onset familial PD (Figure 2D), and evidence sug-

gests that these mutations promote a-synuclein aggregation
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(Breydo et al., 2012). Like Ab, a-synuclein is an intrinsically disor-

dered protein that forms morphologically diverse aggregates, in-

cluding spherical or ring-like oligomers, amorphous aggregates,

and amyloid fibrils (Breydo et al., 2012). Toxic oligomers also

may be released and sequestered by fibrils (Cremades et al., 2012).

As in several other protein conformational disorders, multiple

cytotoxic mechanisms have been proposed for a-synuclein mono-

mers and aggregates. a-synuclein oligomers induce oxidative

stress in neurons (Cremades et al., 2012) and can bind to lipid mem-

branes, permeabilizing bilayers, and sometimes forming ion-

conducting pores (Breydo et al., 2012). A detailed review of oligo-

mer toxicity was recently presented (Kalia et al., 2013).

Mechanisms of a-synuclein aggregate neurotoxicity include im-

pairment of a-synuclein degradation via proteasome inhibition

by the aggregated species, as well as copper-dependent gener-

ation of reactive oxygen species (Breydo et al., 2012; Zhou et al.,

2012). a-synuclein aggregation is also reported to underlie inflam-

mation and immune abnormalities present in PD, including aber-

rant microglial activation (Bennett, 2005).

Computer simulations have been instrumental in analysis of

a-synuclein structure and interactions, both of the native state and

of pathological aggregates. Simulations coupled with NMR

(Dedmon et al., 2005; Bortolus et al., 2008; Allison et al., 2009;

Wu et al., 2009) and FRET experiments (Nath et al., 2012) provided

evidence that the native state of a-synuclein is more compact than

would be expected for a random coil, and that it forms transient oli-

gomeric structures mediated by contacts made by the C-terminus. In

implicit solvent Monte Carlo simulations (Jónsson et al., 2012), two-

phase behavior of a-synuclein was observed in solution: one phase

is structurally disordered and another has significant b-strand

content. Destabilization of the native state is promoted by

disease-associated mutations, as was shown in MD studies for

A53T (Coskuner and Wise-Scira, 2013), A30P (Wise-Scira et al.,

2013a), and E46K (Wise-Scira et al., 2013b). Structural changes pro-

moted by these mutations result in more open states, biased to ag-

gregation (Hazy et al., 2011). Results of atomistic simulations

(Tsigelny et al., 2008) suggest that the transient oligomers formed

by a-synuclein may be the species capable of interacting with lipid

membranes. A MD study of aggregation kinetics (Matthes et al.,

2012) indicates a two-phase process of fibril formation, where for-

mation of the contact interface by mostly disordered chains is fol-

lowed by structural transition and accumulation of b-sheet

content. It also suggests a critical role of protein–solvent interac-

tions in a-synuclein aggregation. Structures of fibrils have also

been a focus of computer-assisted studies. Fibril rupture simulations

agree with AFM experiments and indicate the presence of highly

mechanically stable structures in a-synuclein fibrils with high

b-sheet content (Jónsson et al., 2013).

Concluding remarks

Protein aggregation has been implicated in numerous neuro-

degenerative disorders whose etiologies are poorly understood

and for which there are no effective treatments. In particular,

early-stage soluble oligomers are thought more likely to be

toxic, but their heterogeneity and/or transience often precludes

experimental characterization that could allow the development

of strategies to prevent their assembly or toxicity. Therefore,

the high-resolution structural, dynamic, and mechanistic insights

afforded by computational studies of protein aggregation have a

unique potential to enable the rational manipulation of oligomer

formation. Such capability will facilitate further direct testing of

the ‘cytotoxic oligomer hypothesis’ and reveal potential strat-

egies for inhibiting formation of toxic oligomers in neurodegen-

erative disorders.
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